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Method for Pressure-Sensitive 
Computer Keyboards

Abstract
This work presents One-press control, a tactile input 
method for pressure-sensitive keyboards based on the 
detection and classification of pressing movements on 
the already held-down key.  To  seamlessly integrate the

added control input with existing practices for ordinary 
computer keyboards, the redefined notion of virtual 
modifier keys is introduced. A number of application 
examples are given, especially to point out a potential 
for simplifying existing interactions by replacing 
modifier key combinations with single key presses. Also, 
a new class of interaction scenarios employing the 
technique is proposed, based on an interaction model 
named “What You Touch Is What You Get (WYTIWYG)”. 
Here, the proposed tactile input method is used to 
navigate interaction options, get full previews of 
potential outcomes, and then either commit to one or 
abort altogether – all in the space of one key depress / 
release cycle. The results of user testing indicate some 
remaining implementation issues, as well as that the 
technique can be learned within about a quarter of an 
hour of hands-on operating practice time.
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l Introduction
Recently, Dietz et al. [2] have introduced a pressure-
sensitive computer keyboard based on low-cost 
membrane technology suitable for mass production. 
The device, in its look and feel exactly like an ordinary 
keyboard, can independently report the forces applied 
to those keys that are being depressed. This per-key 
sensing, and continuous pressure reporting while a key 
is held down are important additional capabilities when 
comparing this approach to work in progress reported 
earlier by Iwasaki et al. [4]. (There, the built-in 
accelerometer of a laptop was used to estimate typing 
pressure while striking keys on the laptop's keyboard.) 
Basically, the newly proposed technology can be said to 
extend the amplitude resolution of continuous keydown 
pressure on computer keyboards from 1 bit to more 
than that.

Naturally, the question then becomes how to best 
unlock this potential for extra control. Dietz et 

al. [2] already suggested a number of 
example techniques: mapping a depressed 

key's force level directly to some control 
parameter; use as a low-resolution, 

multi-touch sensor for gesture recognition; and 
measuring the force level when striking keys (e.g., to 
control font size of textual output). Here, we would like 
to suggest another tactile input method, which we have 
called One-press control.

One-press control
One-press control enables the control of multiple 
different events during a single key depress / release 
cycle. It is implemented as a software layer placed 
between regular applications and the raw input from 
the pressure-sensitive keyboard (see Figure 1). Basic 
functionality can be summarized as follows: “classical” 
key depress and release events are transparently 
recreated and passed on. However, if a key is 
depressed and held down relatively softly for some 
timeout period (similar to that of typematic character 
repetition), this does not lead to a classical key depress 
event. Instead, the software will now track the relevant 
force sensor's input in order to look for subsequent and 
possibly repeated pressing movements on the already 
held-down key. Figure 2 shows a typical response of one 
force sensor, indicating a usable input range between 
0.6 and 3.0 Newton. This overlaps with the 0 - 3 Newton 

Figure 1. The proposed software layer.
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Figure 2. Typical response of one
        key's force sensor.

Figure 3. Force peak extraction after an initial soft depress. 
(Sensor data sampled after some conditioning.)
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range from Mizobuchi et al. [5], given there as a 
reasonable choice (in terms of performance and 
comfort) for the pen-based control of user interfaces.

Using the force sensor's input, pressing movements are
then detected as discrete events and labeled 
[mediumRepeat] or [hardRepeat], according to their 

intensity (see Figure 3). This may be compared to other 
research where pressing events of varying amplitude 
have also been extracted from tactile input employing 
fixed flat contact surfaces. One example of this is the 
“Quick release” pressure technique described by Ramos 
et al. [6] and used (in the context of touchscreen mobile 
devices) by Brewster and Hughes [1]. An important 
difference, however, is that in the current situation the 
finger is not necessarily lifted from the surface after a 
pressing event, and detection is not triggered by this. 
Another example of prior research is that by Rekimoto 
and Schwesig [8], where finger pressure input on a 
touchpad initiates and terminates layered depress 
states as it crosses force thresholds. In the current 
approach, force thresholds are also used to classify 
amplitude, but pressing events are now regarded as 
atomic in nature, and detected based on the first-order 
derivative of force input.

After detection, the label assigned to an input force 
peak is passed on to applications by attaching it to the 
source key in question as a virtual modifier key. For 
example, in addition to a classical event like [alt][F1], 

an application may now also see and respond to a 
[mediumRepeat] or [hardRepeat][F1].

Some potential advantages
The approach described so far presents a number of 
potential advantages:

• Augment, rather than replace: keyboard interaction is 
extended while leaving traditional mechanisms in place.

• The required skill of making pressing movements
may be more familiar to keyboard users than, say, 
having to control steady force levels to provide input.

• While more control becomes directly accessible, 
“bailing out” of any new-type interactions can be made 
as easy and intuitive as a timely key release.

• Using virtual modifier keys, developers can plug new-
type key events right into existing applications. For 
example, by using a [hardRepeat][del] just like 
[shift][del], to permanently delete a file; or by using 
a [hardRepeat][a] just like [shift][a], to type “A” 

instead of “a”.

• Awkward modifier key combinations may be replaced 
by single key presses, simplifying interaction. For 
example, by using a [hardRepeat][F4] instead of 
[alt][F4] to close a program window; or by using a 
[mediumRepeat][tab] instead of [alt][tab] to switch 

to the next window.

More application examples: WYTIWYG
In order to further illustrate and assess the potential 
applicability of one-press control, a number of demos 
implementing example scenarios of its use have been 
created. Behind each scenario is the overall goal of 
navigating interaction options in a user interface. This is 
done following an interaction model based on two 
design principles:

• For tactile input: Let the user navigate interaction 
options and express confidence in them through tactile 
force.

• For visual output: Give previews of possible 
interaction outcomes, in a way matching actual output 
as closely as possible.



We named this approach “What You Touch Is What You 
Get (WYTIWYG)”, analogous to the well-known “What 
You See Is What You Get (WYSIWYG)” paradigm.

The approach is similar in nature to the “previewable 
user interfaces” presented in Rekimoto et al. [7]. There, 
in the instances where preview of an option is activated 
by touching a key, and commitment by pressing it, 
tactile force can also be said to express confidence. 
Furthermore, both approaches aim to replace trial-and-
error interactions (based on the execution of do-undo 
actions) with more explorative interactions, where there 
is room for doubt and variable levels of confidence in 
the interaction options available. Still, an important 
difference in the current approach is its explicit 
emphasis on providing a preview which, while still 
flagged as such, in fact allows the user to inspect it at 
the same level of detail as actual output. This is 
intended to maximize a preview's usefulness in 
informing subsequent actions in the exploratory 
interaction process.

A typical scenario
Since typing is the main application of computer 
keyboards, implemented example scenarios have

 

focused on this aspect of keyboard input. In a typical 
scenario in the context of web searching, illustrated in 
Figure 4, a hypothetically extended version of Google 
Suggest [3] is controlled via the [space] key:

• While composing a search query, the user softly 
presses and holds [space]. After a short timeout, this 

activates entry into a dropdown menu containing 
possibly relevant alternatives for text input.

• Now, repeated [mediumRepeat] presses cycle through 

the available items (also expressing a tentative 
confidence in them). Dwelling on an option activates a 
preview of the associated search results. The preview is 
distinguished from actual output only by having a 
reduced visual contrast, and by having the selected 
menu item still visible inside it.

• At any point, the user may “bail out” from the 
presented alternatives, by simply releasing [space] 

again (expressing zero confidence). Alternatively, a firm 
final [hardRepeat] (expressing maximum confidence) 

commits to the currently selected option.

select next option ▲ prev iew ▲ commit ▲

sof t hold [space]

[mediumRepeat]  

dwell timeout

 

key  release

 

× abort

key  release

×

[hardRepeat]

[mediumRepeat]

abort

 Figure 4. WYTIWYG example scenario: one-press control of 
Google Suggest using the [space] key.

Other implemented variations, 

increasing in exploratory 

sophistication:

“I could be...”

“...pressing this key.”

(“Blind” typing for everyone.)

“...typing this word 

(correctly).”

“...using these search term 

translations.”

Many more examples of this type of 

interaction are imaginable.



Evaluation
In order to assess the learnability of the one-press 
control tactile technique and identify weak spots in its 
current implementation, an experimental evaluation 
was performed. This was done using the example 
scenario described in the previous section, as it utilizes 
all aspects of the technique and places them in a 
realistic user interface context.

7 volunteer test subjects took part in the experiment: 3 
females and 4 males, aged between 23 and 40 years 
old. All were new to the keyboard and input technique. 
None reported having any visual, manual or other 
impairments relevant to everyday computer use. All 
rated themselves between “somewhat” and “very” 
familiar with computer keyboard use.

Procedure
Each test subject would sit at a table with a Microsoft 
experimental pressure-sensitive keyboard placed within 
easy reach. A Macbook laptop screen was used for 
visual output, showing a simulated browser window. 
First, a short introduction to the tactile input method 
would be given. Then, subjects familiarized themselves 
with the task to be evaluated, in 4 cumulative practice 
stages: (1) Performing [mediumRepeat] presses on one 

specific key to navigate to arbitrary menu items (10 
items total). (2) Holding the key steady when on an 
option, until the associated preview would appear.
(3) Performing [hardRepeat] presses after such 

preview activations, to commit to the related search 
result. (4) Doing this for a fixed target: menu item #8.

Before each practice stage, the subject would be shown 
how to handle the key, and the correct visual feedback 
to expect. When making mistakes while practicing with 

the key, the test subject would receive verbal feedback 
indicating what was going wrong and how it could be 
corrected. This would continue until the test subject 
indicated being comfortable with the technique so far. 
Test subject key operating practice time was explicitly 
delimited, and recorded at the end of each stage.

After completing practice stage 4, test subjects were 
asked to execute its task 10 times in a row to the best 
of their ability. The first 10 subsequent attempts were 
then logged and automatically classified as successes 
or failures. Any key depress / release cycle not 
navigating to the correct option, activating its preview, 
and committing by a [hardRepeat] would be classified 

as a failure. (This included, among many other things, 
quick aborted keypresses.)

Results
The main results regarding learnability can be seen in 
Figure 5. As is plotted, the total operating practice times 
of participants ranged from 6:30 to 19:06 min:sec. Final 
task scores ranged from 5 to 9, with participants 
scoring 7.4 perfect executions on average. All subjects 
rated final task easiness between “neutral” and “easy”, 
except for the subject having both the lowest score and 
the longest practice time, who rated it “hard”.  It should 
be noted that this participant did log 9 perfect 
executions in a row. However, only 4 of these were still 
part of the first 10 attempts counted.

Analyzing the trial logs, it was possible to classify all 
failed attempts (18 out of 70) into 4 categories, which 
are shown in Figure 6. The three main causes turned 
out to be two different types of mix-ups between 
[hardRepeat] and [mediumRepeat] presses, and 

unintended key releases. The latter seemed the 

Figure  5. Test  subjects' 

performance  in  terms  of 

operating  practice  time 

(horizontal, min:sec) and 

perfect   task   executions

(vertical).
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dominant issue, especially since 5 test subjects noted 
avoiding premature key releases as one of the most 
difficult aspects of the final task.

Conclusion and future work
We have introduced One-press control, a tactile input 
method for pressure-sensitive keyboards based on the 
detection and classification of pressing movements on 
the already held-down key. As a mechanism to 
seamlessly integrate this with existing practices for 
ordinary computer keyboards, we proposed the 
redefined notion of virtual modifier keys. We then gave 
some concrete examples of how the technique could be 
used in a range of existing user interface situations, 
especially pointing out a potential to simplify existing 
interactions by replacing modifier key combinations 
with single key presses. Also, we described how the 
technique could be applied to a new class of interaction 
scenarios, based on an interaction model we named 
“What You Touch Is What You Get”. Here, one-press 
control is used to navigate interaction options, get full 
previews of potential outcomes, and then either commit 
to one or abort altogether – all in the space of one key 
depress / release cycle.

Using one such scenario, user testing of the tactile 
input method was performed, in order to assess its 
learnability and identify weak spots in the current 
implementation. The results indicated that it is possible 
for people to learn the technique within about a quarter 
of an hour of hands-on operating practice time, and 
then execute it with a reasonable degree of perfection. 
Still, a number of issues were identified as well, most 
prominently the occurrence of unintended key releases. 
Before performing any future evaluations comparing 
the approach to established input techniques, it should 

be ascertained to what extent adjusting the force event 
detection algorithm can help solve this issue.

Finally, one currently inherent disadvantage of the 
approach is that the layered pressing movements lack 
specific tactile feedback confirming their execution, e.g. 
such as that implemented using piezo actuators in 
Rekimoto et al. [8]. Perhaps a future version of the 
keyboard technology, or adding other forms of feedback 
(such as audio) could help to address this.
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