
One-Press Control: A Tactile Input
Method for Pressure-Sensitive
Computer Keyboards

Abstract
This work presents One-press control, a tactile input
method for pressure-sensitive keyboards based on the
detection and classification of pressing movements on
the already held-down key. To seamlessly integrate the

added control input with existing practices for ordinary
computer keyboards, the redefined notion of virtual
modifier keys is introduced. A number of application
examples are given, especially to point out a potential
for simplifying existing interactions by replacing
modifier key combinations with single key presses. Also,
a new class of interaction scenarios employing the
technique is proposed, based on an interaction model
named “What You Touch Is What You Get (WYTIWYG)”.
Here, the proposed tactile input method is used to
navigate interaction options, get full previews of
potential outcomes, and then either commit to one or
abort altogether – all in the space of one key depress /
release cycle. The results of user testing indicate some
remaining implementation issues, as well as that the
technique can be learned within about a quarter of an
hour of hands-on operating practice time.

Keywords
User interface, tactile interaction technique, pressure
sensing, pressure-sensitive keyboard.

ACM Classification Keywords
H.5.2 Information interfaces and presentation (e.g.,
HCI): Input devices and strategies.

General Terms
Design, Human Factors, Experimentation.

Copyright is held by the author/owner(s).

CHI 2010, April 10–15, 2010, Atlanta, Georgia, USA.

ACM 978-1-60558-930-5/10/04.

Staas de Jong

LIACS

Leiden University

Leiden, The Netherlands

staas@liacs.nl

Dünya Kirkali

Media Technology programme

Leiden University

Leiden, The Netherlands

dunyakirkali@gmail.com

Hanna Schraffenberger

Media Technology programme

Leiden University

Leiden, The Netherlands

hanna@schraffenberger.de

Jeroen Jillissen

Media Technology programme

Leiden University

Leiden, The Netherlands

jeroen@jillissen.com

Alwin de Rooij

Media Technology programme

Leiden University

Leiden, The Netherlands

info@alwinderooij.nl

Arnout Terpstra

Media Technology programme

Leiden University

Leiden, The Netherlands

dancetrend@gmail.com

0 1 2 3 4

0

51

102

153

204

255

downward force on key (N)

se
n

so
r

in
p

u
t

le
ve

l Introduction
Recently, Dietz et al. [2] have introduced a pressure-
sensitive computer keyboard based on low-cost
membrane technology suitable for mass production.
The device, in its look and feel exactly like an ordinary
keyboard, can independently report the forces applied
to those keys that are being depressed. This per-key
sensing, and continuous pressure reporting while a key
is held down are important additional capabilities when
comparing this approach to work in progress reported
earlier by Iwasaki et al. [4]. (There, the built-in
accelerometer of a laptop was used to estimate typing
pressure while striking keys on the laptop's keyboard.)
Basically, the newly proposed technology can be said to
extend the amplitude resolution of continuous keydown
pressure on computer keyboards from 1 bit to more
than that.

Naturally, the question then becomes how to best
unlock this potential for extra control. Dietz et

al. [2] already suggested a number of
example techniques: mapping a depressed

key's force level directly to some control
parameter; use as a low-resolution,

multi-touch sensor for gesture recognition; and
measuring the force level when striking keys (e.g., to
control font size of textual output). Here, we would like
to suggest another tactile input method, which we have
called One-press control.

One-press control
One-press control enables the control of multiple
different events during a single key depress / release
cycle. It is implemented as a software layer placed
between regular applications and the raw input from
the pressure-sensitive keyboard (see Figure 1). Basic
functionality can be summarized as follows: “classical”
key depress and release events are transparently
recreated and passed on. However, if a key is
depressed and held down relatively softly for some
timeout period (similar to that of typematic character
repetition), this does not lead to a classical key depress
event. Instead, the software will now track the relevant
force sensor's input in order to look for subsequent and
possibly repeated pressing movements on the already
held-down key. Figure 2 shows a typical response of one
force sensor, indicating a usable input range between
0.6 and 3.0 Newton. This overlaps with the 0 - 3 Newton

Figure 1. The proposed software layer.

“classical” key events one-press control events

sensor input from pressure-sensitive keyboard

applications

Figure 2. Typical response of one
 key's force sensor.

Figure 3. Force peak extraction after an initial soft depress.
(Sensor data sampled after some conditioning.)

0 1 2 3 4

0

3

time (s)

fo
rc

e
 (

N
)

[mediumRepeat]

[hardRepeat]

depress

release

range from Mizobuchi et al. [5], given there as a
reasonable choice (in terms of performance and
comfort) for the pen-based control of user interfaces.

Using the force sensor's input, pressing movements are
then detected as discrete events and labeled
[mediumRepeat] or [hardRepeat], according to their

intensity (see Figure 3). This may be compared to other
research where pressing events of varying amplitude
have also been extracted from tactile input employing
fixed flat contact surfaces. One example of this is the
“Quick release” pressure technique described by Ramos
et al. [6] and used (in the context of touchscreen mobile
devices) by Brewster and Hughes [1]. An important
difference, however, is that in the current situation the
finger is not necessarily lifted from the surface after a
pressing event, and detection is not triggered by this.
Another example of prior research is that by Rekimoto
and Schwesig [8], where finger pressure input on a
touchpad initiates and terminates layered depress
states as it crosses force thresholds. In the current
approach, force thresholds are also used to classify
amplitude, but pressing events are now regarded as
atomic in nature, and detected based on the first-order
derivative of force input.

After detection, the label assigned to an input force
peak is passed on to applications by attaching it to the
source key in question as a virtual modifier key. For
example, in addition to a classical event like [alt][F1],

an application may now also see and respond to a
[mediumRepeat] or [hardRepeat][F1].

Some potential advantages
The approach described so far presents a number of
potential advantages:

• Augment, rather than replace: keyboard interaction is
extended while leaving traditional mechanisms in place.

• The required skill of making pressing movements
may be more familiar to keyboard users than, say,
having to control steady force levels to provide input.

• While more control becomes directly accessible,
“bailing out” of any new-type interactions can be made
as easy and intuitive as a timely key release.

• Using virtual modifier keys, developers can plug new-
type key events right into existing applications. For
example, by using a [hardRepeat][del] just like
[shift][del], to permanently delete a file; or by using
a [hardRepeat][a] just like [shift][a], to type “A”

instead of “a”.

• Awkward modifier key combinations may be replaced
by single key presses, simplifying interaction. For
example, by using a [hardRepeat][F4] instead of
[alt][F4] to close a program window; or by using a
[mediumRepeat][tab] instead of [alt][tab] to switch

to the next window.

More application examples: WYTIWYG
In order to further illustrate and assess the potential
applicability of one-press control, a number of demos
implementing example scenarios of its use have been
created. Behind each scenario is the overall goal of
navigating interaction options in a user interface. This is
done following an interaction model based on two
design principles:

• For tactile input: Let the user navigate interaction
options and express confidence in them through tactile
force.

• For visual output: Give previews of possible
interaction outcomes, in a way matching actual output
as closely as possible.

We named this approach “What You Touch Is What You
Get (WYTIWYG)”, analogous to the well-known “What
You See Is What You Get (WYSIWYG)” paradigm.

The approach is similar in nature to the “previewable
user interfaces” presented in Rekimoto et al. [7]. There,
in the instances where preview of an option is activated
by touching a key, and commitment by pressing it,
tactile force can also be said to express confidence.
Furthermore, both approaches aim to replace trial-and-
error interactions (based on the execution of do-undo
actions) with more explorative interactions, where there
is room for doubt and variable levels of confidence in
the interaction options available. Still, an important
difference in the current approach is its explicit
emphasis on providing a preview which, while still
flagged as such, in fact allows the user to inspect it at
the same level of detail as actual output. This is
intended to maximize a preview's usefulness in
informing subsequent actions in the exploratory
interaction process.

A typical scenario
Since typing is the main application of computer
keyboards, implemented example scenarios have

focused on this aspect of keyboard input. In a typical
scenario in the context of web searching, illustrated in
Figure 4, a hypothetically extended version of Google
Suggest [3] is controlled via the [space] key:

• While composing a search query, the user softly
presses and holds [space]. After a short timeout, this

activates entry into a dropdown menu containing
possibly relevant alternatives for text input.

• Now, repeated [mediumRepeat] presses cycle through

the available items (also expressing a tentative
confidence in them). Dwelling on an option activates a
preview of the associated search results. The preview is
distinguished from actual output only by having a
reduced visual contrast, and by having the selected
menu item still visible inside it.

• At any point, the user may “bail out” from the
presented alternatives, by simply releasing [space]

again (expressing zero confidence). Alternatively, a firm
final [hardRepeat] (expressing maximum confidence)

commits to the currently selected option.

select next option ▲ prev iew ▲ commit ▲

sof t hold [space]

[mediumRepeat]

dwell timeout

key release

× abort

key release

×

[hardRepeat]

[mediumRepeat]

abort

 Figure 4. WYTIWYG example scenario: one-press control of
Google Suggest using the [space] key.

Other implemented variations,

increasing in exploratory

sophistication:

“I could be...”

“...pressing this key.”

(“Blind” typing for everyone.)

“...typing this word

(correctly).”

“...using these search term

translations.”

Many more examples of this type of

interaction are imaginable.

Evaluation
In order to assess the learnability of the one-press
control tactile technique and identify weak spots in its
current implementation, an experimental evaluation
was performed. This was done using the example
scenario described in the previous section, as it utilizes
all aspects of the technique and places them in a
realistic user interface context.

7 volunteer test subjects took part in the experiment: 3
females and 4 males, aged between 23 and 40 years
old. All were new to the keyboard and input technique.
None reported having any visual, manual or other
impairments relevant to everyday computer use. All
rated themselves between “somewhat” and “very”
familiar with computer keyboard use.

Procedure
Each test subject would sit at a table with a Microsoft
experimental pressure-sensitive keyboard placed within
easy reach. A Macbook laptop screen was used for
visual output, showing a simulated browser window.
First, a short introduction to the tactile input method
would be given. Then, subjects familiarized themselves
with the task to be evaluated, in 4 cumulative practice
stages: (1) Performing [mediumRepeat] presses on one

specific key to navigate to arbitrary menu items (10
items total). (2) Holding the key steady when on an
option, until the associated preview would appear.
(3) Performing [hardRepeat] presses after such

preview activations, to commit to the related search
result. (4) Doing this for a fixed target: menu item #8.

Before each practice stage, the subject would be shown
how to handle the key, and the correct visual feedback
to expect. When making mistakes while practicing with

the key, the test subject would receive verbal feedback
indicating what was going wrong and how it could be
corrected. This would continue until the test subject
indicated being comfortable with the technique so far.
Test subject key operating practice time was explicitly
delimited, and recorded at the end of each stage.

After completing practice stage 4, test subjects were
asked to execute its task 10 times in a row to the best
of their ability. The first 10 subsequent attempts were
then logged and automatically classified as successes
or failures. Any key depress / release cycle not
navigating to the correct option, activating its preview,
and committing by a [hardRepeat] would be classified

as a failure. (This included, among many other things,
quick aborted keypresses.)

Results
The main results regarding learnability can be seen in
Figure 5. As is plotted, the total operating practice times
of participants ranged from 6:30 to 19:06 min:sec. Final
task scores ranged from 5 to 9, with participants
scoring 7.4 perfect executions on average. All subjects
rated final task easiness between “neutral” and “easy”,
except for the subject having both the lowest score and
the longest practice time, who rated it “hard”. It should
be noted that this participant did log 9 perfect
executions in a row. However, only 4 of these were still
part of the first 10 attempts counted.

Analyzing the trial logs, it was possible to classify all
failed attempts (18 out of 70) into 4 categories, which
are shown in Figure 6. The three main causes turned
out to be two different types of mix-ups between
[hardRepeat] and [mediumRepeat] presses, and

unintended key releases. The latter seemed the

Figure 5. Test subjects'

performance in terms of

operating practice time

(horizontal, min:sec) and

perfect task executions

(vertical).

05:00 10:00 15:00 20:00

0

2

4

6

8

10

 preview skipped

 premature key release

[hard- not [mediumRepeat]

[mediumRepeat] erroneously

 before [hardRepeat]

Figure 6. Classification of

failed task executions.

39%

33%

22%

6%

dominant issue, especially since 5 test subjects noted
avoiding premature key releases as one of the most
difficult aspects of the final task.

Conclusion and future work
We have introduced One-press control, a tactile input
method for pressure-sensitive keyboards based on the
detection and classification of pressing movements on
the already held-down key. As a mechanism to
seamlessly integrate this with existing practices for
ordinary computer keyboards, we proposed the
redefined notion of virtual modifier keys. We then gave
some concrete examples of how the technique could be
used in a range of existing user interface situations,
especially pointing out a potential to simplify existing
interactions by replacing modifier key combinations
with single key presses. Also, we described how the
technique could be applied to a new class of interaction
scenarios, based on an interaction model we named
“What You Touch Is What You Get”. Here, one-press
control is used to navigate interaction options, get full
previews of potential outcomes, and then either commit
to one or abort altogether – all in the space of one key
depress / release cycle.

Using one such scenario, user testing of the tactile
input method was performed, in order to assess its
learnability and identify weak spots in the current
implementation. The results indicated that it is possible
for people to learn the technique within about a quarter
of an hour of hands-on operating practice time, and
then execute it with a reasonable degree of perfection.
Still, a number of issues were identified as well, most
prominently the occurrence of unintended key releases.
Before performing any future evaluations comparing
the approach to established input techniques, it should

be ascertained to what extent adjusting the force event
detection algorithm can help solve this issue.

Finally, one currently inherent disadvantage of the
approach is that the layered pressing movements lack
specific tactile feedback confirming their execution, e.g.
such as that implemented using piezo actuators in
Rekimoto et al. [8]. Perhaps a future version of the
keyboard technology, or adding other forms of feedback
(such as audio) could help to address this.

References
[1] Brewster, S. and Hughes, M. Pressure-based input for
mobile devices. In Proc. Volume II HAID 2008,
http://www.auditorysigns.com/haid2008, 10-11.

[2] Dietz, P.H., Eidelson, B., Westhues, J. and Bathiche, S.
A practical pressure sensitive computer keyboard. In
Proc. UIST 2009, ACM, 55-58.

[3] Google Suggest. http://www.google.com/support/
websearch/bin/answer.py?hl=en&answer=106230 .

[4] Iwasaki, K., Miyaki, T. and Rekimoto, J. Expressive
typing: a new way to sense typing pressure and its
applications. In Ext. Abstracts CHI 2009, ACM,
4369-4374.

[5] Mizobuchi, S., Terasaki, S., Keski-Jaskari, T.,
Nousiainen, J., Ryynanen, M. and Silfverberg, M. Making
an impression: force-controlled pen input for handheld
devices. In Ext. Abstracts CHI 2005, ACM, 1661-1664.

[6] Ramos, G., Boulos, M. and Balakrishnan, R. Pressure
widgets. In Proc. CHI 2004, ACM, 487-494.

[7] Rekimoto, J., Ishizawa, T., Schwesig, C. and Oba, H.
PreSense: interaction techniques for finger sensing
input devices. In Proc. UIST 2003, ACM, 203-212.

[8] Rekimoto, J. and Schwesig, C. PreSenseII: bi-
directional touch and pressure sensing interactions with
tactile feedback. In Ext. Abstracts CHI 2006, ACM,
1253-1258.

Acknowledgments
We gratefully acknowledge
Paul Dietz and the Microsoft
Applied Sciences Group for
providing us with keyboard
prototypes. Thanks also to
Bas Haring and the Media
Technology programme at
LIACS, Leiden University for
supporting this project. The
first author would like to
thank his co-authors for
their sustained efforts in
participating in this project.
Thanks to all test subjects
for kindly volunteering.

	Copyright is held by the author/owner(s).
	CHI 2010, April 10–15, 2010, Atlanta, Georgia, USA.
	Acknowledgments
	Abstract
	Keywords
	ACM Classification Keywords
	General Terms
	Introduction
	One-press control
	Some potential advantages

	More application examples: WYTIWYG
	A typical scenario

	Evaluation
	Procedure
	Results

	Conclusion and future work
	References

