
Building Real-Time Web Applications with Meteor
Sophie Rust

Leiden University MSc student
sophie.rust@gmail.com

Jasper Schelling
Leiden University MSc student

jasper.schelling@gmail.com

Donna Schipper
Leiden University MSc student

donnaschipper@gmail.com

ABSTRACT
The Meteor framework provides a way to develop real-
time web applications with just one programming language:
JavaScript. While keeping in mind other conventional
technology stacks as LAMP, the framework can be seen as
a whole new paradigm because it makes use of server-side
JavaScript. First, we shortly explore the history of web
development frameworks in order to describe the context of
Meteor. Second, the architecture and operating principles
are discussed in order to explain the real-time aspects of
Meteor. Strengths and weaknesses are explored and
example applications will be discussed to show the power
of Meteor. Finally a guide to build a Meteor application is
given and core elements contributing to create real-time
applications with Meteor, such as 'templates' and
'collections' are explained.

1. PURPOSE, CONTEXT AND HISTORY
Meteor is a set of interlocking web technologies that
provides developers a modern method to create web-
applications [20]. This paper discusses how Meteor
facilitates the creation of real-time web applications. With
real-time is meant, web-based applications where the
interactions between client and server take place at such a
speed that users experience direct feedback on their
interactions with the application and other users. Modified
data is directly shown without the user having to refresh the
page or the system having to execute periodical checks
[15].

In order to understand the characteristics of a platform like
Meteor, general background knowledge about the way web
developers combine different technologies, is desired. Web
developers rely on a ‘stack’: a set of software technologies
that provides users with the functionality of a web-based
application [29]. In this set, the following technologies are
commonly found: an operating system, providing the server
with basic computer operations and networking, an http-
server, which handles http-requests from web-browsers,
database software to store data and a scripting language
with an interpreter to write the code that is executed when
the user interacts with the web-application [33].

While many other stacks exist in parallel, the 'LAMP stack'
has become the most common set of server-side
technologies since the late 1990s. This stack consists of
four open-source technologies; Linux (operating system),
Apache (web-server), MySQL (relational database) and
PHP, Perl or Python (scripting languages). A reason for the
adoption of these open source technologies seems partly its
low cost of acquisition, but mainly that the usage of an
open-source stack prevents what is called ‘vendor lock-in’,
where an entity that uses closed source software becomes
dependent on the commercial vendors of that closed source
software [9].

A weaknesses of the LAMP-based approached is the broad

knowledge web developers needs to have to be able to
create a complete web application. Each layer of the stack
has its own set of principles and constraints, complicating
the interfacing between the different layers. The following
milestones in the young history of web development
indicate a transformation of this convention and in the end
led to the foundation of the Meteor platform.

2008: Release of the Chrome browser by Google that
included a new JavaScript interpreter (V8). It was
significantly faster than its competitors. The speed of
JavaScript interpreters in general increased in a period of
competition between browsers [28]. Developers started to
integrate JavaScript interpreters into projects and
technologies commonly associated with the ‘server-side’ of
web-application development.

2009: JavaScript based alternatives to technologies
common in the LAMP stack emerged: a new type of web
server (Node.JS/ IO.JS1), a new type of non-relational
database (MongoDB2) and JavaScript as a server-side
development language to create web applications [12].

2011: ‘Skybreak’ is announced [17]. Soon the project
changes its name to Meteor [4]. The Meteor platform is
built on top of the previously mentioned developments and
coalesces technologies like Node.JS and MongoDB into a
cohesive whole. With one programming language
(JavaScript) on both the server and client side, and one data
interchange format, JavaScript Object Notation (JSON), the
breadth of skills required to develop web applications
decreased. [12].

2012: The Meteor Group receives funding of Netscape
creator Marc Andreessen. This allows future development
of the project [27].

2014: Release of Meteor 1.0, the first public release [5].

2. OPERATING PRINCIPLES
In this part the basic operation of a Meteor project is
discussed. Since to some extent, the architecture has already
been discussed in order to explain the context and history of
Meteor, we start with a description of what happens when a
user makes a request to a web server that is running Meteor.
Afterwards, we describe what interactions between the
client and the server take place, to synchronize the data
between both. In order to limit the scope of this article to
Meteor's real-time characteristics, we do not discuss the
development and deployment chain of a Meteor project.

2.1 Request
Most major software execution takes place on the client
side. When a user makes the first request to a web
application, the server sends a complete package to the

1 Event driven framework to build network applicatons. htps://nodejs.org

2 Open source document database. htp://docs.mongodb.org/manual/

Building Real-Time Web Applications with Meteor 1

client: html templates, css stylesheets, JavaScript
application code and the parts of the Meteor framework that
enable the operation on the client, such as the in-memory
JavaScript database, miniMongo [24] (see Figure 1). This
set of technologies provides the basic operation of the
application in the client’s browser, as well as the low level
functionality to enable the application to interact with the
Meteor server in a real-time manner.

From the moment the client possess the initial state of the
application, no html markup is sent anymore. This setup is
chosen to facilitate one of the principles of Meteor: ‘Data
on the Wire’. This means that during operation, the client
and server only exchange data: values that are inserted in
the database by any of the clients or the server. As a
developer, you define which parts of your html react to
future changes in the data. When the data changes, its
presentation is automatically updated [16]. This reduces the
amount of data the application needs to send back-and
forth, and as such is one of the principles that enables real-
time operation of an application [15]. However, this
principle on its own is not enough to remain responsive
with a large amount of users.

2.2 Client and server interactions
To further enable the operation of a real-time web
application, the Meteor framework makes use of a
programming paradigm known as ‘reactive programming’.
Reactive programming is a specific method to create
software in such a manner that, when changes occur in the
underlying data, changes in the data get propagated to all
parts of the program that make use of that data, similar to
the way that changes in data get propagated within a digital
spreadsheet: when a value of one cell is updated, all other
cells using the value of that cell, update the outcome of
their calculations directly. The system reacts when data has
changed, instead of periodically asking if something has
changed. Meteor presents the benefits of this style of
programming as ’reactivity’ [21][25]. Much of the actual
functioning of this reactive standard cannot be seen while
using the Meteor framework. As such, the perception of a
developer using it, is that reactivity is something that
‘comes for free’ and is not something he or she should be
concerned with during the creation of an application. In the
next part, the operation from the client to the server will be
examined in more detail.

Meteor makes use of the principle ‘latency compensation’
to complete the experience of a real-time application.
Besides the actual MongoDB database3 that is running on

3 At the tme of writng Meteor only supports the MongoDB database, however
support for other storage systems such as Redis (open source data structure server.
htp://redis.io) , are in development.

the server, the Meteor server ships to each client a subset of
its database: MiniMongo, a reduced version of the
MongoDB system [24]. This reduced database is used to
facilitate the apparent aspect of real-time operation of a
Meteor application. Whenever the data of a connected
client changes, it is first affected in the subset of the
database that is part of the clients application.
Simultaneously the server changes the data in the actual
database [23]. In the background operation of the
application, the client communicates with its server using
the Distributed Data Protocol (DDP). This protocol keeps
the databases in sync between central database on the server
and every connected client [22].

3. STRENGTHS AND WEAKNESSES
The major strength of using the Meteor framework is its
shallow learning curve. Developers do not need to have a
broad knowledge of multiple technologies anymore,
because a lot of the interactions that usually cause the major
problems in a development process, are already covered by
Meteor [7]. Just having a thorough understanding of
JavaScript, HTML and CSS gives developers the possibility
to produce large scale projects. The Meteor framework has
a big community and the Meteor organization offers a lot of
free resources that can be used to learn Meteor. Another
advantage of working with Meteor is that web applications
are real time by default. Updating an application made with
Meteor, can be done without temporarily being offline.
Finally Meteor offers a free hosting service that allows
developers to deploy their application in a minute with only
one command [2].

The apparent strengths of the Meteor platform are quite
closely intertwined with its weaknesses. Developing an
application with Meteor for the first time may satisfy
quickly, but for developers with little experience, this can
be a pitfall, as it is easy to ignore what is really happening
in the background. We feel it is important to take into
account how the underlying technologies are accessed by
Meteor, and how an application uses Meteors intermediate
layers and functionalities. More experienced developers can
also experience the easiness of Meteor as a drawback. It
may be hard to get used to the frameworks as a new
paradigm and it also could feel like there is ‘magic
happening’. When it is desired to host the app on a private
or third-party server, it should match the Meteor server
requirements. The server hosting of Meteor can be slow and
the application is only running when at least one user is
online [2].

While other JavaScript web-development frameworks exist,
they do not completely cover the scope of web application
development as it is covered by the Meteor platform [8].

Building Real-Time Web Applications with Meteor 2

Figure 1. Overview of files an technologies taking part in client-server communication.

We will briefly discuss some alternative technologies and
note where they overlap with functionality that is provided
by Meteor. A popular combination of technologies that
offers similar functionality to Meteor is the combination of
ExpressJS (server-side) and AngularJS (client-side) on top
of Node.JS and MongoDB [34]. This architecture is
different from Meteor. ExpressJS allows for the creation of
REST-ful endpoints4 on a Node.JS based server while
AngularJS takes care of interfacing with these endpoints on
the client side, providing an application interface that
updates in real-time in a similar manner as Meteor. Another
framework that promises similar functionality, is Derby.
Though Derby’s uptake by the web-development
community has been rather poor.

There are situations in which another framework is
preferred, such as when one wants to develop a website,
instead of an application, which Meteor is not meant for.
Meteor would be ill suited, if one is developing a server-
application with a RESTful interface, since Meteor
presumes a client-server architecture. A developer would be
better served in that situation by the combination of Node,
MongoDB and ExpressJS [8].

4. TYPICAL APPLICATIONS
Since Meteor is still in its early days, not a lot of large scale
projects can be found yet. However, some interesting
applications have been built. We found two typical
applications that Meteor is used for: online collaboration
and real-time data streams.

4.1 Online collaboration
With the first application, online collaboration, is meant
that the platform is appropriate to develop tools that enables
multiple users to work together on one project via their own
devices. Users can directly see each others actions with a
minimum delay and without having to refresh the page [20].

An example of this application is ‘Pintask’. It can be used
by project teams to manage tasks [26]. These tasks, written
on digital cards can be divided into custom subcategories,
assigned to team members and during the project be
structured according to their current status. Team members
know where everyone is currently working on and the real-
time aspect avoids people trying to execute the same
actions or overwriting each others changes. Another
example of a collaborative web tool is 'Madeye', a web
editor that enables developers to write code together
simultaneous in the same document while (video) chatting
simultaneously in google hangouts. It can be seen as a
combination of a chatroom and a text editor [18].

4.2 Real-time data streams
Showing real-time data streams as visualizations can be a
valuable journalism tool besides the more conventional
ways of providing news information [35].

Livebus is one of those real-time data visualizations [14].
On a map, it shows the current location of all the vehicles
part of Honolulu’s Bus System. It uses Meteor combined
with the JavaScript library Data Driven Documents (D3,
specific developed to create data visualizations) and the
Google General Transit Feed Specification (GFTS) of

4 With REST, other enttes besides browsers, such as mobile phones can
communicate with a server over HTTP.

TheBus [16][11].

5. SURPRISING APPLICATIONS
Besides typical applications that provides user with real-
time collaboration or real-time data streams, we found some
applications that go beyond the intended use of Meteor to
develop real-time applications.

The smart coffee machine SpinnCoffee is currently being
developed. It comes with a smartphone application and
besides brewing coffee, also takes care of ordering new
coffee beans when the machine is running out [30]. This is
an interesting example because it shows Meteor is also used
outside the general use of sending and receiving textual
data in real-time. The system communicates with the
physical environment by reading sensors.

ThingStudio, a free tool for hobbyist developers, helps to
create applications that control devices across the so called
‘Internet of Things’5 [32]. It is currently easy and affordable
to create networked systems with technologies like the
Arduino circuit board6 or Raspberry Pi7. Creating a user
friendly interface that lets you controls these systems was
difficult [6]. ThingStudio makes it easy to add interface
elements to your applications that in real time are able to
communicate with your system. Another advantage is that
communication is handled locally, so no data is sent or can
be sent to any third party [13] .

6. GETTING STARTED
This is a guide to install Meteor, build a first Meteor
application and experience how the reactive part is handled.
Basic knowledge of html, css and JavaScript is required,
just as familiarity on how to navigate and execute basic
actions in command line. We presume usage of a Linux or
OSX based computer. Consult the Meteor website for more
information about installing on Windows. The given code is
based on several examples of the book Discover Meteor.

6.1 Installing Meteor
1. Open the terminal to Install Meteor and type:

curl https://install.Meteor.com | sh

Now Meteor has been installed in your main directory. To
see the Meteor files, you should enable your hidden files.
Meteor can be seen as an in-between layer, on which every
application is based on.

6.2 Creating a Meteor application
In this part you are going to make a simple chat application.

2. Navigate to a desired directory and create a Meteor chat
application in there by giving the following command:
Meteor create chat

This instructs the terminal to use Meteor and you tell
Meteor you would like to create a new application named
‘chat’. Meteor then created a subdirectory that contains a
html, css and JavaScript file. These files can contain all of

5 Internet Of things: a term used for a network of computers and physical objects
that are connected to the internet.

6 Open-source electronics platorm for interactve projects. htp://www.arduino.cc

7 Mini-computer that is able to interact with the outside world.
Htp://www.raspberrypi.org

Building Real-Time Web Applications with Meteor 3

your code. For a more structured overview or to have more
control over which code runs on the server, the client or
both of them, code can be structured in special directories
like ‘client’ and ‘server’. In the directory, a hidden Meteor
file is automatically placed that is only there to serve the
Meteor package to your application.

3. Navigate to the chat directory and run the application by
typing: cd chat Meteor

Navigate to http://localhost:3000/ in your browser to run the
application. The result shows the default content of the
Meteor application and looks like figure 2.

Figure 2. Screenshot of a just created Meteor application.

4. Open a code editor (for example Brackets or Sublime
Text 28) navigate to your created directory and open the
chat.html, chat.js and chat.css files.

The html and css files are automatically running on the
client side. Within the JavaScript file, two boolean variables
determine if certain blocks of code run on the client or the
server side [2]. See line 1: (if (Meteor.isClient) {)
and line 19 (if (Meteor.isServer) {) in the
JavaScript file.

4. Close the css file, since that one handles markup.

5. To create the chat application, replace all the content of the
html and JavaScript files by respectively the html code and
the JavaScript on page 6 in the attachment of this paper or
download the code via github9. After saving these, the
application is running at localhost:3000. If you open
multiple browser windows, you can see the application
updates everywhere directly when you submit a text in one
of the windows.

6.3 Showing the data in html in real-time
We will explain how this real time aspect is achieved by
analyzing the most essential parts of the code.

Look for the <form> tag in the html code and and inspect
its content (line 11-15). Now open the JavaScript file. First,
a database named ‘chats’ is created (called ‘collections’ in
Meteor) [2]. line 5: chats = new Mongo.Collection
("chats");

When a user submits the values of the html form by
clicking 'submit', they are inserted in the chats collection.
The text values named ‘text’ and ‘name’ are first assigned
to the variables ‘nameField’ and ‘textField’ on line 25
and 26. After that, we insert a new object in the database by

8 Brackets text editor: htp://brackets.io. Sublime Text 2:
htp://www.sublimetext.com.

9 Github locaton of code example in secton 6.3: https://github.com/Jasper2-
0/WebTechnologies

assigning the content of those variables to an appropriate
datapoint name (in this case ‘name’ and ‘text’) on line 29-
33. Now the collection contains an object with the values
the user submitted.

To show the content of our collection to the user, we make
use of templates in the html file. Templates are small pieces
of html containing dynamic content that can be altered with
JavaScript [2]. On line 30-33, a template called ‘chat’ is
created that can contains the ‘name’ and ‘text’ data from
our collection. We iterate over all the objects returned by
the chats function in the JavaScript file on line 15-18 with
{{#each chats}}. For every object we find, we display the
template ‘chat’ with the content of the current object by
calling the template with {{> chat}}. Important here is
that this function is executed every time something changed
in the collection. Hereby, our application updates in real-
time.

A copy of the collection is running on each client. The real
Mongo database runs on the server side, so if we would like
to change the data, it happens there. In case the ‘delete’
button is pressed on the client side, the function
removeAllchats is called on the server side (line 41-44).
And in the part if (Meteor.isServer) all chat objects are
removed from our collection (line 58).

We have seen that client- and server-side behaviour of
JavaScript, together with the main database on the server
and the sub database on each client, enable applications to
update in real time. To see more tutorials and information,
we advise to consult the Meteor website10 a n d
Atmosphere.js11 for an overview of all additional packages.

7. FINAL THOUGHTS
Meteor is an accessible open source framework which is
relatively easy to learn and use. The examination for this
paper showed us, that Meteor provides extensive
documentation, that is easy to read and to understand. A
large community supports Meteor and besides the Meteor
Group itself, other parties offer a multitude of resources.
The Meteor hosting makes it easy to quickly share
applications. There are a lot of ready made functionalities in
so called ‘packages’ [1] that can be seen as building blocks
used to quickly create intended applications.

This web-technology may be ideal for projects with a real-
time aspect, however we would like to note once more that
the steps taken by the Meteor Group to make Meteor
accessible, hide specific aspects of the operation of the
Meteor framework. While this lowers the barrier of entry to
newcomers in web application development, we feel that,
with the functionality that Meteor provides behind the
scenes developing applications with Meteor can seem a like
magic.

We think it is a strong framework, but also believe Meteor
is not in all cases appropriate as replacement for other sets
of technologies at the moment. Furthermore, with the
project only being at its 1.0 state as of november 2014, we
still need to see large scale projects realized with Meteor to
determine its performance.

10 Meteor Tutorial and further reading: https://www.meteor.com/try/12

11 Resource for Meteor packages: https://atmospherejs.com

Building Real-Time Web Applications with Meteor 4

http://www.sublimetext.com/

REFERENCES

1. Atmosphere.js. Explore Meteor packages. Atmosphere.js.
https://atmospherejs.com

2. Coleman, T. and Greiff, S. Discover Meteor - Building
Real-time JavaScript Web Apps. (2015). Section:
deploying on your own server.

3. D3. About D3. http://d3js.org. Retrieved: June 8 2015.

4. DeBergalis, M. Skybreak Is Now Meteor. Meteor
(January 2012). Retrieved: June 8 2015.
http://info.Meteor.com/blog/skybreak-is-now-Meteor.

5. DeBergalis, M. Meteor 1.0. Meteor (October 2014).
Retrieved: June 8 2015.
http://info.Meteor.com/blog/Meteor-1-0.

6. Finley, K. The Internet of Anything: How to Build
Mobile Apps for Your DIY Connected Gadgets.
Wired (2015). Retrieved: June 9 2015.
http://www.wired.com/2015/04/thingstudio/

7. Fischer, D. Why Meteor. Dan Dascalescu's Wiki (2015).
Retrieved: June 10 2015.
http://wiki.dandascalescu.com/essays/why_meteor

8. Fischer, D. Meteor vs the MEAN stack. Dan
Dascalescu's Wiki (2015). Retrieved: June 10 2015.
http://wiki.dandascalescu.com/essays/meteor_js_vs_th
e_mean_stack

9. Geipel, M.M. Dynamics of communities and code in
open source software. Eidgenössische Technische
Hochschule (ETH Zürich) 18480 (2009).

10. Google. Google docs.
https://www.google.com/docs/about/.

11. Google. GFTS.
https://developers.google.com/transit/gtfs-real-time/.

12. Gravelle, R. Introduction to Server-side JavaScript.
Webreference.
http://www.webreference.com/programming/JavaScrip
t/rg37/index.html. Retrieved: June 8 2015.

13. Karliner, M. Talk of Michael Karliner about Meteor and
the Internet of Things during Devshop London.
Meteor (January 2015). Retrieved: June 9 2015.
 https://www.youtube.com/watch?v=MdeaFLrvqtc

14. Kyle. Livebus. Pas de chocolat, LLC.
http://www.pasdechocolat.com/2013/07/20/livebus-
with-Meteor-and-d3/

15. Maestre, S. What Is This Real-time Web You Speak of?
VentureBeat (October 2013). Retrieved: June 8 2015.
http://venturebeat.com/2013/10/24/what-is-this-real-
time-web-you-speak-of/

16. Manricks, G. Instant Meteor JavaScript Framework
Starter: Enjoy Creating a Multi-page Site, Using the
Exciting New Meteor Framework! Section: So, What
Is Meteor? Packtpub (August 2013).

17. Martin, N. Skybreak. GitHub (January 2012).
Retrieved: June 8 2015.
https://github.com/skybreak/skybreak.

18. Madeye. https://madeye.io.

19. Meteor. File Structure. Meteor Documentation.
Retrieved: June 10 2015.
http://docs.meteor.com/#/basic/underscore.

20. Meteor. The Meteor Mission. Meteor. Retrieved: June 8
2015. https://www.Meteor.com/about

21. Meteor. Transparent Reactive Programming. Meteor
Manual. Retrieved: June 8 2015.
https://manual.Meteor.com/.

22. Meteor. DDP. Meteor. Retrieved: June 10 2015.
https://www.meteor.com/ddp

23. Meteor. Latency Compensation. Meteor. Retrieved:
June 10 2015. https://www.meteor.com/full-stack-db-
drivers

24. Meteor. Minidatabases. Meteor. Retrieved: June 8 2015.
https://www.meteor.com/mini-databases

25. Meteor. Session. Meteor Documentation. Retrieved:
June 8 2015. http://docs.Meteor.com/#/basic/Session-
get

26. Pintask. https://pintask.me.

27. Schmidt, G. Meteor's New $11.2 Million Development
Budget. Meteor (July 2012). Retrieved: June 8 2015.
http://info.Meteor.com/blog/Meteors-new-112-
million-development-budget.

28. Shankland, S. Need for Speed Spurs Opera JavaScript
Overhaul. CNET (February 2009). Retrieved: June 8
2015. http://www.cnet.com/news/need-for-speed-
spurs-opera-JavaScript-overhaul/.

29. Solution Stack. Wikipedia. Wikimedia Foundation
(May 2015). Retrieved: June 8 2015.
http://en.wikipedia.org/wiki/Solution_stack

30. Spin Coffee. About Spin Coffee. Spin Coffee (2014).
http://spinn.coffee/#smartcoffee.

31. Thijssen, J. LAMP-stack? Forget It! It’s a
LAMPGMVN MCSTRAH-stack Now…. A day in the
Life of (October 2011). Retrieved: June 8 2015.
https://www.adayinthelifeof.nl/2011/10/26/lamp-
stack-forget-it-its-a-lampgmvnmcstrah-stack-now/

32. ThingStudio. Real Time User Interfaces for the Internet
of Things. ThingStudio (June 2015). Retrieved: June 8
2015. http://www.thingstud.io/.

33. Tomaszewski, B. Geographic Information Systems
(GIS) for Disaster Management. Taylor & Francis
Group, CRC Press (2014), 105-107.

34. Mean. Io. The friendly and fun JavaScript full stack for
your next web application. Mean.io. http://mean.io/#!/

35. Yau, N. Visualize This. The Flowing Data Guide to
Design, Visualization, and Statistics. (2011).

Building Real-Time Web Applications with Meteor 5

ATTACHMENT 1: HTML AND JAVASCRIPT CODE OF A CHAT APPLICATION

JavaScript code to be used in section 6. Getting Started.
Replace the full content of the html file you created by the following code:

<!-- THIS IS THE HTML FILE, EVERYTHING HERE RUNS ON THE CLIENT SIDE -->

<head>

 <title>chatbox</title>

</head>

<!-- main body of the app. -- >

<body>

 <h1>chat it!</h1>

 <!-- <form> = html tag to make a form -->

 <form class="chatform">

 <input type="text" name="name" placeholder="Name"/>

 <input type="text" name="text" placeholder="What do you have to say?"/>

 <button type="submit">Submit</button>

 </form>

<!-- with each chat from the database render the chat-data with the chat template -->

 {{#each chats}} <!-- her we iterate over the items returned by the chats function and display inside the block for
each one -->

 {{> chat}} <!-- So here is the chat template in the html -->

 {{/each}}

 <button class="delete">Delete all</button>

</body>

<!-- template tags are specific tags that meteor uses to know where to put data -->

<!--This is a template for each chat, we can use it in our html and do that on line 19 -->

<template name="chat">

 <h2>{{name}}</h2>

 <p>{{text}}</p>

</template>

Javasript code to be used in section 6. Getting Started.
Replace the full content of the JavaScript file you created by the following code:

//THIS IS THE JAVASCRIPT FILE

// Make a new meteor collection that contains all chats.

chats = new Mongo.Collection("chats");

/*

* CLIENT SIDE

*/

if (Meteor.isClient) {

Building Real-Time Web Applications with Meteor 6

 /*

 * This is a helper function for the 'body' template, see chatbox.html.

 */

 Template.body.helpers({ //With a helper, we can display data inside the template

 chats: function () { //So here we define a helper called 'chats' for the template

 return chats.find({}, {sort: {createdAt: -1}}); //return all the chats we can find (and sort them)

 }

});

// This part handles the event of the body template

 Template.body.events({

 'submit .chatform': function (event) { // When the chatform receives a submit event..

 var nameField = event.target.name.value; // Put the value of the name input into a variable

 var textField = event.target.text.value; // Put the value of the textinput into a variable

 // Insert a new OBJECT into the database, with name, text, and created at properties.

 chats.insert({

 name: nameField,

 text: textField,

 createdAt: new Date() // current time

 });

 event.target.text.value = ""; // Clear form

 return false; // Prevent default form submit

 }

// When the user clicks the delete button, remove all chats in the database on the server.

 'click .delete': function (event) {

 Meteor.call('removeAllchats') // Now we call a function on the server side!!

 }

 });

}

/*

* SERVER SIDE

*/

if (Meteor.isServer) {

 Meteor.startup(function () { // Code to run on server at startup

// At server startup remove all previously created chats.

 return Meteor.methods({

 removeAllchats: function() {

 return chats.remove({}); // Empty out the chats collection

 }

 });

 });

}

Building Real-Time Web Applications with Meteor 7

