
ABSTRACT

We present Ghostfinger, a technology for highly dynamic up/down
fingertip haptics and control. The overall user experience offered by
the technology can be described as that of tangibly and audibly
interacting with a small hologram.

More specifically, Ghostfinger implements automatic visualization
of the dynamic instantiation/parametrization of algorithmic
primitives that together determine the current haptic conditions for
fingertip action. Some aspects of this visualization are visuospatial:
A floating see-through cursor provides real-time, to-scale display of
the fingerpad transducer, as it is being moved by the user.
Simultaneously, each haptic primitive instance is represented by a
floating block shape, type-colored, variably transparent, and possibly
overlapping with other such block shapes. Further aspects of
visualization are symbolic: Each instance is also represented by a
type symbol, lighting up within a grid if the instance is providing
output to the user.

We discuss the system's user interface, programming interface, and
potential applications. This is done from a general perspective that
articulates and emphasizes the uniquely enabling role of the principle
of computation in the implementation of new forms of instrumental
control of musical sound. Beyond the currently presented technology,
this also reflects more broadly on the role of Digital Musical
Instruments (DMIs) in NIME.

Author Keywords

• Novel controllers and interfaces for musical expression;
• Haptic and force feedback devices;
• Multimodal expressive interfaces.

ACM Classification

• Human-centered computing~Haptic devices
• Human-centered computing~Visualization techniques
• Applied computing~Sound and music computing

1. INTRODUCTION: THE NEED TO
ENABLE THE IMPLEMENTATION OF
FULLY COMPUTATIONAL FINGERTIP
CONTROLLERS

If asked to describe the system presented in this paper to someone
using just one sentence, it might well be: “We present a system for
running fully virtual fingertip controllers: virtual in terms of their
auditory aspects, their tangible aspects, and their visual aspects.” We

would choose the term “virtual” here as its broadly shared meaning
would quickly convey an idea of the sort of capabilities offered by
the technology. However, the real motivation and potential of the
technology in question is only accurately described using the word
“computational”. We will now first discuss why this is so, also
because this reflects more broadly, beyond the currently presented
system, on the role of Digital Musical Instruments (DMIs) in NIME.

1.1 Virtual versus computational

The existence of DMIs depends on the existence of computational
transducer systems. A seminal example of this was the coupling of
electronic digital computer to electric loudspeaker in the 1950s [6].
Since then, it has been made possible to induce more and more
aspects of human perception that are relevant to musical control via
computer-controlled transducer output. This came to include aspects
of 3D vision and aspects of touch, which enabled the implementation
of virtual musical instruments (VMIs) [9] [12].

Here, by its direct meaning, the word “virtual” does a good job of
communicating the considerable capability of such systems to
convincingly mimick aspects of reality. However, for the same
reason, it is not a term that captures the full potential of the
underlying transducer systems. For example, computer-generated
audio output can be used to imitate acoustic pianos, as happens in
digital pianos; but it can also be used to make previously unknown
timbres heard, as in the case of granular synthesis [10]. Also, more
fundamentally, even the very experience of hearing a stable sine
wave was only made possible through the use of digital wave tables
[8]. Computer-generated visual output similarly can, for example, be
used to imitate the patching of analog modular synthesizers, as was
the case in the Nord Modular GUI [3]; but it can also be used to
visualize the setup of signal processing networks in a novel way, as
was done in the reacTable system [7].

For touch output, too, a set of contrasting examples could be given
(e.g. drawing from recent NIME work such as reported in [1], [2],
and [11]) to illustrate the same general point: The potential of
computer-driven transducer output is not only to mimick reality, but
also to extend it: to implement novel forms of music making.
This ongoing process of innovation is at the heart of NIME research,
and it is therefore worthwhile to consider its fundamentals.

1.2 The principle of computation as a
fundamental enabler for NIME

If we zoom out to the level of human music making in general, it
turns out that, like other natural phenomena, we can often describe it
as a causal chain: Human actions make changes to a sound-
generating process, resulting in heard sound, which induces musical
experiences within the brain (see Figure 1a). Without claiming
applicability to the full spectrum of human musical activity, where it
is present, each component of this causal chain is subject to empirical
investigation, and potentially, intervention.

Ghostfinger: a novel platform for fully
computational fingertip controllers

dr. Staas de Jong

apajong@xs4all.nl

mailto:apajong@xs4all.nl

This view on the instrumental control of musical sound then also
implies a view on what it is to create a musical technique or
instrument: This is to set up a causal relationship, between aspects of
human action, and changes in heard musical sound (see Figure 1b).

Here, when computational technologies are given (part of) the
central role of causally linking human action to heard musical sound,
a unique advantage appears: Unlike earlier mechanical and
electromechanical technologies, automata that are Turing-complete,
when combined with transducers, inherently minimize constraints on
implementable causations (see Figure 1c). This view on how the
principle of computation explicitly supports the innovation of
musical control was formulated and applied in [5]: There, hitherto
unused aspects of human action and perception were identified and
then targeted with newly developed Turing-complete transducer
systems, which was then verified to yield new forms of instrumental
control of musical sound.

Motivated by this research strategy, we decided to implement a
novel computational transducer system targeting aspects of human
action and perception that are introduced next.

1.3 Ghostfinger: focusing on up/down fingertip
movement

Fingertip use is extremely important to the instrumental control of
musical sound: The operation of many widely used musical
instruments depends on it. This includes aerophones, such as flutes,
oboes, clarinets, ocarinas, horns, pipe organs, trumpets, tubas, and
saxophones. It also includes membranophones such as frame drums,
and chordophones, such as acoustic guitars, solid-body electric
guitars, violins, cellos, and (forte)pianos. More recently introduced
examples are electronic instruments such as the analog synthesizer
and digital sampler, as well as personal computers in their various
form factors.

Moreover, in all of the examples mentioned in the previous

paragraph, fingertip use contains a common component. Whether the
fingertip is used to open and close holes and valves on aerophones; or
to strike pads and membranes; or to tap and press on sensor surfaces;
or to press strings against instrument bodies; or to perform
press/release cycles on push-buttons, computer keys or the keys of
piano-type keyboards: in all of these cases there is fingertip
movement that can be characterized as approximating a single path
of movement, at right angles with a surface, and extending across at
most a few centimeters. This is illustrated in Figure 2.

For the person performing it, this up/down fingertip movement

relative to a surface is associated with relatively precise control
costing relatively little effort. It can also be performed at relatively
high speeds, and by all fingers separately and simultaneously. This
allows for making more changes to a sound-generating process over

a given time period. All of these positive properties for control may
help explain why specifically this type of anatomical movement has
been widely used in the instrumental control of musical sound, across
many cultures, and from prehistory to the present.

Because of the reasons given above, the Ghostfinger system
focuses on up/down fingertip movement relative to a surface. It does
so in a way aiming to preserve the fundamental advantage of
computation: to explicitly minimize constraints on implementable
causations between aspects of human action and changes in heard
musical sound. To then characterize the forms of control that this will
enable, it seems appropriate to use the term “computational fingertip
controller” rather than the term “computational fingertip instrument”,
as in the presented prototype, a single fingertip is used for control. On
the other hand, since the proposed transducer system covers hearing,
touch, and vision – main areas of human action and perception via
which traditional musical instruments also enable forms of control –
it does not seem exaggerated to call the resulting, algorithmically
implemented fingertip controllers fully computational.

human
actions

make changes to a sound-
generating
process

resulting in heard
sound

which induces musical
experiences

Figure 1a Music making. The instrumental control of musical sound can be studied as a causal chain, wherein each component is
subject to empirical investigation.

aspects of
human action

made causally
related to

changes in heard
musical sound

Figure 1c Computational transducer systems have a unique
role to play in this, because the principle of computation itself
explicitly minimizes constraints on implementable causations.

aspects of
human action

made causally
related to

changes in heard
musical sound

Figure 1b Making music making. To create a musical
technique or instrument is then to set up a causal relationship:
between aspects of human action, and changes in heard
musical sound.

2. THE GHOSTFINGER USER INTERFACE

The overall user experience offered by the Ghostfinger system can be
described as that of tangibly and audibly interacting with a small
hologram. This is implemented starting from the fingertip, where an
adjustable attachment keeps a rigid transducer surface pressed against
the fingerpad (see Figure 3). The hand, meanwhile, typically rests on
the device surface, placing the fingertip straight above an aperture in
the hardware casing. Cyclotactor technology placed beneath this
aperture tracks fingertip position while projecting an attracting,
rejecting, or zero force [4]. Both movement input and force output
happen along a z axis perpendicular to the device surface.

The fingertip transducer technology completely avoids the use of
connected mechanical parts moving relative to the target anatomical
site. (Detailed information about the basic hardware components of
the cyclotactor subsystem can be found in [5].) This principle
supports precise output to somatosensory perception, and user touch
can include aspects of spatial haptic perception as well as accurate
mechanical wave output across the frequency ranges involved in
fingertip vibration perception. However, actually implementing such
I/O requires additional higher-level algorithms, and everything
presented in this paper therefore was not already covered by the
cyclotactor subsystem itself.

In addition to touch stimuli, the user receives auditory and visual
stimuli, also computed in real time. Audio output happens using a
built-in speaker or via headphones, and visual output using a glasses-
free stereoscopic 3D display. This display is located straight in front

of the user's head and eyes, providing separate output to each eye via
an oblique viewing angle (see Figure 3).

In this way, the user perceives, firstly, a thin grey square frame that
is horizontally flush with the rest of the device surface. By its outline,
this static frame visually represents the device surface area around the
cyclotactor aperture, which actually is located some centimeters to
the right.

Apparently floating above the static frame at surface level is a
second, thicker grey square frame. This shape acts as a cursor
tracking vertical fingertip movement: It visuospatially matches the
current distance above surface of the fingerpad transducer. The
apparent dimensions of the cursor frame precisely match those of the
fingerpad transducer surface. The cursor shape differs, however, in
having an open center, and this preserves an important advantage of
not having touch and visual I/O spatially coincide: The absence of
visual occlusion by parts of the user's hand allows for a potentially
larger visual display area.

This area is used to show floating blocks, varying in their number,
vertical positions, heights, colors, and levels of transparency. By their
presence, the blocks indicate areas where user actions will encounter
non-zero touch output. Figure 4 gives an example of this, showing
visual output for a static configuration of blocks, over time, as the
user performs a downward fingertip movement: At t1, the fingertip is
still quite some distance above the active area; at t2, it has come near;
at t3, the fingertip enters the active area; and at t4, it is inside.

 Figure 3 The Ghostfinger user interface.

Figure 2 Left: examples of fingertip use on a flute, frame drum, guitar, and piano. These are shown as part of a much wider range of
examples, in which musical instruments from prehistory onward have shared a common component: up/down fingertip movement
relative to a surface. This is visually summarized to the right, using an intermediate hand posture, and with an example surface (as
wide as the fingers) seen from below.

3. THE GHOSTFINGER PROGRAMMING
INTERFACE

In terms of its programming interface, the current implementation of
the Ghostfinger system offers:
• a set of primitive types to construct algorithms for computed
fingertip touch – including their automatic to-scale stereoscopic
3D visualization;
• a set of primitive types to construct forms of real-time
fingertip control;
• facilities for data recording.

Table I lists the computed touch primitives, which are implemented
as an abstraction layer on top of the I/O in terms of newtons and
millimeters provided by the cyclotactor subsystem. Primitive types
are dynamically instantiated and parametrized at runtime, by making
calls in the SuperCollider language.

Each type has a limited set of runtime parameters, always
including z base position and size, so as to set up the range
where the primitive instance may compute non-zero force
output. For the “monoforce” type, this output simply is a single
force level, uniformly present across the given range. For the
“linear ramp” type, force output is computed from a linear
gradient over distance between two arbitrarily chosen points in
the overall force output range. The “dashpot” type implements
a requested level of viscosity across its spatial range. A
“directional dashpot” does the same, but for viscosity that is
present in one movement direction only. Finally, a “force wave”
instance computes a bipolar force sine wave over time, of
precisely settable frequency and amplitude.

Under the hood, the subsystem automatically visualizing
computed touch primitives is implemented using OpenGL, and

fully custom from the pixel shaders on up. This also includes
atypical geometric 3D projection computations, duplicated for
each eye, and necessary because instead of like the usual
window, the electronic screen hardware faces the user like an
obliquely viewed platform (see Figure 3).

symbol name runtime parameter (unit)

(shared by all) z base position (mm)
z size (mm)

monoforce z force (N)

linear ramp z force at base (N)
z force range (N)

dashpot z viscous damping (N / (mm /s))

directional
dashpot

z viscous damping (N / (mm /s))
z direction (bit)

force wave frequency (Hz)
amplitude scaling (N)

Table I Primitive types for computed fingertip touch.

Fundamentally, the visualization subsystem listens in on
ongoing instantiation, parametrization and termination events,
and visualizes the types and runtime parameters of the
computed touch primitives that currently exist. Each primitive
instance is represented by a block shape, placed along the
vertical path of the cursor. The base and top surfaces of a block
have the same perceived horizontal dimensions as the cursor,
and vertically match with the current active range for touch
output. Block color displays primitive type. The state of the
remaining, type-specific runtime parameters (see Table I) is
displayed by block transparency. Here, as a general rule, full

Figure 4 Ghostfinger example I/O. Top: right-eye visual output (to be viewed at an angle: see Figure 3). Bottom: corresponding
position input, speed input, and force output, occurring along the z axis over time.

transparency always means 0 N output, and increasing opacity
indicates an increasing “strength”.

To aid the spatial perception of block shapes and their sizes,
the presence of static directional lighting is simulated. In
addition to this, the cursor is simulated to light up its immediate
surroundings. This to enhance cursor visibility inside opaque
volumes, and to generally highlight the (imminent) passing of
active range boundaries (see Figure 4).

Primitive instances each add to the overall force computation,
and are independently parametrized to do so. Therefore, it may
well be that two or more primitives come to spatially overlap.
The visualization subsystem detects this, and renders
corresponding overlapping block segments to reflect it. The
RGB color of such a block segment is computed as an average
of the type colors of the overlapping primitive instances, with
each type color weighted by its instances' current opacities. So,
if two “strong” primitive instances combine, their overlap block
segment will show an intermediate color; but if a “weak”
instance overlaps a “strong” one, the color of the former may
only slightly tinge that of the latter. In general, for n > 0
overlapping primitives of which at least one has a non-zero
opacity (or “A value”), the combined (r, g, b, a) tuple is given
by

∑
i=1

n

(ai / ∑
j=1

n

a j × (r i , g i , bi))
⌢ max

k=1

n

ak .

The opacity of an overlap block segment is therefore
computed as the maximum of the overlapping primitives'
opacities. This ensures that if a visible primitive instance
overlaps with others that are at maximum transparency – and
which therefore, are contributing 0 N output – the color and
opacity looked at will be the same as for the primitive instance
on its own. Figure 4 shows a basic example of two primitive
instances of different type, spatially overlapping, which yields a
third, middle block segment.

The spatial display via cursor and blocks is complemented by
symbolic display, visible as a sign grid extending outward from
the static floor frame toward the left and right. Here, each
primitive instance is represented by a corresponding type
symbol (see Table I) that lights up if the fingerpad transducer is
within the instance's active range. Figure 4 shows an example
of this for a force wave and a linear ramp instance. During the
programming and trying out of algorithms for dynamic haptics,
the sign grid supports unambiguous verification of which
primitive instances are being activated during fingertip actions
– especially as the instances' spatial dimensions and opacities
decrease, and their numbers increase. The Ghostfinger system
currently supports having up to 160 concurrently running
primitive instances.

When starting algorithmic construction from a single
primitive instance, fingertip movement staying within the
active range may bring about aspects of action and perception
that are experienced as distinct from those induced while
traversing the lower or upper range boundaries. For example,
when entering a dashpot or upward-only directional dashpot
instance from above, the sudden activation of its viscosity may
yield an impact sensation.

In addition to the set of primitive types for computed touch,

the Ghostfinger system also offers a set of primitive types for
implementing forms of real-time control via the fingertip.

These types of Degree-Of-Freedom (DOF), too, are
dynamically instantiated and parametrized at runtime. The
currently implemented selection is listed in Table II. Here,
some types provide updates continuously, tracking fingerpad
transducer position, average position, average absolute
deviation from average position, or speed. Other types signal
discrete events, such as fingertip entry into and exit from a
given spatial range, or the fingertip's speed as it passes a
positional threshold in a given direction.

DOF name (unit) runtime parameter (unit)

inside (bit) z base position (mm)
z size (mm)

z relative position (mm) z base position (mm)

z avg. relative position (mm) z base position (mm)
averaging period (ms)

z avg. abs. dev. from avg. (mm) averaging period (ms)

z speed (mm/s) –

downward pass (mm/s) z inclusive threshold (mm)

upward pass (mm/s) z inclusive threshold (mm)

Table II Primitive types for implementing fingertip control.

Designing fingertip control actions using Ghostfinger will
often involve spatially lining up DOF primitive instances with
ones for computed touch. For example, the threshold location
for which a “downward pass” DOF instance will trigger and
report movement may be placed at the top boundary of an
upward-only directional dashpot instance: Then, once a tangible
impact sensation unfolds there, the speed of the fingertip (in
millimeters per second) can also control e.g. the loudness (in
decibels) of some heard sound, also computed in real time.

Finally, the Ghostfinger system also offers facilities for recording
I/O data over time. This is done at the temporal resolution of the
cyclotactor subsystem, with amplitude values always having physical
units. Figure 4 shows an example of this, with recorded position,
speed, and force data reflecting a downward fingertip movement into
the active ranges of first, a force wave primitive, and then also a
linear ramp primitive that is implementing a spring.

4. DISCUSSION: POTENTIAL APPLICATIONS

We will now mention some potential applications of the
Ghostfinger platform, listed along an axis of user experience
that goes from expert to novice. This simultaneously means
going reciprocally along an axis of “amount of work needed”:
the less expert the user, the more work that still needs to be
done to make the proposed application a reality.

• As a platform for basic research: Ghostfinger can be used to
create and research novel forms of instrumental control of
musical sound involving the fingertip. This research can also
include controlled experiments quantifying the effects of
different haptic conditions on musical control outcomes.

• As a platform for constructing controllers: A future, more
embedded version of Ghostfinger might be used by researchers
and advanced students to freely construct fingertip controllers
that employ highly dynamic haptics, without such users having
to deal with programming direct transducer I/O. The video in
the Appendix shows examples that relate to this use case.

• As a platform for using controllers: After even more development,
a variant of Ghostfinger technology might offer end users sets of

ready-made musical controllers, without requiring any programming
on their side. Out of the box, such controllers should communicate
using standard musical I/O protocols such as OSC and MIDI, so as to
easily fit in existing contexts for digital music making. Added value
might lie in adding a range of simulated fingertip actions that could
be switched between on a whim; and also in enabling completely
new ways of fingertip control.

5. CONCLUSION

We will conclude this paper by reviewing some important
aspects of the functionality of the Ghostfinger user interface
and programming interface.

The automatic visualization of the floating cursor, via its

perceived open-frame shape and spatial movement,
immediately, non-verbally, and continuously communicates to
the user what type of user actions are being picked up: vertical
fingertip movements. This makes the user interface much more
self-explanatory than in the absence of such a cursor. Equally
importantly, the cursor also immediately communicates what
types of movement are not being used: movements such as
fingertip pitch, roll, and yaw. In this way, spatiovisual display
prevents user confusion which, earlier, did occur during
informal testing with musicians of just the cyclotactor system.
(This confusion, on reflection, seemed to prohibit open-ended
yet still intuitive use of the technology, which directly
motivated developing the additional visual output presented in
this paper.)

The programming primitives and underlying transducer I/O
of the Ghostfinger system enable implementing widely varying
and highly dynamic haptic conditions for up/down fingertip
movement. In the user, this can induce aspects of passive touch
and active touch, including exterospecific components yielding
spatial haptic perception. Moreover, higher-level algorithms
can then change these induced exterospecific components in
response to specific human motor activity, thereby effectively
conveying the occurrence of not just active touch, but tangible
manipulation.

By adding or re-using DOF primitive instances, such

algorithms of active touch and tangible manipulation can then
be extended to also compute sound in response to user actions,
thereby implementing tangibly distinct modes of musical
control. In turn, algorithms at an even higher level may then be
used to freely and rapidly switch between different modes of
control, and potentially do so many times within the timespan
of a single performance.

This means that for the user, the set of possible control
actions may become highly dynamic over time. Given that, so
far, we have mostly reviewed the potential of computational
touch and audio I/O, this raises a question: How does the user
know what control actions currently are possible?

The automatic visualization built into the Ghostfinger system

addresses this question without relying on visually mimicking
pre-existing objects or forms of manipulation. Instead,
transparently colored and spatially overlapping floating blocks
visualize the runtime instantiation and parametrization of haptic
primitive instances that together combine to form the specific
current context for control actions. This open-ended form of
spatial visual display is complemented by the simultaneous
symbolic display of active primitive instances visible in the
sign grid.

Finally, we turn to the programming interface specifically.
The goal was to make it powerful, yet easy to use: The set of
primitive types for computed touch and DOF extraction is
small, and each type is conceptually simple and has only a few
runtime parameters. Simultaneously, each type can be
instantiated many times over, and can be freely combined with
any other type. Overall, the type set was designed to be
expressive, in the sense that resulting, more complex
algorithms may implement many different forms of touch and
control.

Given our reflection in Section 1 on the general role of
computation in the implementation of forms of instrumental control,
an important issue here is preserving the full computational potential
corresponding to minimized constraints on the potential
implementation of causal relationships between aspects of human
action and changes in musical sound. As a prototype means for
preserving access to the full range of potential algorithmic
implementation, “z relative position”, “z speed”, and “monoforce”
primitives can be used as a wrapper for the underlying transducer
I/O.

REFERENCES

[1] Balandra A, Mitake H, Hasegawa S, 2016 Haptic music player – synthetic
audio-tactile stimuli generation based on the notes’ pitch and instruments’
envelope mapping. In Proceedings of NIME 2016 90-95.

[2] Berdahl E, Holmes D, Sheffield E, 2016 Wireless vibrotactile tokens for
audio-haptic interaction with touchscreen interfaces. In Proceedings of NIME
2016 5-6.

[3] Clavia DMI AB 1999 Nord Modular owner's manual version 3.0
(Sundbyberg, Sweden: Larserics Digital Print AB).

[4] De Jong S, 2010 Presenting the cyclotactor project. In Proceedings
of the 2010 international conference on Tangible, Embedded, and
embodied Interaction (TEI) (ACM, January 24-27 2010, MIT,
Cambridge, MA, USA).

[5] De Jong S, 2015 Computed fingertip touch for the instrumental
control of musical sound. Ph.D. dissertation, LIACS, Universiteit
Leiden (accessed via http://staas.home.xs4all.nl/index/documents/
cfticms.pdf).

[6] Doornbusch P, 2005 The music of CSIRAC: Australia's first
computer music (Australia: Common Ground Publishing).

[7] Jordà S, Geiger G, Alonso M, Kaltenbrunner M, 2007 The
reacTable: Exploring the synergy between live music performance and
tabletop tangible interfaces. In Proceedings of the 2007 international
conference on Tangible, Embedded and Embodied Interaction (TEI)
139-146.

[8] Mathews M V, Miller J E, Moore F R, Pierce J R, Risset J C, 1969
The technology of computer music (Cambridge, MA, USA; London,
UK: The MIT Press).

[9] Mulder A, 1998 Design of virtual three-dimensional instruments
for sound control. Ph.D. dissertation, Simon Fraser University.

[10] Roads C, 2004 Microsound (Cambridge, MA, USA; London, UK:
The MIT Press).

[11] Sheffield E, Berdahl E, Pfalz A, 2016 The haptic capstans: rotational
force feedback for music using a firefader derivative device. In Proceedings of
NIME 2016 1-2.

[12] Sinclair S, Wanderley M M, 2007 Defining a control standard for
easily integrating haptic virtual environments with existing audio/visual
systems. In Proceedings of NIME 2007.

APPENDIX

A 7½-minute video introducing and demonstrating the Ghostfinger
prototype is at https://youtu.be/ahw9630FLgU.

https://youtu.be/ahw9630FLgU

