
ABSTRACT
 

We present Ghostfinger, a technology for highly dynamic up/down
fingertip haptics and control. The overall user experience offered by
the technology can be described as that of tangibly and audibly
interacting with a small hologram.
 

More specifically, Ghostfinger implements automatic visualization
of  the  dynamic  instantiation/parametrization  of  algorithmic
primitives that together determine the current haptic conditions for
fingertip action. Some aspects of this visualization are visuospatial:
A floating see-through cursor provides real-time, to-scale display of
the  fingerpad  transducer,  as  it  is  being  moved  by  the  user.
Simultaneously, each haptic primitive instance is represented by a
floating block shape, type-colored, variably transparent, and possibly
overlapping  with  other  such  block  shapes.  Further  aspects  of
visualization are  symbolic: Each instance is also represented by a
type symbol, lighting up within a grid if the instance is providing
output to the user.
 

We discuss the system's user interface, programming interface, and
potential applications. This is done from a general perspective that
articulates and emphasizes the uniquely enabling role of the principle
of computation in the implementation of new forms of instrumental
control of musical sound. Beyond the currently presented technology,
this  also  reflects  more  broadly  on  the  role  of  Digital  Musical
Instruments (DMIs) in NIME.
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1.  INTRODUCTION: THE NEED TO 
ENABLE THE IMPLEMENTATION OF 
FULLY COMPUTATIONAL FINGERTIP 
CONTROLLERS
 

If asked to describe the system presented in this paper to someone
using just one sentence, it might well be: “We present a system for
running fully virtual fingertip controllers: virtual in terms of their
auditory aspects, their tangible aspects, and their visual aspects.” We

 

would choose the term “virtual” here as its broadly shared meaning
would quickly convey an idea of the sort of capabilities offered by
the technology. However, the real motivation and potential of the
technology in question is only accurately described using the word
“computational”.  We will  now first  discuss  why this  is  so,  also
because this reflects more broadly, beyond the currently presented
system, on the role of Digital Musical Instruments (DMIs) in NIME.

1.1  Virtual versus computational
 

The existence of DMIs depends on the existence of computational
transducer systems. A seminal example of this was the coupling of
electronic digital computer to electric loudspeaker in the 1950s [6].
Since then, it has been made possible to induce more and more
aspects of human perception that are relevant to musical control via
computer-controlled transducer output. This came to include aspects
of 3D vision and aspects of touch, which enabled the implementation
of virtual musical instruments (VMIs) [9] [12].

Here, by its direct meaning, the word “virtual” does a good job of
communicating  the  considerable  capability  of  such  systems  to
convincingly  mimick  aspects  of  reality.  However,  for  the  same
reason,  it  is  not  a  term  that  captures  the  full  potential  of  the
underlying  transducer  systems.  For  example,  computer-generated
audio output can be used to imitate acoustic pianos, as happens in
digital pianos; but it can also be used to make previously unknown
timbres heard, as in the case of granular synthesis [10]. Also, more
fundamentally, even the very experience of hearing a stable sine
wave was only made possible through the use of digital wave tables
[8]. Computer-generated visual output similarly can, for example, be
used to imitate the patching of analog modular synthesizers, as was
the case in the Nord Modular GUI [3]; but it can also be used to
visualize the setup of signal processing networks in a novel way, as
was done in the reacTable system [7].

For touch output, too, a set of contrasting examples could be given
(e.g. drawing from recent NIME work such as reported in [1], [2],
and  [11])  to  illustrate  the  same  general  point:  The  potential  of
computer-driven transducer output is not only to mimick reality, but
also  to  extend it:  to  implement  novel  forms  of  music  making.
This ongoing process of innovation is at the heart of NIME research,
and it is therefore worthwhile to consider its fundamentals.

1.2  The principle of computation as a 
fundamental enabler for NIME
 

If we zoom out to the level of human music making in general, it
turns out that, like other natural phenomena, we can often describe it
as  a  causal  chain:  Human  actions  make  changes  to  a  sound-
generating process, resulting in heard sound, which induces musical
experiences  within  the  brain  (see  Figure  1a).  Without  claiming
applicability to the full spectrum of human musical activity, where it
is present, each component of this causal chain is subject to empirical
investigation, and potentially, intervention.
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This view on the instrumental control of musical sound then also
implies  a  view on  what  it  is  to  create  a  musical  technique  or
instrument: This is to set up a causal relationship, between aspects of
human action, and changes in heard musical sound (see Figure 1b).

Here,  when computational technologies are given (part  of) the
central role of causally linking human action to heard musical sound,
a  unique  advantage  appears:  Unlike  earlier  mechanical  and
electromechanical technologies, automata that are Turing-complete,
when combined with transducers, inherently minimize constraints on
implementable causations (see Figure 1c). This view on how the
principle  of  computation  explicitly  supports  the  innovation  of
musical control was formulated and applied in [5]: There, hitherto
unused aspects of human action and perception were identified and
then  targeted  with  newly  developed  Turing-complete  transducer
systems, which was then verified to yield new forms of instrumental
control of musical sound.

Motivated by this research strategy, we decided to implement a
novel computational transducer system targeting aspects of human
action and perception that are introduced next.

1.3  Ghostfinger: focusing on up/down fingertip
movement
 

Fingertip use is extremely important to the instrumental control of
musical  sound:  The  operation  of  many  widely  used  musical
instruments depends on it. This includes aerophones, such as flutes,
oboes, clarinets, ocarinas, horns, pipe organs, trumpets, tubas, and
saxophones. It also includes membranophones such as frame drums,
and  chordophones,  such  as  acoustic  guitars,  solid-body  electric
guitars, violins, cellos, and (forte)pianos. More recently introduced
examples are electronic instruments such as the analog synthesizer
and digital sampler, as well as personal computers in their various
form factors.

 
Moreover,  in  all  of  the  examples  mentioned  in  the  previous

paragraph, fingertip use contains a common component. Whether the
fingertip is used to open and close holes and valves on aerophones; or
to strike pads and membranes; or to tap and press on sensor surfaces;
or  to  press  strings  against  instrument  bodies;  or  to  perform
press/release cycles on push-buttons, computer keys or the keys of
piano-type  keyboards:  in  all  of  these  cases  there  is  fingertip
movement that can be characterized as approximating a single path
of movement, at right angles with a surface, and extending across at
most a few centimeters. This is illustrated in Figure 2.

 
For the person performing it, this up/down fingertip movement

relative to  a  surface is  associated with relatively precise  control
costing relatively little effort. It can also be performed at relatively
high speeds, and by all fingers separately and simultaneously. This
allows for making more changes to a sound-generating process over

 

a given time period. All of these positive properties for control may
help explain why specifically this type of anatomical movement has
been widely used in the instrumental control of musical sound, across
many cultures, and from prehistory to the present.

Because  of  the  reasons  given  above,  the  Ghostfinger  system
focuses on up/down fingertip movement relative to a surface. It does
so  in  a  way  aiming  to  preserve  the  fundamental  advantage  of
computation: to explicitly minimize constraints on implementable
causations between aspects of human action and changes in heard
musical sound. To then characterize the forms of control that this will
enable, it seems appropriate to use the term “computational fingertip
controller” rather than the term “computational fingertip instrument”,
as in the presented prototype, a single fingertip is used for control. On
the other hand, since the proposed transducer system covers hearing,
touch, and vision – main areas of human action and perception via
which traditional musical instruments also enable forms of control –
it does not seem exaggerated to call the resulting, algorithmically
implemented fingertip controllers fully computational.

human
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generating 
process
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Figure 1a  Music making. The instrumental control of musical sound can be studied as a causal chain, wherein each component is
subject to empirical investigation.
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Figure 1c  Computational transducer systems have a unique
role to play in this, because the principle of computation itself
explicitly minimizes constraints on implementable causations.
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Figure  1b  Making  music  making.  To  create  a  musical
technique or instrument is then to set up a causal relationship:
between  aspects  of  human  action,  and  changes  in  heard
musical sound.



2.  THE GHOSTFINGER USER INTERFACE
 

The overall user experience offered by the Ghostfinger system can be
described as that of tangibly and audibly interacting with a small
hologram. This is implemented starting from the fingertip, where an
adjustable attachment keeps a rigid transducer surface pressed against
the fingerpad (see Figure 3). The hand, meanwhile, typically rests on
the device surface, placing the fingertip straight above an aperture in
the  hardware  casing.  Cyclotactor  technology placed  beneath  this
aperture  tracks  fingertip  position  while  projecting  an  attracting,
rejecting, or zero force [4]. Both movement input and force output
happen along a z axis perpendicular to the device surface.

The fingertip transducer technology completely avoids the use of
connected mechanical parts moving relative to the target anatomical
site. (Detailed information about the basic hardware components of
the  cyclotactor  subsystem  can  be  found  in  [5].)  This  principle
supports precise output to somatosensory perception, and user touch
can include aspects of spatial haptic perception as well as accurate
mechanical wave output across the frequency ranges involved in
fingertip vibration perception. However, actually implementing such
I/O  requires  additional  higher-level  algorithms,  and  everything
presented in this paper therefore was not already covered by the
cyclotactor subsystem itself.

In addition to touch stimuli, the user receives auditory and visual
stimuli, also computed in real time. Audio output happens using a
built-in speaker or via headphones, and visual output using a glasses-
free stereoscopic 3D display. This display is located straight in front
 

 

of the user's head and eyes, providing separate output to each eye via
an oblique viewing angle (see Figure 3).

In this way, the user perceives, firstly, a thin grey square frame that
is horizontally flush with the rest of the device surface. By its outline,
this static frame visually represents the device surface area around the
cyclotactor aperture, which actually is located some centimeters to
the right.

Apparently floating above the static frame at surface level is a
second,  thicker  grey  square  frame.  This  shape  acts  as  a  cursor
tracking vertical fingertip movement: It visuospatially matches the
current  distance  above  surface  of  the  fingerpad  transducer.  The
apparent dimensions of the cursor frame precisely match those of the
fingerpad transducer surface. The cursor shape differs, however, in
having an open center, and this preserves an important advantage of
not having touch and visual I/O spatially coincide: The absence of
visual occlusion by parts of the user's hand allows for a potentially
larger visual display area.

This area is used to show floating blocks, varying in their number,
vertical positions, heights, colors, and levels of transparency. By their
presence, the blocks indicate areas where user actions will encounter
non-zero touch output. Figure 4 gives an example of this, showing
visual output for a static configuration of blocks, over time, as the
user performs a downward fingertip movement: At t1, the fingertip is
still quite some distance above the active area; at t2, it has come near;
at t3, the fingertip enters the active area; and at t4, it is inside.

 Figure 3  The Ghostfinger user interface. 

Figure 2  Left: examples of fingertip use on a flute, frame drum, guitar, and piano. These are shown as part of a much wider range of
examples, in which musical instruments from prehistory onward have shared a common component: up/down fingertip movement
relative to a surface. This is visually summarized to the right, using an intermediate hand posture, and with an example surface (as
wide as the fingers) seen from below.
 



3.  THE GHOSTFINGER PROGRAMMING 
INTERFACE
 

In terms of its programming interface, the current implementation of
the Ghostfinger system offers:
• a set of primitive types to construct algorithms for computed
fingertip touch – including their automatic to-scale stereoscopic
3D visualization;
• a  set  of  primitive  types  to  construct  forms  of  real-time
fingertip control;
• facilities for data recording.

Table I lists the computed touch primitives, which are implemented
as an abstraction layer on top of the I/O in terms of newtons and
millimeters provided by the cyclotactor subsystem. Primitive types
are dynamically instantiated and parametrized at runtime, by making
calls in the SuperCollider language.

Each type has a  limited set  of  runtime parameters,  always
including  z base position and size,  so as to set  up the range
where  the  primitive  instance  may  compute  non-zero  force
output. For the “monoforce” type, this output simply is a single
force level, uniformly present across the given range. For the
“linear  ramp”  type,  force  output  is  computed  from  a  linear
gradient over distance between two arbitrarily chosen points in
the overall force output range. The “dashpot” type implements
a  requested  level  of  viscosity  across  its  spatial  range.  A
“directional dashpot” does the same, but for viscosity that is
present in one movement direction only. Finally, a “force wave”
instance  computes  a  bipolar  force  sine  wave  over  time,  of
precisely settable frequency and amplitude.

Under  the  hood,  the  subsystem  automatically  visualizing
computed touch primitives is implemented using OpenGL, and

 

fully custom from the pixel shaders on up. This also includes
atypical geometric 3D projection computations, duplicated for
each  eye,  and  necessary  because  instead  of  like  the  usual
window, the electronic screen hardware faces the user like an
obliquely viewed platform (see Figure 3).

symbol name runtime parameter (unit)

(shared by all) z base position (mm) 
z size (mm)

monoforce z force (N) 

linear ramp z force at base (N) 
z force range (N)

dashpot z viscous damping (N / (mm /s) ) 

directional 
dashpot 

z viscous damping (N / (mm /s) ) 
z direction (bit)

force wave frequency (Hz) 
amplitude scaling (N)

 

Table I  Primitive types for computed fingertip touch.

Fundamentally,  the  visualization  subsystem  listens  in  on
ongoing instantiation, parametrization and termination events,
and  visualizes  the  types and  runtime  parameters of  the
computed touch primitives that currently exist. Each primitive
instance  is  represented  by  a  block  shape,  placed  along  the
vertical path of the cursor. The base and top surfaces of a block
have the same perceived horizontal dimensions as the cursor,
and  vertically  match with  the current  active  range for  touch
output.  Block color  displays primitive type.  The state  of  the
remaining,  type-specific  runtime  parameters  (see  Table  I)  is
displayed by block transparency. Here, as a general rule, full

Figure 4  Ghostfinger example I/O. Top: right-eye visual output (to be viewed at an angle: see Figure 3). Bottom: corresponding
position input, speed input, and force output, occurring along the z axis over time.



transparency always means 0 N output, and increasing opacity
indicates an increasing “strength”.

To aid the spatial perception of block shapes and their sizes,
the  presence  of  static  directional  lighting  is  simulated.  In
addition to this, the cursor is simulated to light up its immediate
surroundings.  This  to enhance cursor visibility inside opaque
volumes, and to generally highlight the (imminent) passing of
active range boundaries (see Figure 4).

Primitive instances each add to the overall force computation,
and are independently parametrized to do so. Therefore, it may
well be that two or more primitives come to spatially overlap.
The  visualization  subsystem  detects  this,  and  renders
corresponding  overlapping  block  segments  to  reflect  it.  The
RGB color of such a block segment is computed as an average
of the type colors of the overlapping primitive instances, with
each type color weighted by its instances' current opacities. So,
if two “strong” primitive instances combine, their overlap block
segment  will  show  an  intermediate  color;  but  if  a  “weak”
instance overlaps a “strong” one, the color of the former may
only  slightly  tinge  that  of  the  latter.  In  general,  for  n >  0
overlapping  primitives  of  which at  least  one has a  non-zero
opacity (or “A value”), the combined (r, g, b, a) tuple is given
by

∑
i=1

n

(ai / ∑
j=1

n

a j × (r i , g i , bi))
⌢ max

k=1

n

ak .

The  opacity  of  an  overlap  block  segment  is  therefore
computed  as  the  maximum  of  the  overlapping  primitives'
opacities.  This  ensures  that  if  a  visible  primitive  instance
overlaps with others that are at maximum transparency – and
which therefore,  are contributing 0 N output – the color and
opacity looked at will be the same as for the primitive instance
on its own. Figure 4 shows a basic example of two primitive
instances of different type, spatially overlapping, which yields a
third, middle block segment.
 

The spatial display via cursor and blocks is complemented by
symbolic display, visible as a sign grid extending outward from
the  static  floor  frame  toward  the  left  and  right.  Here,  each
primitive  instance  is  represented  by  a  corresponding  type
symbol (see Table I) that lights up if the fingerpad transducer is
within the instance's active range. Figure 4 shows an example
of this for a force wave and a linear ramp instance. During the
programming and trying out of algorithms for dynamic haptics,
the  sign  grid  supports  unambiguous  verification  of  which
primitive instances are being activated during fingertip actions
– especially as the instances' spatial dimensions and opacities
decrease, and their numbers increase. The Ghostfinger system
currently  supports  having  up  to  160  concurrently  running
primitive instances.
 

When  starting  algorithmic  construction  from  a  single
primitive  instance,  fingertip  movement  staying  within  the
active range may bring about aspects of action and perception
that  are  experienced  as  distinct  from  those  induced  while
traversing the lower or upper range boundaries. For example,
when entering  a  dashpot  or  upward-only  directional  dashpot
instance from above, the sudden activation of its viscosity may
yield an impact sensation.

 
In addition to the set of primitive types for computed touch,

the Ghostfinger system also offers a set of primitive types for
implementing  forms  of  real-time  control  via  the  fingertip.

These  types  of  Degree-Of-Freedom  (DOF),  too,  are
dynamically  instantiated  and  parametrized  at  runtime.  The
currently  implemented  selection  is  listed  in  Table  II.  Here,
some types  provide  updates  continuously, tracking  fingerpad
transducer  position,  average  position,  average  absolute
deviation from average position, or speed. Other types signal
discrete  events,  such  as  fingertip  entry  into  and exit  from a
given  spatial  range,  or  the  fingertip's  speed  as  it  passes  a
positional threshold in a given direction.

DOF name (unit) runtime parameter (unit)

inside (bit) z base position (mm) 
z size (mm)

z relative position (mm) z base position (mm) 

z avg. relative position (mm) z base position (mm) 
averaging period (ms)

z avg. abs. dev. from avg. (mm) averaging period (ms) 

z speed (mm/s) – 

downward pass (mm/s) z inclusive threshold (mm) 

upward pass (mm/s) z inclusive threshold (mm) 
 

Table II  Primitive types for implementing fingertip control.
 

Designing  fingertip  control  actions  using  Ghostfinger  will
often involve spatially lining up DOF primitive instances with
ones for computed touch. For example, the threshold location
for which a “downward pass” DOF instance will trigger and
report  movement  may  be  placed  at  the  top  boundary  of  an
upward-only directional dashpot instance: Then, once a tangible
impact sensation unfolds there,  the speed of the fingertip (in
millimeters per second) can also control e.g. the loudness (in
decibels) of some heard sound, also computed in real time.
 

Finally, the Ghostfinger system also offers facilities for recording
I/O data over time. This is done at the temporal resolution of the
cyclotactor subsystem, with amplitude values always having physical
units. Figure 4 shows an example of this, with recorded position,
speed, and force data reflecting a downward fingertip movement into
the active ranges of first, a force wave primitive, and then also a
linear ramp primitive that is implementing a spring.
 
4.  DISCUSSION: POTENTIAL APPLICATIONS
 

We  will  now  mention  some  potential  applications  of  the
Ghostfinger platform, listed along an axis of user experience
that  goes  from expert  to  novice.  This  simultaneously  means
going reciprocally along an axis of “amount of work needed”:
the less expert the user, the more work that still needs to be
done to make the proposed application a reality.

•  As a platform for basic research: Ghostfinger can be used to
create  and  research  novel  forms  of  instrumental  control  of
musical sound involving the fingertip. This research can also
include  controlled  experiments  quantifying  the  effects  of
different haptic conditions on musical control outcomes.
 

•  As a  platform for  constructing controllers: A future,  more
embedded version of Ghostfinger might be used by researchers
and advanced students to freely construct fingertip controllers
that employ highly dynamic haptics, without such users having
to deal with programming direct transducer I/O. The video in
the Appendix shows examples that relate to this use case.
 

•  As a platform for using controllers: After even more development,
a variant of Ghostfinger technology might offer end users sets of



ready-made musical controllers, without requiring any programming
on their side. Out of the box, such controllers should communicate
using standard musical I/O protocols such as OSC and MIDI, so as to
easily fit in existing contexts for digital music making. Added value
might lie in adding a range of simulated fingertip actions that could
be switched between on a whim; and also in enabling completely
new ways of fingertip control.

5.  CONCLUSION
 

We will  conclude  this  paper  by  reviewing  some  important
aspects  of  the functionality of the Ghostfinger user interface
and programming interface.

 
The  automatic  visualization  of  the  floating  cursor,  via  its

perceived  open-frame  shape  and  spatial  movement,
immediately, non-verbally, and continuously communicates to
the user what type of user actions are being picked up: vertical
fingertip movements. This makes the user interface much more
self-explanatory than in the absence of such a cursor. Equally
importantly, the cursor  also immediately communicates  what
types  of  movement  are  not being  used:  movements  such  as
fingertip pitch, roll, and yaw. In this way, spatiovisual display
prevents  user  confusion  which,  earlier,  did  occur  during
informal testing with musicians of just the cyclotactor system.
(This confusion, on reflection, seemed to prohibit open-ended
yet  still  intuitive  use  of  the  technology,  which  directly
motivated developing the additional visual output presented in
this paper.)

The programming primitives and underlying transducer I/O
of the Ghostfinger system enable implementing widely varying
and  highly  dynamic  haptic  conditions  for  up/down  fingertip
movement. In the user, this can induce aspects of passive touch
and active touch, including exterospecific components yielding
spatial  haptic  perception.  Moreover,  higher-level  algorithms
can  then  change these induced  exterospecific  components  in
response to specific human motor activity, thereby effectively
conveying the occurrence of not just active touch, but tangible
manipulation.

 
By  adding  or  re-using  DOF  primitive  instances,  such

algorithms of active touch and tangible manipulation can then
be extended to also compute sound in response to user actions,
thereby  implementing  tangibly  distinct  modes  of  musical
control. In turn, algorithms at an even higher level may then be
used to freely and rapidly switch between different modes of
control, and potentially do so many times within the timespan
of a single performance.

This  means  that  for  the  user,  the  set  of  possible  control
actions may become highly dynamic over time. Given that, so
far, we have mostly reviewed the potential  of  computational
touch and audio I/O, this raises a question: How does the user
know what control actions currently are possible?

 
The automatic visualization built into the Ghostfinger system

addresses this question without relying on visually mimicking
pre-existing  objects  or  forms  of  manipulation.  Instead,
transparently colored and spatially overlapping floating blocks
visualize the runtime instantiation and parametrization of haptic
primitive instances that together combine to form the specific
current  context for control actions.  This  open-ended form of
spatial  visual  display  is  complemented  by  the  simultaneous
symbolic  display  of  active  primitive  instances  visible  in  the
sign grid.

Finally, we  turn  to  the  programming interface  specifically.
The goal was to make it powerful, yet easy to use: The set of
primitive  types  for  computed  touch  and  DOF  extraction  is
small, and each type is conceptually simple and has only a few
runtime  parameters.  Simultaneously,  each  type  can  be
instantiated many times over, and can be freely combined with
any  other  type.  Overall,  the  type  set  was  designed  to  be
expressive,  in  the  sense  that  resulting,  more  complex
algorithms may implement many different forms of touch and
control.

Given  our  reflection  in  Section  1  on  the  general  role  of
computation in the implementation of forms of instrumental control,
an important issue here is preserving the full computational potential
corresponding  to  minimized  constraints  on  the  potential
implementation of causal relationships between aspects of human
action and changes in musical sound. As a prototype means for
preserving  access  to  the  full  range  of  potential  algorithmic
implementation, “z relative position”, “z speed”, and “monoforce”
primitives can be used as a wrapper for the underlying transducer
I/O.
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APPENDIX
 

A 7½-minute video introducing and demonstrating the Ghostfinger
prototype is at https://youtu.be/ahw9630FLgU.

https://youtu.be/ahw9630FLgU

