
D3.JS: Data-Driven Documents

ABSTRACT  

In this paper, we demonstrate the power of D3, an open-
source JavaScript library which provides a toolkit for data
visualization in web browsers. Since it makes use of major
web standards, it has a great compatibility with web
browsers making it easy to be viewed without the need of
any additional plug-in. Moreover, we try to give a broad
view over D3 given its superb flexibility, which makes it
not only a charting library mostly used for data
visualization, but also a drawing library with unimaginable
applications in the web environment. We provide a
demonstration on how to add the D3 library offer a brief
guide for beginners to set first steps with data driven
visualizations.  
 
1. PURPOSE, CONTEXT AND HISTORY

Designs for envisioning quantitative information have a
long history [20, 28]. Diagrams, maps and other graphical
forms play an essential role in our reasoning about large
quantitative datasets. Since the advent of the World Wide
Web, the amount of available data has grown exponentially,
as did the possibilities for visualizing and interacting with
this data [24]. As a consequence, web browsers are
increasingly considered to be a valid base for data
visualization toolkits.  
 
Data-Driven Documents (D3) is a free, open source
JavaScript (JS) library released in 2011 by Heer,
Ogievetsky and Bostock, then part of the Stanford
Visualization Group. It provides a toolkit for data
visualization in web browsers, using web standards:
Cascading Style Sheets (CSS) for style, Scalable Vector
Graphics (SVG) for vector graphics, HyperText Markup
Language (HTML) for content and JavaScript for
interactivity [2].  
 
Using D3, the Document Object Model (DOM) can be
efficiently manipulated on the basis of selected data,
constructing and updating document elements. D3 bears
resemblance to document transformers such as jQuery [18]
that simplify the act of document transformation compared
to the tedious W3C DOM API inherent in web browsers.
D3 does not introduce novel representations of graphical
elements, but uses the DOM’s standard SVG syntax, that
shows similarities with the graphical abstractions used in
graphics libraries such as Processing and Raphaël. In
addition, D3 also has helper modules that enable more

complex visualizations comparable to toolkit-specific
visualizations of systems such as Protovis [22].  
 
Here a timeline of data visualization technologies
developed by the Stanford Visualization Group and directly
preceding D3 is presented. In recent years, the number of
data visualization and graphing JavaScript libraries has
exploded, an overview of which can be found here [16].

• 2005: Prefuse, a Java-based visualization toolkit
developed, rendering visualizations within browsers
via Java plug-in [21].

• 2007: Flare is an Actionscript library for data
visualization, rendered within browsers via Flash
plug-in [11].

• 2009: Protovis is launched, a JavaScript library to
generate SVG graphics, using special representations
[21].

• 2011: D3.js is released.  

2. OPERATING PRINCIPLES
 
D3 is a JavaScript library. This means it is essentially a
collection of prewritten JavaScript code. The D3 library
was built to make working with HTML, CSS and SVG in
conjunction with data easier. To understand how D3 works
and what D3 is useful for, we must first have a basic
knowledge of these three technologies and know what
JavaScript is. We will discuss them briefly.  
 
HTML [15] (HyperText Markup Language) is the standard
language used to create websites. HTML consists of
elements which are created with tags. For instance a header
element is created by using a header tag. A tag typically is a
letter or short words between angle brackets. An element is
often denoted by an opening tag and a closing tag. The tags
used to create a header element are <h> (opening tag) and
</h> (closing tag). There are about 100 different tags which
can be used to create a website. It is important to realize
that HTML is a markup language and not a programming
language. It is only used to define the content and structure
of a website, and does not define any functionality of a
website.  
 

Roland van Dierendonck 
Leiden University  

rvdierendonck@gmail.com

Sam van Tienhoven  
Leiden University  

sammieboy12@gmail.com

Thiago Elid  
Leiden University  

thiago.elid@gmail.com

CSS [6] (Cascading Style Sheets) is a language often used
in conjunction with HTML. CSS enables a designer to
separate content and style. A piece of CSS code defines
what the style of a specific HTML element must look like.
For instance, you can define that all text within all headers
must be purple or that the font size of one specific header
should be bigger than the other headers. One of the biggest
advantages of CSS is that you remove a lot of clutter from
your HTML text.  
 
SVG [23] (Scalable Vector Graphics) is a format for
interactive two-dimensional images. SVG images are
created by a simple language and can be rescaled without
losing any quality. They have many advantages over other
image types such as JPEG, which are traditional pixel
based image formats. SVG images are created by
describing the image instead of individual pixels values,
which leads to a smaller and more flexible image format.  
 
JavaScript [17] is a programming language based on C
(and not on Java as one would suspect) which can be used
within web pages to add more complexity and dynamic
content to a website. Where HTML is used to define the
content of a website and CSS is used to define the style of a
website, JavaScript is used to define the behavior of a
website. Both SVG and JavaScript can be used within
HTML by using using a SVG tag or script tag respectively.  
 
Creating a dynamic website with the above mentioned
technologies can be tedious or complex. D3 is a library of
JavaScript code which aims to make this easier. For
instance, it enables the user to select all HTML elements
with a certain tag and change their style, with one simple
line of code. Something which is not possible without D3.
It can also be used to create SVG images and style them
and offers a possibility to create smooth transitions
between styles.  
 
Next we will discuss some of the key functionalities of D3:
selections, transitions and update, enter and exit functions
[9]. Selections allow the user to select and manipulate
HTML elements in a very simple way. You can select an
element by tag, class, ID, attribute value or containment
and then perform an operation on your selection. If you
want to perform more operations you can chain operations
after you select an element. Moreover, you can select
multiple elements at once by using the selectAll() method.
Without D3 a programmer would have to iterate multiple
times to perform the same action as selectAll() does. To
perform the same operation as shown in example 1 without
D3 would require a more complex code.

A selection with D3: (example 1)  
 
d3.select("body")  
.style("background-color", "black");  
.style("color", “red");

Another key function of D3 is that it supports smooth
transitions between styles. This allows for the fluent
changes within graphs and images which D3 is known for.
D3 creates transitions by interpolating. Take a look at
example 2, it shows the code to create a smooth transition
in background color from white to black.

A transition with D3: (example 2)  
d3.select(“body")  
.transition()  
.duration(500)  
.style("background-color", "black");

Finally we would like to discuss the update, enter and exit
functions. Update, enter and exit functions can be
performed on a selection to create an update, enter or exit
selection, respectively (Figure 1). D3 is especially suited
for working with data. This data can be dynamic, new data
can be added or old data removed. Before D3 can work
with data, data first has to be bound to elements in the
DOM. This is done by the update function. The update
function binds data to already existing elements in the
DOM. If you want to bind more data items than available
elements, the enter function comes into play.

Figure 1: Update, Enter and Exit Functions in D3. [2]
 

The enter selection stores excess data items. If you now
perform an update function the data that is already bound to
elements in the DOM is updated. For the data stored in the
enter selection, new elements are created and the data is
then bound to these elements. Just as the enter function
creates new elements, the exit function deletes elements
that are no longer used. When an exit function is
performed, data that is about to leave the dataset is
selected. When a new update is performed the data is
removed and the empty elements are deleted. For an
example of the enter function see section 6, for a graphical
representation of the update, enter and exit functions see
figure 1 above.  
 
 
 

 
3. STRENGTHS AND WEAKNESSES 
 
Being an open source project, D3 is free to use for
everyone, which puts it apart from similar data
visualization JavaScript libraries such as amCharts [1] and
FusionCharts [12], for which the user needs to buy a pricey
license. Furthermore, its development is supported by a big
online community and it has extensive documentation,
which is also supplemented by the lengthy documentation
of web standards like SVG. Moreover, multiple tutorials
for D3 can be found online, including one by Scott Muray
[8], and a website called Dashing D3.js [10].  
 
D3 is very flexible, and has a great expressiveness, a user is
able to create many forms through different routes. As it is
a drawing library, and not just a charting library, it’s
functionally reaches beyond conventional data
visualization. Moreover, D3 allows interaction and
animation, as opposed to mere static visualizations.  
 
Only one line of code is enough to start using D3, which is
a strength compared to other data visualization kits, which
often require a long installation procedure and require
updating. The compatibility of D3 with web standards and
the usage of their widespread syntax have the advantage
that visualization can be shared and viewed without the
need for additional plug-ins, such as Flash. This makes it
different from previous libraries such as Flare, which
required Flash to render [11]. Moreover, as it is based on
JavaScript, it is compatible with browser’s built-in
debugger, which facilitates fast and easy debugging.  
 
Although D3 offers many possibilities, it is said that the
learning curve can be fairly steep [2]. This is partly
explained because of the need for in depth knowledge of
web standards, especially of SVG. Furthermore, the many
helper modules require studying too. This relative
weakness explains the popularity of libraries such as C3, a
library for reusable charts build on top of D3, but with a
simpler syntax [5].  
 
Another weakness of D3 is that it is less efficient than
toolkits with custom graphs. Contrary to other JavaScript
libraries such as Google Charts [14], D3 does not offer pre-
built charts. In order to increase efficiency and ease of use,
JavaScript libraries with simple charting options have been
built on top of D3. An example is uvCharts, an open source
JavaScript library including 12 customizable standard chart
types [29]. In a situation where one wishes to create a
standard graph, it might be more efficient to use a library
such as uvCharts. But when you want to build graphs that
are complex or unconventional in either visualization or
interaction, D3 offers far more possibilities.  

4. TYPICAL APPLICATIONS  
 
 

4.1 DATA VISUALIZATION  
 
The D3 website displays examples of data visualizations
done with D3, that interactively run inside web browsers
and are available for anyone who wants to visualize data
[7]. Many types of examples are accompanied by a full
documentation of how to manipulate documents based on
data. Among all of them, it is worth citing the most used
types of data visualization such as area chart, line chart,
multi series line chart, bar chart, scatter-plot, donut chart
and pie chart.  
 
These types of data visualization can be used on a project
basis given its facility to implement and manipulate
information on the fly. Among those who use D3 in their
projects, newspapers like The Guardian [13], The
Huffington Post [4] and The New York Times [3] are the
most famous ones to provide a good image of D3. They
show that this powerful library can help ordinary users to to
transform complex data into easy and clear information. D3
also allows information to be seen in real time, figure 2
shows that D3 can be constantly updated with data giving
users a better understanding on how elections are
happening.

Figure 2: The Huffington Post.  

4.2 WIMBLEDON 2013 DATA VISUALIZATION  
 
The use of D3 is not limited to digital newspapers, one can
find thousands of examples spread on the web. One of the
best examples we have found is a series of ten different
data visualizations of the Wimbledon tennis tournament.
The data charts made by Peter Cook, display information
about the event played back in 2013 [30]. Among the the
charts created was a circular match tree, a scatter-plot, a bar
chart with negative values and a bubble chart with arrows.  
 
The original data was collected from the British tennis data
website and it is possible to see, among other things, how
many matches were played by each player and who played
who in the tournament. In the circular match tree (Figure
3), it is possible to see who played against who and what
the result was of the match or round, by hovering your
mouse over it. The winner is in the center of the circle.

  
Figure 3: Wimbledon 2013: Circular Match Tree. 

5. SURPRISING APPLICATIONS

5.1 ADOBE’S GRAPHICAL WEB EXPERIMENT 
 
Because the scope of visualizations made with D3 is very
wide, it appears hard to find surprising applications.
However, an example of surprising usage of D3 is Adobe’s
Graphical Web Experiment, a website built specifically to
show the possibilities of different technologies (Figure 4)
[25]. For instance, CSS is often used to provide colors to
websites, while SVG is capable of creating complex vector
shapes that scale infinitely. Lastly, with D3 it is possible to
animate and interpolate paths for the SVG characters as
well as the curves of the terrain in the scenery of the
website. All these technologies used together provide an
interactive environment just like Adobe Flash used to do in
the early years of the Internet. Although D3 can perfectly
be used for this sort of application it was not originally
intended as an animation technology for web browsers,
therefore this might be considered a surprising application.  

Figure 4: The Quest for the Graphical Web.

 

5.2 THE VIRTUAL BRAIN SIMULATOR
 
The Virtual Brain [26] is an international open-source
project aiming to find out more about human brains by
collecting data from real brains. Based on that data they
represent thousands of virtual brains under thousands of
different scenarios simultaneously (Figure 5). The
application provides a platform for professionals such as
doctors, scientists and nurses to work together and pave the
way for further discoveries in neuroscience. The graphical
user interface (GUI) is web based and makes use of
Python, HTML5, CSS3, JavaScript, WebGL and D3
together with lots of sister-projects in the neuroscience
community, to provide an intuitive and responsive interface
that can be locally and remotely accessed [19]. The main
system is accessible through a simple web browser, making
it very easy to upload imaging data, running 3D-animated
simulations in WebGL and D3 and getting results back. By
doing so, the entire community can participate in hospitals,
laboratories and clinics without having to host and run their
own supercomputers.  

Figure 5: The Virtual Brain Simulator.  

6. GETTING STARTED

Getting started with D3 is quick and easy. In this getting
started guide we’ll take a look at how to handle a simple
dataset and make a simple visualization. After all, this is
D3’s main strength. We’ll first discuss some prerequisites.
You need to have basic knowledge of HTML, CSS, SVG
and JavaScript. All you need to have installed is a text
editor (Notepad suffices) and an internet browser. To access
the D3 library one can either download a zip file from the
D3 website or include a line of code in your file which
links directly to the latest release. We start by creating a
very basic HTML file and including the line of code which
links to the D3 library in the header.

 
 
 

<html>  
 <head>  
 < s c r i p t s r c = " h t t p s : / /
cdnjs.cloudflare.com/ajax/libs/
d3/3.5.5/d3.min.js" charset="utf-8">  
 </script>  
 </head>  
 <body>  
 <!-- body content here -->  
 </body>  
</html>

As D3 is javascript code it should be bookmarked by
<script> tags. To test the examples in chapter 2 just copy
the code to the body of the HTML file and put it between
<script> tags. Now we will take a look at adding some
data. Let’s take a simple dataset: var data = [10, 3, 7, 7, 1];
and try to create a bar chart out of it. Before we can do
anything with this data we must first bind it to the DOM. In
our case it is logical to bind the data to the bars of the bar
chart. The bars of the bar chart are nothing more than
styled divs (div is short for division, an HTML element
which in practice is nothing more than an empty rectangle)
the style being defined in the head using CSS.  
 
<html>  
 <head>  
 < s c r i p t s r c = " h t t p s : / /
cdnjs.cloudflare.com/ajax/libs/
d3/3.5.5/d3.min.js" charset="utf-8"  
 </script>  
 <style>  
 div.bar {  
 width: 50px;  
 margin-right: 5px;
 background-color: green;}  
 </style> 
 </head>  
 <body>  
 <script>  
 var data = [10, 3, 7, 7, 1];  
 d3.select(“body”)  
 .selectAll(“div”)  
 .data(data)  
 .enter()  
 .append(“div”)  
 .attr(“class”, “bar”)  
 .style(“height”, function(d) {  
 var barH = d*20;  
 return barH + “px”;});  
 </script>  
 </body>  
</html>

We want to bind each point of data to a separate div, but we
haven’t created any divs yet. That is where the enter
function comes into play. The enter function creates a div
for each point of data in the body of the page. The .append
and .attr functions make sure that the divs have the bar
class we defined in the head, assigned to them. The .style
function contains function(d), where d is a single point of
data. This function calculates the height for each bar, as it
has to correlate to the data point.  

The result should look like this (Figure 6).  

Figure 6: Getting Started with D3.  

 
7. FINAL THOUGHTS 
 
JavaScript has become the most important programming
languages for the web in the last decade or so. This has
caused a big shift in the direction of web development
getting to the point where plug-ins are less and less needed
for creating interactivity and action. Therefore, we foresee
developers trying to use the power of the browser in itself
at its best and avoid external plug-ins. This reduces the
likelihood of bugs or incompatibility issues as well the
need to update.  
 
Additionally, developers can work with existing standards
that are already being used on the web. This increases the
compatibility of the D3 library with other popular
technologies like HTML, CSS and JavaScript in general,
making it even more easy to extend the work and making
data visualization available to everyone. Finally, big data
[27] is becoming the ‘new oil’ of the 20th as we all spend a
large percentage of our lives online. We strongly believe
that libraries like D3 will be frequently and creatively used
by the community of web designers, web developers,
computer scientists and computer engineers and shows the
general direction web technologies are heading in.  
 
 
8. REFERENCES

1. amCharts.  
http://www.amcharts.com/

2. Bostock, M.l., Ogievetsky V. and Heer J. D³ data-
driven documents. In Visualization and Computer
Graphics, IEEE Transactions on (2011), 2301-2309.

3. Bostock. M & Carter, S. Over the Decades, How
States Have Shifted. Nytimes.com. (Retrieved June 2015).  
http://www.nytimes.com/interactive/2012/10/15/us/politics/
swing-history.html?_r=0

4. Bycoffe, A.& Boice, J. Massachusetts Senate
Special Election: Live Results. Huffingtonpost.com.
(Retrieved June 2015).

5. C3. 
http://c3js.org/

6. CSS Introduction.  
http://www.w3schools.com/css/css_intro.asp

7. D3 Gallery on GitHub  
https://github.com/mbostock/d3/wiki/Gallery/

8. D3 Tutorials.  
ttp://alignedleft.com/tutorials/d3

9. D3. 
http://d3js.org/

10. Dashing D3 js. 
https://www.dashingd3js.com/table-of-contents

11. Flare.  
http://flare.prefuse.org/

12. FusionCharts. 
http://www.fusioncharts.com/

13. Goldenberg, S. Alaska Villages Frontline Global
Warming. TheGuardian.co.uk. (Retrieved June 2015).  
http://www.theguardian.com/environment/interactive/2013/
may/14/alaska-villages-frontline-global-warming

14. Google Charts.  
https://developers.google.com/chart/

15. HTML Introduction.  
http://www.w3schools.com/html/html_intro.asp

16. JavaScript Graphs and Charts libraries.  
http://socialcompare.com/en/comparison/javascript-graphs-
and-charts-libraries

17. JavaScript Tutorial.  
http://www.w3schools.com/js/default.asp

18. jQuery.  
https://jquery.com/

19. Knock, L.P.S, Woodman, S.A., Domide M.M.,
Mersmann, L. McIntosh J., Jirsa, V. The Virtual Brain: a
simulator of primate brain network dynamics. Frontiers in
neuroinformatics, 7: 10 (2013).

20. Michael., F. A brief history of data visualization. In
Handbook of data visualization. Springer Berlin,
Heidelberg, Germany, 2008. 15-56.

21. Prefuse.  
http://prefuse.org/

22. Protovis. 
http://mbostock.github.io/protovis/

23. SVG Tutorial.  
http://www.w3schools.com/svg/

24. The Evolution of the Web.  
http://www.evolutionoftheweb.com/

25. The Quest for the Graphical Web.  
http://thegraphicalweb.com/

26. The Virtual Brain.  
http://thevirtualbrain.org/tvb/zwei

27. Toonders, J., Data is the New Oil of the Digital
Economy, Wired.com (Retrieved June, 2015)

28. Tufte, E. R., and Graves-Morris, G. R., The visual
display of quantitative information. Graphics press,
Cheshire, CT, USA 1983.

29. uvCharts.  
http://imaginea.github.io/uvCharts/

30. Wimbledon 2013 Data Visualizations.  
http://charts.animateddata.co.uk/tennis/  

