
Before the break:

When using Internet technologies, we are confronted
with two fundamental questions:

• How to hide what is communicated?

• How to hide who communicates?

...in the face of an opponent that has total knowledge
 of all the IP traffic involved.

◄

“HG”
Live example: manually decrypting a ciphertext

►

Live example: manually decrypting a ciphertext

What has just happened?

● The receiver applied a decryption algorithm...

“On receiving a message, perform the following two steps:
  Replace each character by its alphabetical successor: an 'A'

becomes a 'B', a 'B' a 'C', etc.
  Reverse the order: put the last character first, followed by

the one-before-last, etc.”

● ...to decrypt a ciphertext:

“HG” “IH” → → “HI”

Live example: manually decrypting a ciphertext

This was an example of a substitution-permutation cipher:

H G

 I H

H I

Substitution: replace the instances of one
 symbol by those of another.

Permutation: change the order in which
 symbol instances are placed.

Live example: manually decrypting a ciphertext

● The example encryption method uses permutation & substitution
to produce an overall ciphertext that is different from the original,
plaintext message.

● What remains constant
however, is that symbols of
the same type still end up in
the ciphertext as symbols of
the same type.

● This means our ciphertexts
will be vulnerable to letter
frequency analysis →

● To make this attack harder to do, you can group symbol
instances together into blocks: a block cipher.

 ↑ Letter frequencies in English.
Original by Nandhp at Wikimedia Commons.

Live example: automatic encryption and
decryption (using JavaScript)

...However, we will now first automate encryption:

● Writing code in JavaScript: the “+x substitution cipher”.

►

Live example: automatic encryption and
decryption (using JavaScript)

● From the example code, we could further automate the crack ()
function by adding a dictionary lookup test...

Live example: automatic encryption and
decryption (using JavaScript)

● Everyday intuition:
“Cracking an encrypted message should be hard.”

● Now, as code:

 ciphertext = encrypt (plaintext, key); // should finish quickly

 plaintext = decrypt (ciphertext, key); // should finish quickly

 plaintext = crack (ciphertext); /* should finish only after the
 end of the universe */

 ⇒ So, more precisely:
The cracking algorithm should consist of many more
computational steps than the encryption and decryption
algorithms.

Live example: automatic encryption and
decryption (using JavaScript)

● In the example, our repeated decryption attempts were done
using the following code:

possible_plaintext = encrypt (ciphertext, -1 * key);

● This is an example of symmetric-key encryption:

The same key that is used to encrypt the plaintext
is also used to decrypt the resulting ciphertext.

● Asymmetric-key encryption is also used, e.g. in public key
cryptography:

Here, anybody can encrypt using a publicly accessible key;
but only the receiver can decrypt using a second, private key.

Symmetric-key encryption

Can be used...

Symmetric-key encryption

 ...to hide what is communicated over the Internet.

Symmetric-key encryption

● All we need is a covert, secure channel, to exchange the key.

 ↑ ...Wait a minute!

Symmetric-key encryption

● Remember: our opponent has total knowledge of all IP traffic.

 ⇒ Chicken-and-egg problem: We need a shared key to
communicate securely – but we first need to communicate
securely, to obtain a shared key. → ...What to do?

Tools to make a secret key with everyone looking

● What to do? We need to grasp three concepts:

● “An encryption key is a number.”

● One-way functions.

● Quasi-commutative functions.

Tools to make a secret key with everyone looking

● A numerical function f () may combine two input numbers a
and b to form one new output number o:

 o = f (a, b); // think of JavaScript here

● A commutative function gives the same output when a and b
are swapped.

● E.g. doing an addition, (a + b) == (b + a) is always true.
● The general case: “f (a, b) == f (b, a) is always true.”

● A quasi-commutative function gives the same output in the
following argument swap:

● f (f (a, b), c) == f (f (a, c), b)
● E.g. doing two additions: (a + b) + c == (a + c) + b.
● So: it does not matter if you first combine a with b, then c;

or first with c, then b.

Tools to make a secret key with everyone looking

● A numerical function f () may combine two input numbers a
and b to form one new output number o:

 o = f (a, b); // think of JavaScript here

● For a one-way function:
● When you know a, b, and f (), computing o takes only a

few steps.
● But even when you know o, a, and f (), computing b takes

very many steps.
● So: computation is quick only in one direction.

 ⇒ f () is “hard to crack” based on its output.

Diffie-Hellman key exchange

● Everyone knows the function f () and the constant number g.

● Alice and Bob each secretly pick a random number: a and b.

● Alice privately computes f (g, a), then sends the resulting
value to Bob.

● Bob privately computes f (g, b), then sends the resulting
value to Alice.

● Everybody can see and record these values!

● But since f () is a one-way function, a and b still remain
secret.

Diffie-Hellman key exchange

● Bob then uses the value of f (g, a) to compute f (f (g, a), b).

The output is known just to Bob, because only he knows b.

● Alice uses the value of f (g, b) and computes f (f (g, b), a).

The output is known just to Alice: only she knows a.

● But wait – Bob and Alice actually computed the same value!

● As f () is quasi-commutative: f (f (g, a), b) == f (f (g, b), a).

● Bob and Alice now both know this number no one else knows.

 ⇒ They can use it as a symmetric key.

Diffie-Hellman key exchange, recapitulated

f (), g
Alice: Bob:
a b

 value of f (g, a)

 value of f (g, b)

f (f (g, b), a) f (f (g, a), b)
|| ||

TLS: Transport Layer Security

● Application layer protocol which extends transport layer
protocols with encryption.

● Diffie-Hellman here is an optional key exchange mechanism.

● TLS has been implemented on top of TCP (but also UDP).

● HTTP Secure (HTTPS): HTTP via TLS (instead of TCP).

