TNO Inro

à

.

Schoemakerstraat 97 P.O. Box 6041 2600 JA Delft Nederland

www.tno.nl

T +31 15 269 68 29 F +31 15 262 43 41 inro@inro.tno.nl

Date

Authors

W. Passchier-Vermeer B. Griefahn U Möhler

Delfi

03 6N 102

January, 2004

Motility and road and railway traffic noise

City

Number

ISBN-number

All rights reserved.

No part of this publication may be reproduced and/or published by print, photoprint, microfilm or any other means without the previous written consent of TNO.

In case this report was drafted on instructions, the rights and obligations of contracting parties are subject to either the Standard Conditions for Research Instructions given to TNO, or the relevant agreement concluded between the contracting parties. Submitting the report for inspection to parties who have a direct interest is permitted.

© 2003 TNO

TNO Inro Institute for Traffic and Transport, Logistics and Spatial Development

.

EXECUTIVE SUMMARY

TABLE OF CONTENTS

1	INTRODUCTION	1
2	Instantaneous effects	5
2.1	Railway noise	5
2.1.1	General analysis	5
2.1.2	Individual differences in effect measures of motility	10
2.1.3	Instantaneous probability of (onset of) motility and average values during sleep	14
2.2	Road traffic noise	14
2.2.1	General analyses	14
2.2.2	Individual differences in motility	18
2.3	Discussion	19
3	Motility during a sleep period time	20
3.1	Introduction	20
3.2	Road traffic noise	20
3.3	Railway traffic noise	22
3.4	Comparison with aircraft noise	22
4	Effects aggregated over all study nights	25
4.1	Introduction	25
4.2	Road traffic noise	26
4.3	Railway traffic noise	32
4.4	Comparison road traffic noise and railway traffic noise	32
5	Discussion and conclusion	34
6	Variables used in the analyses	35
7	References	••

This report presents a secondary analysis of the data of a German study on the effects of road and railway noise during sleep ¹⁻³. The study was performed to examine the difference between road and rail traffic noise with regard to physiological, subjective, and behavioural responses. At 8 locations where either rail or road noise prevailed, a total of 1 600 persons were interviewed; a subgroup of 376 persons (18 to 66 years of age) was examined during 2 times 5 nights (Sunday through Thursday night). In this sleep observation period noise and motility (by actimeters carried on the wrist) was recorded (semi-)continuously during each night. Every morning the subjects stated the position of the windows during the night, they evaluated their sleep in a diary and performed a 4-choice reaction time test. Only the behaviour to sleep with open or closed windows was significantly associated with the rating level of road and railway noise. Also, the windows of subjects primarily exposed to road noise were significantly more often closed. None of the other aggregated effect data revealed any difference between the two types of noise.

In this report the main focus is not on *differences* between effects measures in road or railway traffic noise exposed subjects, but on the *relationships* between noise-induced effects and noise exposure metrics for each of the two noise sources.

The German researchers made available all recorded data for the secondary analysis presented in this report. The analyses are limited to the effects of noise on motility. In the analyses only for a few demographic variables it has been considered whether they have an effect on the relationships or the effect measures.

Most of the terms and definitions used in this report are equal to those used in the reports on the Netherlands aircraft noise sleep disturbance study ⁴⁻⁷. An overview of terms and definitions is given in chapter 6 of this report.

This chapter shortly reviews the characteristics of the subjects, the noise measurements, and the motility measures. In the next three chapters the results are presented of analyses of motility data on three time scales:

- Instantaneous motility effects based on observations during short term (30-s) intervals
- Mean motility effects over one sleep period time
- Mean motility effects aggregated over 10 sleep period times.

All results relate to sleep period times of subjects. These sleep period times were assessed by Griefahn in the original analysis¹.

Subjects

In the study 376 subjects participated: 188 subjects primarily exposed to road traffic noise, the other 188 subjects primarily exposed to railway traffic noise (from trains). Of the 376 subjects 185 were male, 187 were female, and from 4 subjects gender was not classified. Table 1.1 and figure 1.1 give the cumulative distribution of age of subjects, for road and railway noise separately.

Percentage	Road traffic		Railway traffic
Missing number		11	11
5		Age	Age
0		18	18
10		24	24
20		28	27
30		30	32
40		34	35
50		38	37
60		42	39
70		47	42
80		52	46
90		56	54
100		66	66

 Table 1.1
 Cumulative distribution of age of subjects exposed to road or railway traffic noise. Age in years

Figure 1.1 Cumulative distribution of age of subjects exposed to road or railway traffic noise

The table and figure shows that a smaller percentage of subjects exposed to railway traffic than exposed to road traffic are 50 years and over.

The total number of subject nights with information about motility and noise exposure is 1581 (84% of all possible subject nights) for railway traffic noise, and 1710 (91%) for road traffic noise.

Actimetry

Motility has been recorded in 30-s intervals. In the analyses two binary motility measures will be used: motility (m) and onset of motility (k). If motility is above threshold in a 30-s interval: m = 1, otherwise m=0. If motility above threshold starts to occur during a 30-s interval: k = 1, otherwise k = 0.

Noise measurements and noise metrics used in the analyses

Noise measurements were performed outside in the vicinity of a noise source during each of the 10 study nights at a location, and indoors in the bedrooms of subjects during one of these 10 study nights. The noise measurements consisted of 1-s or 2-s equivalent

sound levels. From a comparison of the outdoor 1-s and 2-s equivalent sound levels and the corresponding indoor equivalent sound levels, Möhler assessed a relationship between out- and indoor 1-s and 2-s equivalent sound levels, for 12 combinations of position and type of bedroom window(s). In the model, the differences between outdoor and indoor 1-s or 2-s values range from 8 dB(A) (windows wide open) to 35 dB(A) (double windows fully closed). For the initial analyses, Möhler estimated all indoor equivalent 1-s and 2-s sound levels from the outdoor equivalent sound levels by using the relationship and the position and type of bedroom window during the night.

For the present analyses, the equivalent sound levels over 1 or 2 s have been grouped in 30-s intervals and from the equivalent sound levels over 1 or 2 s, equivalent sound levels over 30-s intervals have been calculated. The outdoor equivalent sound level during a 30-s interval is indicated by Leq_o, the indoor equivalent sound level by Leq_i.

Outdoor noise levels have been measured from 35 dB(A). The calculated lowest Leq_o values are therefore 35 dB(A), but a fraction of these 35 dB(A) values would in reality have been lower.

For each 1 or 2 s interval Möhler indicated whether the noise source was present outside at the location or not. From these observations we determined whether during a 30-s interval the noise was present for at least one interval of 1 or 2 s or not. If so, the 30-s interval was marked by bron=1, if not by bron=0.

A noise event starts in a 30-s interval if bron=1 for that interval and bron=0 for the preceding 30-s interval. The 30-s interval during which a noise event starts is marked by start_br=1. The first interval after a noise event has ended is specified by bron=0 for that interval and bron=1 for the preceding interval. The duration of a noise event is defined as the difference in time (in s) between the start of the first interval after a noise event has ended and the start of the 30-s interval with start_br=1.

Table 1.2 gives information about the number and duration of road traffic noise events and table 1.3 about railway traffic noise events. The number of 30-s intervals without road or railway noise (marked by bron=0) is also included.

The tables show that the total number of 30-s intervals during sleep of the 188 subjects exposed to road traffic noise is about 9% larger than those of the 188 subjects exposed to railway traffic noise. The railway traffic data concern 1581 subject nights, and the road traffic data 1710 subject nights, the average number of 30-s intervals during sleep of the railway traffic noise exposed subjects is therefore 787, and of the road traffic noise exposed subjects 791. The average duration of the sleep periods is therefore about the same.

For road traffic noise, the percentage of 30-s intervals with road traffic noise is 53%, for railway traffic noise 17%.

A substantial fraction of the road traffic noise events are more than one hour long: the total number of 30-s intervals within these long duration events is 125 653 (18% of all 30-s intervals with road traffic noise). Only 46 railway noise events are longer than 6 minutes (more than 12 30-s intervals).

.

number of 30-s intervals in an event	number of events	total number of 30-s intervals
1	48115	48115
2	62577	125154
3	23599	70797
4	15298	61192
5	8064	40320
6	5531	33186
7	3504	24528
8	2219	17752
9	1813	16317
10	1270	12700
11	978	10758
12	688	8256
13	640	8320
14	506	7084
15	376	5640
16 - 30 (0.25 - 0.5 hours)	2295	47282
31 - 60 (0.5 - 1 hour)	1135	46537
61 - 90 (1 - 1.5 hours)	391	29287
91 – 120 (1.5 - 2 hours)	218	22734
121 – 180 (2 - 3 hours)	196	28538
181 – 240 (3 - 4 hours)	109	22387
> 240 (> 4 hours)	79	22707
All events	179601	709591
Number of 30-s intervals without noise		643056
Total number of 30-s intervals		1352647

Table 1.2Number and duration of road traffic noise events, and number of 30-s
intervals without road traffic noise

Table 1.3Number and duration of railway traffic noise events, and number of 30-s
intervals without railway traffic noise

number of 30-s intervals in an event	number of events	total number of 30-s intervals
1	2818	2818
2	22447	44894
3	24497	73491
4	11953	47812
5	3294	16470
6	1903	11418
7	1183	8281
8	315	2520
9	192	1728
10	38	380
11	26	286
12	0	0
13	5	65
14	16	224
15	23	345
16	2	32
All events	68712	210764
Number of 30-s intervals without noise		1032837
Total number of 30-s intervals		1243601

2 INSTANTANEOUS EFFECTS

2.1 Introduction

The first chapter showed that there is a substantial difference between the road and railway traffic noise data with respect to number and duration of events. None of the railway noise events in the study is longer than 8 minutes, and a large part of the road noise events are substantial longer. Therefore, the analysis of the road traffic noise data is different from the analysis of the railway traffic data. In section 2.2 the data on railway traffic noise are analysed and in section 2.3 the data on road traffic noise.

2.2 Railway noise

2.2.1 General analysis

In this analysis railway noise is considered to consist of separate noise events. For each event, the number of 30-s intervals with k=1 and the number of 30-s intervals with m=1 was calculated. Table 2.1 shows the number of events with a specified number of 30-s intervals with onset of motility (k=1) and motility (m=1) during the event. The table shows that during 59205 events motility does not start to occur, during 9056 events onset of motility occurs once, and during 451 events two or more times. With respect to motility, during 2821 events motility occurs during two or more 30-s intervals.

		k			m	
Number of 30-s inter- vals with k=1 or m=1	Number of events	Percentage of events	Cumulative percentage of events	Number of events	Percentage of events	Cumulative percentage of events
0	59205	86.2	86.2	57862	84	84
1	9056	13.2	99.3	8029	12	96
2	436	0.63	99.98	2270	3	99
3	14	0.02	100.00	421	0.61	99.81
4				93	0.14	99.95
5				19	0.03	99.97
6	1	0.00	100.00	9	0.01	99.99
7				7	0.01	100.00
8				1	0.00	100.00
9				1	0.00	100.00
Total	68712	100		68712	100	

 Table 2.1
 Information about the number of 30-s intervals with onset of motility (k=1) and with motility (m=1) during railway traffic noise events.

To be able to perform a logistic regression analysis, we defined two binary effect measures (k_bin and m_bin) during an event, based on the number of 30-s intervals during an event with (onset of) motility: k_bin=1 if the number of 30-s intervals with k=1 is at least 1, and k_bin=0 if the number of 30-s intervals with k=1 is 0; m_bin=1 if the number of 30-s intervals with m=1 is at least 1, and $m_bin=0$ if the number of 30-s intervals with m=1 is 0.

In the final models k_bin and m_bin are dependent variables, and SEL_o (outdoor SEL value of an event), x (number of the 30-s interval after sleep onset during which an event started), n_30s (number of 30-s intervals in an event), and a dummy for each subject. The logistic regression analyses with SEL_I, Lmax_I or Lmax_o as one of the independent variables instead of SEL_o did not produce a statistical significant coefficients of the noise metrics. The final formula of the model used is as follows: Probit (z_bin) = constant + b1*SEL_o + b2*x + b3*n_30s + b4*d1 + + b191*d188 with:

- z equal to k or m
- probit (z_bin) = lg [prob z_bin/(1-prob z_bin)] with prob z: probability of z
 sum b4 to b191 equal to 0.

The coefficients b1 to b3 are statistically significant for k and m (P < 0.05).

A logistic regression analysis has also been performed with k and m of the 30-s intervals without railway noise. The final formula of the model used is as follows: Probit (z) = constant + b1*x + b2*d1 + ... + b189*d188

with:

- z equal to k or m
- probit (z) = $\lg [\operatorname{prob} z/(1 \operatorname{-prob} z)]$ with prob z: probability of z
- sum b2 to b189 equal to 0.
- The coefficient b1 is statistically significant for k and m (P < 0.05).

The results of the logistic regression analyses with k_bin as dependent variable are given in figure 2.1 for noise events occurring within one or two 30-s intervals and in figure 2.2 for noise events lasting 90 or 120 s. Details about the figures are given in the section after figure 2.1.

Motility and road and railway noise

7

Additional information about figure 2.1 and 2.2:

- For 30-s intervals without railway noise, Leq o varies from 35 dB(A) (lowest measuring value) to 45 dB(A). For an interval of 30-s SEL o is 14.8 dB(A) higher than Leq o. Therefore the calculated SEL o values in the absence of railway noise vary from 50 to 60 dB(A), but in practice it is reasonable to assume that also SEL o values lower than 50 dB(A) have occurred. Therefore the range of SEL_o values in 30-s intervals without railway noise has been taken as from 40 to 60 dB(A). The data in the figure are indicated by x bg_30s, with x 0 to 800. x=0 is the start of sleep period, x=800 is 400 minutes after sleep onset (6.7 hours after sleep onset)
- From the probability of onset of motility during 30-s intervals without railway noise, the probability of onset of motility during 60-s, 90-s and 120-s intervals without railway noise have been calculated. The data in the figures are indicated by x bg 60s, x bg 90s, and x bg 120s
- The curves for events with a duration of 30 s have been obtained by substituting n 30s=1 in the logistic regression equation, for events of 60, 90, or 120 s n 30s has been taken as 2, 3, or 4
- The values of SEL o for railway noise events with a duration of one 30-s interval range from 60 to 90 dB(A) (range from 10 to 90% of the values), and for longer events from 70 to 100 dB(A)
- For an event with duration of 30 or 60 s, the number of 30-s intervals with k=1is by definition equal to 0 or 1. By using the formula for probability of onset of motility for 90-s and 120-s intervals, this probability is underestimated since at these intervals the number of 30-s intervals with onset of motility may be 2 in-

TNO Inro report

Motility and road and railway noise

stead of 1 or 0, which is assumed when k is taken as a binary outcome. The frequency of the number of 30-s intervals with onset of motility for 90-s duration events is given in table 2.2.

Table 2.2Information about the sum of k during railway traffic noise events of 90-s
duration.

Number of 30-s intervals with onset of motility	Frequency
0	21471
1	2672
2	354
Total	24497

This implies that probability of onset of motility for 90-s intervals is a factor 1.12 (equal to (2672+2*354)/(2672+354)) times higher than obtained from the logistic regression analysis. This factor has been taken into account in the construction of figure 2.3 for onset of probability of motility at 90-s event intervals. For events with 120-s durations the factor is 1.25.

The results of the logistic regression analyses with m_bin as dependent variable are given in figures 2.3 and 2.4. The information about figures 2.1 and 2.2 also pertain to figures 2.3 and 2.4.

TNO Inro report Motility and road and railway traffic noise Motility and road and railway noise

By using the formula for probability of motility for 60-s, 90-s or 120-s intervals, this probability is underestimated since at these intervals during noise events the number of 30-s intervals with motility may be 2, 3 or 4 instead of 1 or 0, which is assumed when m is taken as a binary outcome. The frequency of the number of 30-s intervals with motility for 60-s duration events is given in table 2.3.

Table 2.3 Information about the sum of m during railway traffic noise events of 60-s duration.

Number of 30-s intervals with motility	Frequency
0	19849
1	2133
2	465
Total	22447

This implies that probability of motility for 60-s intervals is a factor 1.18 (equal to (2133+2*465)/(2133+465)) times higher than obtained from the logistic regression analysis. This factor has been taken into account in the construction of figure 2.3 for probability of m at 60-s event intervals. For 90-s and 120-s event durations the factors are equal to 1.54 and 1.81 respectively.

9

2.2.2 Individual differences in effect measures of motility

For each of the four models (k_bin and m_bin during railway noise events and in the periods without railway noise) presented in section 2.2, the value of the coefficient of the dummy of each of the 188 subjects is available. These coefficients are here considered as new variables. They are indicated by

- k_noise: the coefficient of a subject dummy variable in the logistic regression analysis based on events, with k_bin as dependent variable
- m_noise: the coefficient of a subject dummy variable in the logistic regression analysis based on events, with m_bin as dependent variable
- k_bg: the coefficient of a subject dummy variable in the logistic regression analysis based on 30-s intervals without railway noise, with k_bin as dependent variable
- m_bg: the coefficient of a subject dummy variable in the logistic regression analysis based on 30-s intervals without railway noise, with m_bin as dependent variable

Each of the four variables has been constructed such that the average of the 188 individual values is 0. The values of the variables can be interpreted as follows. A value of a variable of a subject (e.g. k_noise) is proportional to the relative value of an effect measure of the subject, since 10 to the force of this value is the factor with which the general function prob_x/(1-prob_x) has to be multiplied to obtain prob_x/(1-prob_x) of the subject. If the value is 0, the probability of (onset of) motility is about equal to average (onset of) motility of the subjects. If the value is positive larger than average (onset of) motility of the subjects. Therefore, the lower the coefficient, the smaller are on average the values of the effect measure of a subject. E.g. if the value is +0.5 or -0.5, the effect measure of a subject. E.g. if the value is +0.5 or -0.5, the effect measure of a subject.

ure is 1.52, respectively 0.48 times as large as the average values of the effect measure of all subjects.

The correlation between the four variables, based on the 188 individual values, is given in table 2.4.

Table 2.4Correlation coefficients for the coefficients of the subject dummies ob-
tained from logistic regression analysis with k_bin and m_bin during
railway traffic noise events (k_noise and m_noise) and in the absence of
railway noise (k_bg and m_bg) as dependent variables.

	k_noise	k_bg	m_noise	m_bg
k_noise		0.77	0.98	0.73
k_bg	0.7	7	0.80	0.93
noise	0.9	0.80		0.80
m_bg	0.7	0.93	0.80	

There is apparently a very high correlation between k_noise and m_noise (correlation coefficient of 0.98), and a somewhat less but still high correlation between k_bg and m_bg (correlation coefficient 0.93). This is not surprising, since probability of k=1 and probability of m=1 at 30-s intervals are closely related. The correlation coefficients between k_noise and k_bg and between m_noise and m_bg are 0.77 and 0.80 respectively. This implies that subjects with higher (onset of) motility during railway noise events also show higher (onset of) motility in the absence of railway noise.

In each of the graphs in figure 2.5 two variables have been plotted against each other.

Figure 2.5 Four graphs with the individual values of k_noise, m_noise, k_bg, and m_bg plotted against another individual value.

TNO Inro report Motility and road and railway traffic noise Motility and road and railway noise

Whether k_noise, m_noise, k_bg, and m_bg depend upon age (and/or age*age) and gender has been considered in linear regression analyses, with each of these variables as dependent variable and age (and age*age) and in separate analyses gender as independent variables. None of the four variables is statistical significant related to age (or age*age, or a combination of age and age*age). Gender has an important effect upon k_noise and m_noise, as will be shown hereafter.

Regression analyses with Lo or Li, and gender as independent variables, and k_noise and m_noise as dependent variables, showed that k_noise and m_noise are both related to Lo (outdoor equivalent sound level during sleep due to railway noise) and k_noise also to Li. In the cases of k_noise and Lo and of m_noise and Lo, gender is an effectmodifier. The results are given in figure 2.6.

The figure shows that k_noise and m_noise are larger for men than for women, and decrease with increasing Lo (and in one case with Li). This is in line with the observations on aircraft noise.

Regression analyses with Lo or Li, and gender as independent variables, and k_bg and m_bg as dependent variables, showed no statistical significant relationships with Lo or Li. Also with respect to k_bg and m_bg, the coefficients of female subjects are on average smaller than those of male subjects

2.2.3 Instantaneous probability of (onset of) motility and average values during sleep

The total number of 30-s intervals with onset of motility due to railway noise exposure has been estimated from the results underlying figure 2.2. This number is about 830 for all subject nights. The number of 30-s intervals with onset of motility of all subjects nights is equal to 59294 during 1243601 30-s intervals, which implies an average probability of onset of motility during a 30-s interval of 0.0477. The contribution of railway noise to this average value is 0.0007, i.e a change in the last digit.

The total number of 30-s intervals with motility due to railway noise exposure has been estimated as 885 for all subject nights. The number of 30-s intervals with onset of motility of all subjects nights is equal to 86060 during 1243601 30-s intervals, which implies an average probability of motility of 0 .0692. The contribution of railway noise to this average value is 0.0007, i.e a change in the last digit.

Therefore, the instantaneous increase in (onset of) motility due to railway noise exposure contributes only slightly, and statistically not significant, to the average (onset of) motility during sleep.

2.3 Road traffic noise

2.3.1 General analyses

For each road noise event the number of 30-s intervals with (onset of) motility was calculated. Table 2.5 gives the number of events having a specified number of 30-s intervals with (onset of) motility. The table shows that during 155656 events motility does not start to occur and that during 23945 events onset of motility occurs at least once. For motility these numbers are 152314 and 27287 respectively. In about 200 and 400 events onset of motility and motility occurs ten times or more. Taking into account that for a considerable number of events (onset of) motility does occur more than once, it does not seem to be appropriate to define binary values of k and of m during an event, as we did with railway noise events.

		k			m	
Number of 30-s	Number of	Percent-	Cumulative	Number of	Percentage	Cumulative
intervals with	events	age of	percentage	events	of events	percentage
(onset of) motil-		events	of events			of events
ity						
0	155656	86,67	86,67	152314	84,81	84,81
1	20566	11,45	98,12	18991	10,57	95,38
2	1909	1,06	99,18	5175	2,88	98,26
3	514	0,29	99,47	1362	0,76	99,02
4	273	0,15	99,62	605	0,34	99,36
5	157	0,09	99,71	315	0,18	99,53
6	113	0,06	99,77	171	0,10	99,63
7	88	0,05	99,82	112	0,06	99,69
8	64	0,04	99,85	85	0,05	99,74
9	59	0,03	99,89	79	0,04	99,78
10 through 19	169	0,09	99,98	295	0,16	99,95
20 through 29	28	0,02	100,00	63	0,04	99,98
30 through 49	5	0,00	100,00	28	0,02	100,00
50 and over				6	0,00	100,00
Total	179601			179601		

Table 2.5Information about the number of 30-s intervals with (onset of) motility
during road traffic noise events.

Other methods than logistic regression analysis to analyse the road traffic data are:

- By considering road traffic noise as noise events, by considering the 30-s adjacent 30-s intervals during which road traffic noise occurs as an entity. Aggregated effect measures for these events could be the number of 30-s intervals with (onset of) motility, and the average probability of (onset of) motility for a 30-s interval of an event. The statistical method to specify exposure-effect relationships would be a regression analysis by using the method of least squares
- By considering the 30-s intervals during which road traffic noise occurs as separate data. The statistical method to be used would be a logistic regression analysis.

Only the second type of analysis showed one statistical significant meaningful result. This result relates to the probability of motility as a function of Leq_o. Other models (probability of motility as a function of Leq_i, probability of onset of motility as a function of Leq_o and Leq_i) did not show that these probabilities increase statistical significant with the equivalent sound level during a 30-s interval. The result of the analysis is given in figure 2.7. In the logistic regression model, probability of motility has been taken as dependent variable, and Leq_o, x (number of 30-s interval after sleep onset), and start_br (a dummy with value equal to 1 if the 30-s interval is the first 30-s interval of a noise event) as independent variables. Also for each subject a dummy variable has been included in the model.

A logistic regression analysis has also been performed on the basis of the 30-s intervals without road traffic noise, with x as independent variable, and in addition the number of the 30-s interval of the consecutive 30-s intervals during which road traffic noise was absent (n_bg). Also for each subject a dummy variable has been included in the model. n_bg has been included in the model because it was assumed that the longer the duration of absence of road traffic noise, i.e. the longer the 'quiet period', the lower the probability of motility. The analysis showed the reverse. The longer the duration of

'quiet' between road traffic noise events, the higher the probability of motility, provided x (time since onset of sleep) and subject was taken into account. Results of the analysis are given in figure 2.8. Additional information about the periods without road traffic noise is given in table 2.6.

Figure 2.7 Probability of motility as a function of Leq_o of 30-s intervals with road traffic noise. The number of the 30-s interval (x) during sleep varies from 0 to 800. Curves indicated by start_br relate to the first 30-s interval of a road traffic noise event. The figure also includes probability of motility in a 30-s interval without road traffic noise for the mean duration of the periods without road traffic noise of 1.8 minutes; these values are indicated by x_bg.

Additional information about figure 2.7:

For 30-s intervals without road traffic noise, Leq_o varies from 38 dB(A) to 40 dB(A) (10 to 90% values). For 30-s intervals with road traffic noise, Leq_o varies from 41 to 63 (10 to 90% values), with a minimum of 38 dB(A) and a maximum of 91 dB(A).

.

Table 2.6	Frequency and (cumulative) percentage of number of consecutive 30-s
	intervals without road traffic noise (left side of the table) and the fre-
	quency and (cumulative) distribution of the number of 30-s intervals in-
	cluded in the intervals without road traffic noise

	intervals without road traffic noise			30-s intervals without road traffic noise		
Number of con-						
secutive 30-s						
intervals with-			cumulative		cumulative	cumulative
out road traffic	number	percentage	percentage	number	number	percentage
1	62723	35,12	35,12	62723	62723	9,75
2	35394	19,82	54,94	70788	133511	20,76
3	22163	12,41	67,35	66489	200000	31,10
4	15504	8,68	76,03	62016	262016	40,75
5	10437	5,84	81,87	52185	314201	48,86
6	6898	3,86	85,73	41388	355589	55,30
7	5326	2,98	88,72	37282	392871	61,09
8	4353	2,44	91,15	34824	427695	66,51
9	3305	1,85	93,00	29745	457440	71,14
10	2918	1,63	94,64	29180	486620	75,67
11 through 20	8243	4,62	99,25	112985	599605	93,24
21 through 40	1228	0,69	99,94	32300	631905	98,27
41 through 80	62	0,03	99,98	3130	635035	98,75
81 through 160	17	0,01	99,99	1997	637032	99,06
over 160	25	0,01	100,00	6024	643056	100,00

Table 2.6 shows that 94.6% of the intervals without road traffic noise last at most 300 s. These intervals include 75.7% of all 30-s intervals. The mean duration of intervals without road traffic noise is 3.6 30-s intervals (1.8 minutes).

2.3.2 Individual differences in motility

The analysis in section 2.3.1 provides for two sets of coefficients of dummies of the 188 subjects. These two variables are indicated by:

- m_noise: the coefficient of a subject dummy variable in the regression analysis based on 30-s intervals with road traffic noise
- m_bg: the coefficient of a subject dummy variable in the regression analysis based on 30-s intervals without road traffic noise.

The two variables have been constructed such that the sum of the 188 individual values is 0. It has been explained in section 2.2.2 that the lower the value of m_noise or m_bg of a subject, the smaller the probability of motility of that subject is.

The correlation between the two coefficients is 0.97. In figure 2.9 the two values of the 188 subjects have been plotted against each other.

Figure 2.9 m_noise of a subject as a function of m_bg of the subject.

Whether m_noise and m_bg are dependent upon age (and age*age) and gender has been considered in a linear regression analysis, with m_noise and m_bg separately as dependent variable, and age (and age*age) and in separate analyses gender as independent variables. The coefficients are related to gender and age (and age*age). Regression analyses with Lo or Li, and the coefficients of the dummies as dependent variables, showed that the coefficients are both related to Lo (outdoor equivalent sound level during sleep due to road traffic noise). The final result, in which Lo, age (and age*age), and gender are independent variables, is given in figure 2.10.

TNO Inro report Motility and road and railway traffic noise Motility and road and railway noise

m_noise and m_bg are larger for men than for women. This is in agreement with the results about railway noise in this report and the results from the aircraft noise study. Also, m_noise and m_bg are functions of age (and age*age) and minimal at an age of 40 years. For railway noise there appeared to be no dependency on age of the probability of (onset of) motility. In the aircraft noise study, noise-induced increase in probability of (onset of) motility and probability of (onset of) probability showed the same dependency of age and age*age as the present observations about road traffic noise.

Apparently, m_noise and m_bg increase with Lo. For railway noise it turned out that m_noise decreases with Lo (in line with the observations for aircraft noise) and that m_bg is independent of Lo. For aircraft noise it has been shown that m_bg is an increasing function of Li.

2.4 Discussion

3 MOTILITY DURING A SLEEP PERIOD TIME

3.1 Introduction

In this chapter the results of the analyses based on the average values of (onset of) motility over a sleep period time are presented. In section 3.2 the results for road traffic noise and in section 3.3 the results for railway traffic noise are given.

Multi-variate linear regression analyses according to the method of least squares have been carried out. The following road and railway noise exposure variables have been considered:

- Lispt: indoor equivalent sound level during sleep period time of a subject
- Lospt; outdoor equivalent sound level during sleep period time of a subject.

The following effect variables have been used in the analyses:

- mspt: average value of probability of motility in a 30-s interval during a sleep period time
- kspt: average value of probability of onset of motility during a sleep period time.

It has been considered whether age (and age*age) and gender have an effect on the relationships.

The equation of the relationship between an effect variable y (mspt or kspt), a road or railway noise exposure metric L (Lispt or Lospt) and age, age*age, and dummy for gender is given by:

y = constant + b1*L + b2*age + b3*age*age + b4*dummy_gender

If b3 is negative, the function b2*age + b3*age*age has a maximum, if b3 is positive, this function has a minimum.

The analyses consisted of the following steps:

- 1. Each of the effect variables mspt or kspt, has been used in a linear regression analysis with Lispt and Lospt as independent variables. For the relationship obtained it has been considered whether the coefficient of the effect variable was statistical significant (P < 0.05) and in accordance with the model in which mspt or kspt increase with increasing noise exposure
- 2. For statistical significant relationships age, age*age and gender have been added as independent variables. The final results include age, age*age and gender if they have a statistical significant coefficient.

3.2 Road traffic noise

The results are given in the figures 3.1 to 3.4. For each of the four relationships, age, age*age, and gender have statistical significant coefficients.

TNO Inro report Motility and road and railway traffic noise Motility and road and railway noise

Figure 3.1 mspt as a function of Lispt of road traffic noise, for male and female subjects, aged 18, 66, and 42 years (the age at which mspt is smallest).

21

TNO Inro report

Motility and road and railway noise

3.3 Railway traffic noise

For none of the four relationships the coefficient of the railway noise metric is statistically significant.

3.4 Comparison with aircraft noise

In the figures 3.5 and 3.6 the average values of the probability of (onset of) motility in a 30-s interval (mspt and kspt) obtained for aircraft noise exposure during sleep are given.

TNO Inro report Motility and road and railway traffic noise Motility and road and railway noise

Figure 3.5 Average probability of motility (m) during 30-s intervals of a sleep period time as a function of Lispt of road traffic noise (upper figure) and Lispt of aircraft noise (lower figure) for 18 and 66 years, and the age at which prob_m is minimal.

TNO Inro report

Motility and road and railway noise

Figure 3.6 Average probability of motility (m) during 30-s intervals of a sleep period time as a function of Lispt of road traffic noise (upper figure) and Lispt of aircraft noise (lower figure) for 18 and 66 years, and the age at which m is minimal.

3.5 Discussion and conclusion

The results will be discussed in chapter 5.

24

4 EFFECTS AGGREGATED OVER ALL STUDY NIGHTS

4.1 Introduction

In this chapter the results of the analyses based on the average values of (onset of) motility over all sleep period times are presented. In section 4.2 the results for road traffic noise and in section 4.3 the results for railway traffic noise are given. In section 4.4 the results for road traffic noise and rail traffic noise are compared and a comparison is given with the results for aircraft noise.

Multi-variate linear regression analyses according to the method of least squares have been carried out.

The following road and railway noise exposure variables have been considered:

- Li: indoor equivalent sound level during all sleep period times of a subject
- Lo: outdoor equivalent sound level during all sleep period times of a subject.

The following effect variables have been used in the analyses:

- prob_m during spt: average probability of motility in a 30-s interval during all sleep period times
- prob_k during spt: average probability of onset of motility in a 30-s interval during all sleep period times
- prob_m during noise: average probability of motility in the 30-s intervals with road traffic (or railway) noise during all sleep period times
- prob_k during noise: average probability of onset of motility in the 30-s intervals with road traffic (or railway) noise during all sleep period times
- prob_m during background: average probability of motility in the 30-s intervals without road traffic (or railway) noise during all sleep period times
- prob_k during background: average probability of onset of motility in the 30-s intervals without road traffic (or railway) noise during all sleep period times.

For age (and age*age) and gender it has been considered whether they have an effect on the relationships.

The equation of the relationship between an effect variable y, a road or railway noise exposure metric L (Li or Lo) and the possible determinants age, age*age, and dummy for gender is given by:

y = constant + b1*L + b2*age + b3*age*age + b4*dummy_gender

If b3 is negative, the function b2*age + b3*age*age has a maximum, if b3 is positive, this function has a minimum.

The analyses consisted of the following steps:

 Each of the six effect variables has been used as dependent variable in a linear regression analysis with Li and Lo as independent variables. For the relationship obtained it has been considered whether the coefficient of the effect vari-

able was statistical significant (P < 0.05) and in accordance with the model in which prob_m or prob_k increase with increasing noise exposure

2. For statistical significant relationships age, age*age and gender have been added as independent variables. The final results include age, age*age and gender if they have a statistical significant coefficient.

4.2 Road traffic noise

The three dependent variables based on motility are statistically significant related to Li and Lo. Age, age*age, and gender have an effect on the relationships. The three dependent variables based on onset of motility are statistically significant related to Lo, but not to Li. Age, age*age, and gender have an effect on the relationships with Lo. The results are given in table 4.1 and illustrated in the figures 4.1 to 4.8. In figure 4.9 and 4.10 the results with Lo as independent variable and prob_m or prob_k for 30-s intervals during spt, noise, and background are given. It turns out that prob_m and prob_k during the 30-s intervals without road traffic noise are larger than during the 30-s intervals with road traffic noise.

Table 4.1Coefficients of the independent variables in the regression models with the
average value of m and k during all 30-s intervals during sleep, during the
30-s intervals with road traffic noise, and during the 30-s intervals without
road traffic noise. Only the 9 equations (out of 12) with statistical signifi-
cant coefficients of Li or Lo are shown.

	coefficient		coefficient		
m during sleep		m during 30-s intervals with noise		m during 30-s intervals without noise	
Constant	0.09234	Constant	0.101	Constant	0.07611
Lo	0.000651	Lo	0.000544	Lo	0.000886
age	-0.00327	age	-0.0034	age	-0.00316
age*age	0.0000396	age*age	0.0000406	age*age	0.0000394
gender	-0.00876	gender	-0.00834	gender	-0.00985
m during sleep		m during 30-s inte	s intervals with noise m during 30-s intervals with		rvals without noise
Constant	0.121	Constant	0.132	Constant	0.11
Li	0.000379	Li	0.000812	Li	0.000633
age	-0.00341	age	-0.00343	age	-0.00332
age*age	0.0000408	age*age	0.000410	age*age	0.0000407
gender	-0.00818	gender	-0.00792	gender	-0.0093
k during sleep		k during 30-s with	noise	k during 30-s intervals without noise	
Constant	0.06014	Constant	0.06391	Constant	0.05385
Lo	0.000298	Lo	0.000277	Lo	0.000349
age	-0.00158	age	-0.00172	age	-0.00142
age*age	0.0000188	age*age	0.0000203	age*age	0.0000171
gender	-0.00428	gender	-0.00405	gender	-0.00451

TNO Inro report *Motility and road and railway traffic noise Motility and road and railway noise*

Figure 4.4 Average probability of onset of motility during 30-s intervals of sleep period time as a function of outdoor equivalent sound level of road traffic noise during sleep period times (Lo) for 18 and 66 years, and the age at which prob_k is minimal. Figure refers to male subjects. For female subjects straight lines are somewhat lower (see table 4.1 and figure 4.2 for an example).

TNO Inro report *Motility and road and railway traffic noise Motility and road and railway noise*

Figure 4.5 Average probability of motility (m) during 30-s intervals with road traffic noise during sleep period times as a function of outdoor equivalent sound level of road traffic noise during sleep period times (Lo) for 18 and 66 years, and the age at which m is minimal. Figure refers to male subjects. For female subjects straight lines are somewhat lower (see table 4.1 and figure 4.2 for an example).

TNO Inro report

Motility and road and railway noise

Figure 4.7 Average probability of motility (m) during 30-s intervals without road traffic noise during sleep period times as a function of outdoor equivalent sound level of road traffic noise during sleep period times (Lo) for 18 and 66 years, and the age at which m is minimal. Figure refers to male subjects. For female subjects straight lines are somewhat lower (see table 4.1 and figure 4.2 for an example).

Figure 4.8 Average probability of onset of motilty during 30-s intervals without road traffic noise during sleep period times as a function of outdoor equivalent sound level of road traffic noise during sleep period times (Lo) for 18 and 66 years, and the age at which k is minimal. Figure refers to male subjects. For female subjects straight lines are somewhat lower (see table 4.1 and figure 4.2 for an example).

TNO Inro report *Motility and road and railway traffic noise Motility and road and railway noise*

Figure 4.9 Average probability of motility (m) during 30-s intervals during sleep period times (spt), during 30-s intervals with road traffic noise (road), and during 30-s intervals without road traffic noise (bg) as a function of outdoor equivalent sound level of road traffic noise during sleep period times (Lo) for 18 and 66 years, and the age at which m is minimal. Figure refers to male subjects. For female subjects straight lines are somewhat lower (see table 4.1 and figure 4.2 for an example).

Figure 4.10 Average probability of onset of motility (k) during 30-s intervals during sleep period times (spt), during 30-s intervals with road traffic noise (road), and during 30-s intervals without road traffic noise (bg) as a function of outdoor equivalent sound level of road traffic noise during sleep period times (Lo) for 18 and 66 years, and the age at which m is minimal. Figure refers to male subjects. For female subjects straight lines are somewhat lower (see table 4.1 and figure 4.2 for an example).

4.3 Railway traffic noise

None of the relationships between the dependent and independent variables given in section 4.1 have statistical significant coefficients of the railway noise variables. Also, prob_m and prob_k are independent of age. They are, however, dependent on gender.

4.4 Comparison road traffic noise and railway traffic noise

In the figures 4.11 and 4.12 prob_m and prob_k during all sleep period times for road traffic noise and railway traffic noise are given.

Figure 4.11 Probability of motility during 30-s intervals during sleep period times for male and female subjects as a function of outdoor equivalent sound level of road traffic noise during sleep period times (Lo) for 18 and 66 years, and the age at which probability of motility is minimal. Also given probability of motility for the subjects exposed to railway noise.

Figure 4.12 Probability of onset of motility during 30-s intervals during all sleep period times for male and female subjects as a function of outdoor equivalent sound level of road traffic noise during sleep period times (Lo) for 18 and 66 years, and the age at which probability of motility is minimal. Also given probability of onset of motility for the subjects exposed to railway noise (m = male, f= female).

TNO Inro report Motility and road and railway traffic noise Motility and road and railway noise

•

33

•

5 DISCUSSION AND CONCLUSION

Ergens:

In figure 4.9 and 4.10 the results with Lo as independent variable and prob_m or prob_k for 30-s intervals during spt, noise, and background are given. It turns out that prob_m and prob_k during the 30-s intervals without road traffic noise are larger than during the 30-s intervals with road traffic noise. Since prob_m and prob_k are highly dependent on the time after sleep onset, this result can be explained if the 30-s intervals without noise are on average later after sleep onset than the 30-s intervals with road traffic noise.

VARIABLES USED IN THE ANALYSES 6

Label of variable Description variable General respnr Number of subject General ort Location General night Number of night of participation (1 - 10)	
General respnr Number of subject General ort Location General night Number of night of participation (1 = 10)	
General ort Location General night Number of night of participation (1 – 10)	
General night Number of night of participation $(1 - 10)$	
Seneral ingit (r = 10)	
General spt Sleep period time (in s)	
General sleep_start Time at which a subject falls asleep	
General source Source=1 railway traffic, source=0 road traffic	
Instantaneous x Number of 30-s interval after sleep onset time	
Instantaneous m Motility (dichotomy: m=1 motility, m=0 no motility)	
Instantaneous k Onset motility (dichotomy k=1 if m=1 and m=0 in prece otherwise)	ding interval; k=0
sleep period time mspt Mean value of m during sleep period time	
sleep period time kspt Mean value of k during sleep period time	
sleep period time fenster Position of bedroom window during sleep period time	
questionnaire gender Gender (0 male, 1 female)	
questionnaire age Age in years	
instantaneous Leq2s_i Indoor equivalent sound level over a 2-s interval (in dB(.	A))
instantaneous Leq2s_o Outdoor equivalent sound level over a 2s interval (in dB	(A))
instantaneous Leq_i Indoor equivalent sound level over a 30-s interval (in dE	B(A))
instantaneous Leq_o outdoor equivalent sound level over a 30-s interval (in d	lB(A))
instantaneous Lmax_i Maximum value of Leq2s_i of a 30-s interval, assessed i	ndoors (in dB(A))
instantaneous Lmax_o Maximum value of Leq2s of a 30-s interval, assessed out	tdoors (in dB(A))
SEL Equivalent sound level over a time period, normalised to	• I s (in dB(A))
instantaneous SEL_i SEL of a 30-s interval, assessed indoors (in dB(A))	
instantaneous SEL_o SEL of a 30-s interval, assessed outdoors (in dB(A))	
x Nmber of 30-s interval after sleep onset	
instantaneous bron_2s Dichotome for a 2-s interval: value=0 if source is not pre source is present	esent, value=1 if
instantaneous bron Fraction of 2-s intervals within a 30-s interval with bron	_2s=1
instantaneous Start br Dichotome for a 30-s interval: value=1 if bron=0 in prec	eding 30-s interval
and bron=1 in 30-s interval, value=0 for all other 30-s in	tervals
sleep period time Lispt Indoor equivalent sound level during a sleep period time	calculated from all
Leq_i values of 30-s intervals with bron>0 and duration	of sleep period time
(in dB(A))	
sleep period time Lospt Outdoor equivalent sound level during a sleep period tim	ne calculated from all
Leq o values of 30-s intervals with bron>0 and duration	of sleep period time
(in dB(A))	••
location interval Li Indoor equivalent sound level due to a noise source calcu	ulated from all Lispt
period values obtained for a subject, taking into account the dur	ations of sleep period
times of the subject (in dB(A))	
location interval Lo Outdoor equivalent sound level due to a noise source cal	culated from all Lospt
period values obtained for a subject, taking into account the dur	ations of sleep period
times of the subject (in dB(A))	

Table 5.1

•

4

_

List of References

Reference List

- Griefahn, B, Möhler, U, Schümer R. (Hrsg). Vergleichende Untersuchung über die Lärmwirkung bei Strassen- und Schienenverkehr (Hauptbericht-Textteil, Kurzfassung, Abbildungen und Tabellen, Dokumentationsanhang). München: SGS; 1999.
- 2 Griefahn B, Schuemer-Kohrs A, Schuemer R, Moehler U, Mehnert P. Physiological, subjective, and behavioural responses during sleep to noise from rail and road traffic. Noise Health 2000; 3(9):59-71.
- 3 Möhler U, Liepert M, Schümer R.(Hrsg), Griefahn B. Differences between Railway and Road Traffic Noise. J Sound Vib 2000; 231(3):853-864.
- 4 Passchier-Vermeer, W, Steenbekkers, JHM, Vos, H. Sleep disturbance and aircraft noise; questionnaire, locations and diaries. Leiden: TNO-PG; 2001; Report nr 2001.205.
- 5 Passchier-Vermeer,W, Steenbekkers,JHM, Waterreus,MJAE, Dam,PJCM. Sleep disturbance and aircraft noise; tables, figures, pictures. Leiden: TNO-PG; 2001; Report nr 2001.206.
- 6 Passchier-Vermeer, W, Vos, H, Steenbekkers, JHM, van der Ploeg, FD, Groothuis-Oudshoorn, K. Sleep disturbance and aircraft noise. Exposure-effect relationships. Leiden: TNO-PG; 2002; Report nr 2002.027.
- 7 Passchier-Vermeer, W, Miedema, HME, Vos, H, Steenbekkers, JHM, Houthuijs, D, Reijneveld, SA. Slaapverstoring en vliegtuiggeluid. Delft: TNO-Inro; 2002; TNO Report nr 2002.028, RIVM report nr 441520019, 2002.