

HTML5 & CSS3

Barry Borsboom

Leiden Institute of Advanced

Computer Science, Leiden

University

barry.borsboom@gmail.com

David Graus

Leiden Institute of Advanced

Computer Science, Leiden

University

dpgraus@gmail.com

Sander Hutman

Leiden Institute of Advanced

Computer Science, Leiden

University

sjhutman@xs4all.nl

ABSTRACT

In this paper we concisely describe HTML5 and CSS3, the

history and development process of these markup

languages, we highlight some of their new features and

functionalities, and try to offer an understanding of the

application of the languages, as well as the implications

these iterations of the markup languages have for the world

wide web of the future.

1. PURPOSE, CONTEXT AND HISTORY

The HyperText Markup Language („HTML‟) was primarily

designed for semantically describing scientific documents.

Since its birth in 1990, it has seen many revisions. The

initial intended application for describing scientific

documents has changed as well.

HTML5 is being developed to better suit the modern day

web, in all its multi-medial and interactive glory, while also

improving on the semantic structure of web content. Next to

that, the development of HTML5 is the first attempt to

formally document and unify the different features and

standards of the markup

language[http://diveintohtml5.org/introduction.html].

Examples of how HTML5 reaches the goals of improved

semantic structure or how it caters to more modern day

websites are some of the new elements and attributes. For

example, web content in blocks is now largely handled by

context-specific block elements, such as <nav> <header>

and <footer> blocks, as opposed to <div>. Multimedia is

better supported by means of integrated <video> and

<audio> tags, integrating multimedia in the markup

language, making embedding via external software such as

Adobe Flash Player or the Microsoft Silverlight Player

redundant.

Backwards compatibility with older technologies and

increasing consistency of the language are main concerns of

HTML5. The earlier HTML developers largely worked

separately, decreasing coherence in the markup language.

By properly supervising and controlling the development

process, the two organizations involved in the development

process – the Web Hypertext Application Technology

Working Group („WHATWG‟) and the World Wide Web

Consortium („W3C‟) - have a better possibility of designing

the markup language in a more coherent and consistent

manner.

Another important aspect is error handling. Other than

HTML (which accepts and displays „broken‟ HTML

documents) and XHTML (which has so-called „Draconian

Error Handling‟, displaying an error to the user when the

browser encounters an error in the page, instead of

displaying the page).

CSS

Cascading StyleSheets („CSS‟) are related to all of these

markup languages (HTML, XHTML, HTML5). The

stylesheets define the way the elements are displayed within

an HTML document. As an external file, it can change the

layout, style and appearance of an HTML document. So

where HTML structures an online document, CSS handles

the formatting and appearance.

CSS3 offers features that make some forms of graphic

design redundant. Features such as rounding borders (by

using the border-radius attribute), creating drop shadows

under „boxes‟ (by using the box-shadow attribute),

changing opacity of elements previously had to be done

with images in photoshop, but can now be used for dynamic

content.

Context & History

 1990 - Hyper-Text Markup Language („HTML‟), the

markup language of web documents has been

developed by Tim Berners Lee from CERN. It was

further developed throughout the years, by different

instances and organizations.

 1995 to 1998 – During these years, the development of

HTML was largely in hands of the World Wide Web

Consortium („W3C‟). The W3C was founded by Tim

Berners Lee to develop standards for the world wide

web. In 1998, the W3C ceased development of HTML,

and started a new effort in developing the so-called

eXtensible Hypertext Markup Language, or XHTML.

 1998 – In December 1998, the W3C published a draft

called „Reformulating HTML in XML‟. This draft was

also known as XHTML 1.0, and it was in effect not

much more than a reformulation of HTML in XML. No

new features or attributes were added.

 2000 – Early 2000, XHTML 1.0 became a W3C

mailto:barry.borsboom@gmail.com
mailto:dpgraus@gmail.com
mailto:sjhutman@xs4all.nl

Recommendation. It was finalized and went public.

Later that year, XHTML 1.1 followed, and in 2001

version 1.2 was a W3C Recommendation.

There were some important consequences to the use of

XHTML over HTML. The most important practical

consequence was that XHTML used so called

„Draconian Error Handling‟. This means that when a

document contains erratic XHTML code, or lacks code,

the web browser would stop processing the document,

and display an error to the user. HTML did not, it was

much more lenient towards errors in the document,

browsers would try to display the document as best as

they could. With an estimated 99% of all websites

containing errors in their markup, the disadvantages of

the error handling in XHTML becomes clear. What

happened was that XHTML as W3C envisioned was

not used. The W3C made it obligatory for web

designers to give a new application/xhtml+xml MIME

type to the header of the document, as opposed to the

older text/html MIME type used for HTML. This made

it possible for web designers to use the new features

and syntax of XHTML, while not being prone to the

harsh error handling.

 2004 - During a W3C workshop several individuals

presented the idea to continue evolving the HTML

markup language, instead of carrying on development

of the XHTML language. The idea was rejected by the

W3C, who chose to continue developing XHTML.

But that was not the end of it. The companies behind

the individuals who announced the idea of improving

HTML - Apple, Mozilla and Opera - assembled

themselves in an organization called the Web Hypertext

Application Technology Working Group

(„WHATWG‟). The WHATWG set out to properly

supervise and lead the development process of

HTML5.

 2006 - Finally In 2006, the W3C changed their view

and announced they would work together with the

WHATWG in their effort to develop

„HTML5‟[http://dev.w3.org/html5/spec/Overview.html

].

 2008 – The W3C publishes its First Public Working

Draft of the HTML5 specifications. These are

specifications only, an ongoing process of documenting

different features and functionalities of HTML5. These

features however can already be finished, implemented

and working in different web

browsers[http://en.wikipedia.org/wiki/HTML5].

2. OPERATING PRINCIPLES

HTML5

The operating principles of HTML5 are similar to that of

HTML. The markup language consists out of elements and

attributes. All HTML5 documents start with a <!DOCTYPE

HTML> declaration, to tell the browser how to read the

document. The syntax of HTML5 is the same as that of

HTML. It is also fully backwards compatible, meaning

documents will not break when displayed by an older

browser.

However, the most apparent changes to HTML or XHTML

to web designers are the new structural elements. Instead of

creating different content in a website specified by <div>-

elements, with HTML5 there are context-specific structural

elements, such as <header> for the (physical) header of a

website, <nav> for the navigation of a website, <article>

for an independent item of content, <aside> for a sidebar

and displaying content related to the main document, and

the <footer> element for marking up the footer of a website.

Advantages of using these elements instead of current

<div> elements is that these content-specific elements can

support browsers to generate tables of contents/outlines or

better assist users with disabilities in browsing the website.

By putting content in its standardized proprietary element,

data is easier to find, access and process. It is another

example of standardization, what could be accomplished by

using arbitrarily named <div>-elements is standardized in

HTML5, into a set amount of content-specific elements.

Figure 1.

[http://www.alistapart.com/articles/previewofhtml5]

Some more advanced features are supported by the APIs

that HTML5 uses. An API is essentially an interface of one

software program to interact with another piece of software;

essentially a bridge between the two. We will further go

into the use of the APIs in the Strengths and weaknesses

section.

Another part of HTML5 which is notably upgraded are the

forms. By specifying an <input type= > the browser knows

a specific input box is used. Now there are specific input

fields for email, urls, search queries, there are date pickers

and color pickers. This is another example of

standardization. All web forms can use the same specific

input fields, opening the possibility to let the browser

automatically fill in web forms for the user. These web

forms will also display in older browsers, because all <input

type= > tag with an unknown type (for example <input

type=email>) will be treated as an <input type=text> by

default[Pilgrim, M. Dive into HTML5. O‟Reilly Media,

http://www.diveintohtml5.com]!

HTML5 is much like regular HTML and can be created

with a slew of different software packages, all with

different levels of support. From the simplest raw text

editor such as Microsoft Windows‟ Notepad, to the more

elaborate software packages such as Adobe‟s Dreamweaver.

CSS3

CSS has a different syntax to HTML, but the syntax from

CSS2 to CSS3 did not change much. CSS3 is mostly

defined by new features, it is more of an upgrade to a

language than a reinvention of it.

CSS works by means of statements. The statement

identifies the element within the html document, and „tells‟

the browser how to display it. It does so by assigning values

to (possibly multiple) properties. The syntax is as follows:

selector { property1: value1; property2: value2 }

The CSS can be either inside a html document (in the

<head> part), or in an external .css file. This css file is

linked inside the html <head> element by a link with a

type=”text/css” definition as follows:

<link rel="stylesheet" type="text/css" href="url/style.css"

/>

Interesting to note is that a lot of the new selectors of CSS3

make graphic design redundant. Now CSS can round

corners of boxes, create dropshadows for them (and for

text), etc. These are features that normally would have to be

done by a graphic designer, by the use of images instead of

code.

3. STRENGTHS AND WEAKNESSES

The most obvious benefit of HTML5 are the new APIs and

the opportunities they open up for the future of web apps.

Google Gears gave us offline data storage and Flash

introduced us to the power of application cache (Pandora

uses it to save your log in information). With HTML5, these

capabilities are now available to use right in the language

and can easily be expanded with JavaScript.

 Offline Capability API Programs like Thunderbird,

Mail and Outlook let you browse through your old mail

data while staying offline. With HTML5, you‟ll have

this same functionality in the browser. This is the first

serious step towards bridging the gap between the

desktop and the Web, and opens all sorts of doors for

the future of Web apps.

Other notable new APIs are:

 Canvas Canvas consists of a drawable region defined

in HTML code with height and width attributes.

JavaScript code may access the area through a full set

of drawing functions similar to other common 2D

APIs, thus allowing for dynamically generated

graphics. Some anticipated uses of the canvas include

building graphs, animations and image composition.

 Drag & drop The drag and drop API defines an event-

based drag and drop system. However, it never defines

what “drag and drop” is. This API requires JavaScript

to fully work as normal think drag and drop

functionality.

 Video & audio The audio & video APIs are massive

upgrades in media embedding. Although support is

limited right now, something like video embedding has

never been easier.

 Geolocation Geolocation can be used to

programmatically determine location information

through a device‟s user agent. This could prove very

useful for mobile devices.

On top of these new APIs HTML5 also introduced the new

semantic structure tags, these tags will offer a unified way

to build a page. Which does not only increase the

readability for humans but also for computers. Voice Over

functionality of websites for instance will be increased.

The new API‟s and semantic structure will work in all

modern browsers as well as a mobile browser on an iPhone

or iPad.

But because HTML5 is not yet standardized by the W3C,

not all browsers support the same new functions and

capabilities. To find out exactly which browser supports

what there are various sources to

check[http://html5readiness.com]. But a real problem lies

with the users who keep using older browsers. On the other

hand, since HTML5 is fully backwards compatible, it will

not break websites for the user, but only make them „lack‟

certain features.

However, arguably this backwards compatibility has a

weakness as well, currently the only way to make sure older

browsers display embedded videos too is to use an Adobe

Flash embedded player or similar. A <video> tag will not

break the page, but it will not contain a video for older

browsers. The old way, by using external embeddable

players will work for both new browsers, supporting

HTML5 and old ones.

Another debate going on right now is the debate between

which video codec should be the standard for the video tag.

Chrome, Safari and Internet Explorer want to use the

licensed H.264 codec, but Opera and Firefox want to use

the open source OGG codec. The debate is partly about

licenses, H.264 being a „licensed‟ codec vs. OGG‟s „open‟

codec. The latter companies are afraid „hidden patents‟ exist

and lawsuits will follow as soon as W3C and the

WHATWG pick OGG.

This debate might cause a delay for big content providers to

switch their content from flash video to html5 ready video

streaming. Another sound inside this debate is whether

HTML5 should standardize any codec at all, or keep it open

and support multiple codecs. As the debate is still going on,

it‟s hard to say what way it will go, but it is interesting to

see the different interests of the companies involved

entangled. For example, Apple is part of the group of patent

holders of the H.264 codec. They opposed to using the

OGG Theora codec.

CSS

The major advantage of CSS is it keeps html documents

cleaner. Imagine if you‟d want all the <h1>-elements inside

a html document to be displayed in blue. Without CSS

you‟d have to repeatedly write this property for each <h1>

element in the HTML document. With CSS you define it

once, and the browser applies it to each <h1> element. It

keeps the html document cleaner and properly splits the

markup for form and the markup for content.

4. INTENDED APPLICATIONS

Some well know examples of websites that already use

HTML5 are GMail, Google Wave and Youtube. They make

good use of some of the new functions and capabilities of

HTML5. Like Drag & Drop, Offline mode and the new

Video tag. More functional examples can be found on

various websites[http://html5demos.com]. As HTML5 is

not yet released as an official W3C recommendation, it

remains to be seen how the markup language will be

applied broadly. It is clear however that the main intended

applications is building websites and web apps which are

semantically transparent and structured (at least from the

back-end) and interactive.

The iPhone browser makes some clever use of the new

webforms functionality. By taking the input type into

account, the virtual keyboard will be adapted towards

providing easier input. For instance an <input type=email>

will make the keyboard display a „@‟ and a smaller

spacebar, <input type=website> will add a „.com‟ button to

the keyboard.

The intended applications for HTML5 are broad, and

largely undefined. HTML5 is such a thorough rework of the

markup language that time will tell how else some of the

new features and functionalities will be applied.

5. UNINTENDED APPLICATIONS

Unintended application are a bit harder to find. An example

can be found with the usage of the canvas

element[http://www.kesiev.com/akihabara/]. Although the

canvas can perfectly be used for this sort of applications it

is not directly intended as a programming environment for

video games.

6. GETTING STARTED

To get started using HTML5 and CSS3 there are a few easy

steps. First of all start a new HTML document with the

following doctype:

 <!DOCTYPE html>

After that you can use a the new HTML5 semantic structure

tags, and make use of the new APIs. It is important to take

into account what features the different browsers support as

long as HTML5 is not published as an official W3C

Recommendation yet. We can assume by the time HTML5

is published officially, all browsers will support the new

syntax.

However in the mean time, plenty of new syntax can

already be applied and used in websites. For example the

new webforms, there is no reason not to use them yet as

they wo not change and already will function no matter

what browser you use. The same does not go for some of

the APIs, <video> and <audio> elements can only be used

experimentally so far, or with backup of a current solution

for embedding media.

7. FINAL THOUGHTS

The features HTML5 and CSS3 bring are very interesting,

but since both languages are still actively being developed,

it‟s hard to say how exactly they will be applied. The

possibilies seem broad enough, given the various projects

which already entail using HTML5 in „unexpected ways‟

(see note [http://www.kesiev.com/akihabara/]).

It is also interesting to see a language which is not

„officially published‟ yet already being put to use. With the

different browsers already competing with each other on

support for an unfinished language. The backwards

compatibility is a major reason for this to be possible.

HTML5 introduces new elements and ways of structuring

websites and applications, but its not until everyone widely

migrates to using HTML5 that we can say what exactly the

impact of the markup language is, and how it will change

web apps. Offline capability already hints towards the

fading of the border between online and offline content, and

a potential paradigm-shift in the use of websites as we do

today. The potential is there, but the way it will (re)shape

the web remains to be seen.

REFERENCES

1. http://diveintohtml5.org/introduction.html

2. http://dev.w3.org/html5/spec/Overview.html

3. http://en.wikipedia.org/wiki/HTML5

4. http://www.alistapart.com/articles/previewofhtml5

5. http://html5readiness.com

6. http://html5demos.com

7. http://www.kesiev.com/akihabara/

8. Pilgrim, M. Dive into HTML5. O‟Reilly Media,

http://diveintohtml5.org/introduction.html
http://dev.w3.org/html5/spec/Overview.html
http://en.wikipedia.org/wiki/HTML5
http://www.alistapart.com/articles/previewofhtml5
http://html5readiness.com/
http://html5demos.com/
http://www.kesiev.com/akihabara/

http://www.diveintohtml5.com

http://www.diveintohtml5.com/

