
LIME: a future-proof programming model for
multi-cores

Pjotr Kourzanov, Orlando Moreira, and Henk Sips

NXP Semiconductors Research, {Peter.Kourzanov,Orlando.Moreira}@nxp.com
Delft University of Technology, H.J.Sips@ewi.tudelft.nl

Abstract. The Less Is More (LIME) programming model addresses
known programmability, compositionality, predictability, and scalability
problems related to parallel programming in embedded systems of new as
well as legacy code in streaming applications. With LIME, the high-level
functional aspects of algorithm design and implementation are decoupled
from the low-level platform-specific mechanisms pertaining to communi-
cation and synchronization. The integration of both in the end-product is
assisted by a tool-chain that has complete access to the computations and
has compile-time knowledge of hardware-dependent performance aspects.
Rather than proposing intrusive modifications of a sequential language,
LIME postulates rules and restrictions on how to express algorithms us-
ing standard C and (de)compose them using a simple XML schema for
connecting components in a graph. In the paper, we describe the design
rationales behind LIME and discuss its features in detail. We outline the
LIME tool-chain, show how it interacts with analysis tools, and describe
how multi-core back-ends are constructed. We illustrate this by showing
a LIME implementation on a real-life parallel embedded platform for
Software-Defined Radio (SDR) and an implementation on a commodity
GPU platform.

Key words: multi- and many-cores, parallel, high-performance, embed-
ded, programming model, real-time, streaming and data-flow models

1 Introduction & Problem Statement

The world is experiencing the multi-core revolution [10], and it will not be long
before we enter the realm of many-cores. However, a definitive answer to the ques-
tion of programmability, compositionality, predictability and performance/watt
scalability of software running on such parallel hardware architectures is still
not in sight. The complexity of parallel hardware is aggravated by the apparent
and in many cases unneeded complexity in software, where layers upon layers at
times tremendously complicate the task of the system designer.

A future-proof Parallel Programming Model (PPM) has to support exploita-
tion of variable-grain parallelism - processor cores become ever simpler and di-
verse as their numbers rise. This is especially important in embedded computing,
where performance/watt scalability largely drives modern heterogeneous Multi-
Processor SoC (MPSoC) architectures [31]. Furthermore, parallelism needs to be

2 LIME

exploited on many levels: task, data, memory, and instruction-level. A shortcom-
ing in one of these makes a PPM less applicable to some domains, forcing design-
ers to create custom models. Finally, a PPM has to leverage the existing legacy
code base. In both the embedded and High-Performance Computing (HPC) do-
mains there are considerable amounts of proven algorithm libraries and a failure
to approach these in an evolutionary manner would be very costly to amend.

There have been many attempts in the past to include concepts of parallel
computing in traditional sequential programming languages. Section 2 gives an
overview of existing approaches that address one or two of issues mentioned
above, but unfortunately, not all simultaneously. In this paper, we show that
our PPM for multi-cores does address all of the issues, and therefore enables
system designers - architects and developers - to take one further step in making
their software more robust and flexible, but still efficient and scalable.

The guiding principle behind LIME is based on the modern design prac-
tice of doing “More with Less”. This way of design is distinguished by focusing
on the elimination of the complexity mismatch between problem and solution.
As a result, designs following this principle tend to exhibit compositional and
predictive properties, which are very much desired in embedded and HPC ap-
plications. This can only be successful if a small number of universal concepts
can be distilled from the problem domain and then efficiently mapped to system
architectures and streaming application scenarios.

From an historical perspective, our approach can be related to the intro-
duction of high-level languages in the 1950s. The goal then was to provide ab-
stractions for data/memory access and control on top of lower-level machine
languages. We think that in the era of multi-cores, a similar step is required to
abstract from lower-level details of particular multi-core architecture. Designers
should be able reason about systems and implement them on a conceptually
higher level of algorithms and their decompositions that encapsulate communi-
cation and synchronization. Also, performance issues that arise when exploiting
parallelism need to be tackled in a way that is orthogonal to implementation.

The paper is organized as follows: first, related work is covered in Section 2.
The LIME PPM is introduced in Section 3 and its features are described. Two
concrete applications of LIME are discussed in Section 4. Finally, conclusions
and future work can be found in Section 5.

2 Related work

Parallel and concurrent programming have always been a difficult exercise. Fol-
lowing the tradition of focusing primarily on efficiency and scalability, each step
in algorithm design and implementation is typically tightly coupled to a specific
hardware architecture or to a specific PPM.

The usage of an API or the creation of libraries like MPI [5] or PVM [7] on
embedded Real-Time (RT) platforms for streaming applications creates legacy
problems on several levels. First, as the life-cycle of the application using one
such library progresses (it is first created, then tested, and then maintained)

LIME multi-core programming model 3

it becomes increasingly more and more difficult to make trade-offs, change the
assumptions on the platform, or modify the performance contracts. Second, li-
brary APIs like POSIX threads (pthreads) that result from standardization tend
to incorporate many different views, forcing conforming implementations to ac-
count for all views (design-by-committee). Also, these often lack abstractions that
shield developers from readily-misused primitives. Another pitfall is abstracting
too much or being too high-level (YAPI [29]), failing to address efficient usage in
specialized embedded and HPC domains (variable-grain parallelism & legacy).

The industry in general and its embedded RT branch in particular is ever
more reluctant to adopt new languages because of the legacy and inertia. Even
high-profile research projects such as Ptolemy [14], that proposes extensive data-
flow modeling & simulation environment, and StreamIt [8], that extends Java
with data-flow constructs, fail to appeal to general-purpose and embedded com-
munity as a whole. If such PPMs find a good use it is usually in very specialized
safety-critical and high-reliability domains, e.g., Esterel [2] & Lustre [4]. In the
past, many different novel programming languages (Charm [1], Occam, Erlang,
and many other research prototypes) have been tried to improve the programma-
bility of parallel architectures. Also, intrusive modifications of existing languages
that add new constructs, keywords etc. have been proposed (Parallel C [26], Cilk
[18], Sieve [19], RapidMind [37] etc.).

More recently, a new wave of PPMs has resurged focusing on integrating
the legacy sequential view with the new context of multi-cores, e.g., SMPSs
[27] & CellSs [12]. Like LIME, these PPMs also advocate shielding of parallel
complexity by constructs familiar to sequential programmers, making the task
life-cycle (start/stop etc.) and communication implicit. In reality, however, too
many concessions are made: like OpenMP (OMP) [6] these PPMs still require
explicit control of task scheduling and synchronization. Rather than building new
libraries strictly on top of a programming language some other recent PPMs try
to find ways of expressing parallelism inside the type-system and standard library
APIs such as C++ & STL. Although these look promising (see e.g., Ct [22] &
TBB [30]), they still are very dependent on the designer to explicitly manage
data- and task-level parallelism and carefully tune code using C++ features.

The SP@CE framework [40] also proposes a streaming programming model
based on XML with embedded C algorithms. SP@CE targets only Series-Parallel
graphs in the soft real-time Consumer Electronics (CE) domain, and proposes an
diversified approach to control-flow comprising both C constructs and a global
event manager. Unlike SP@CE, LIME approaches control-flow in a unified way,
and addresses ad-hoc graphs in the hard real-time embedded, and HPC domains.

In summary, the industry is in an apparent need of standardized library
APIs and PPMs. Although existing standards such as OMP [6] and MPI [5] have
enough momentum, revolutionary General Purpose GPU (GPGPU) technologies
like CUDA [36] and heterogeneous MPSoC systems (e.g., Cell/BE and some NXP
offerings) challenge existing approaches on many different levels. Because of the
features that it offers, we believe that LIME can serve as a convergence point

4 LIME

for shared- and distributed-memory programming models in general-purpose as
well as in embedded and high-performance computing.

3 Programming model

In contrast to prior-art, LIME is neither an API (specific data-types, explicit
functions or primitives are not prescribed), nor an intrusive modification of an
old language (no extensions to C proposed), or a new Turing-complete language.
#include <unistd . h>
int m a i n () {

const int b u f [1 0] ; int o b u f [1 0] ;
while (running) {

i f (! S e l e c t I n (s t d i n , s izeo f (b u f)) | |
! S e l e c tOut (s t d o u t , s izeo f (o b u f)))
continue ;

Read (s t d i n , (int ∗) b u f , s izeo f (b u f)) ;
comput e (b u f , o b u f) ;
Write (s t d o u t , o b u f , s izeo f (o b u f)) ;

}
}

#include LIME
void m a i n (const int b u f [1 0] , int o b u f [1 0])
{

comput e (b u f , o b u f) ;
}

<edge type=’ f i f o ’>
<from node id=’ s td in ’/>
<to node id=’main ’ port id=’ buf ’/></edge>

<edge type=’ f i f o ’>
<from node id=’main ’ port id=’ obuf ’/>
<to node id=’ stdout ’/></edge>

Fig. 1. Example using pseudo-UNIX API (left) and its LIME equivalent (right).
LIME consists of two parts: components that contain algorithmic work, called

limes and a separate description of the dependencies between these limes. These
dependencies are contained in a dependency graph expressed in a declarative
language called the Graph Exchange Format (GXF). As such, the communication
and synchronization logic in the original C code, usually implemented using
library APIs, is transformed to a graph description. GXF uses an Extensible
Markup Language (XML) schema that has limited expressiveness, i.e. it does
not support programming with flow of control/data constructs. An example is
shown in Fig. 1, where the left part depicts the original C code and the right
part depicts the lime (top right) and GXF description (bottom right). After
transformation, the resulting lime only contains the algorithm, links to the GXF
dependency expressions, and never uses platform-specific mechanisms directly.

In addition, LIME defines a set of rules that are enforced by the LIME tool-
chain on the GXF graphs as well as restrictions of a standard language such
as C, see Subsection 3.2. Direct usage of this well-known sequential language is
very important at this point because the embedded industry is known to posses a
large volume of proven code and experience built around it. LIME flow supports
an evolutionary path to multi- and many-cores by (1) extracting component
models from C algorithms, (2) using models to map algorithms to tasks and (3)
generating platform-specific mechanisms as well as (4) compilation and tuning
of the algorithm for an architecture that contains many heterogeneous cores.
<id> = s t r i n g
<type> = s t r i n g
<s i z e > = in t e g e r
<to> = <node>
<from> = <node>

<node> = <id> <type>?
(<port >|<edge>|<node>)∗

<port> = <id> <type>? <s i z e >?
<const >? <s t a t i c >? <r e s t r i c t >?

<edge> = <type> <from> <to>

Fig. 2. 11 tags of the GXF XML schema.
On another level, LIME mandates the use of a declarative GXF schema

for the specification of the synchronization structure. Such structure can in fact
contain either Data-Flow (DF), Control-Flow (CF), Series-Parallel (SP) patterns

LIME multi-core programming model 5

or any combination of these. Although the current schema defines only 11 tags
(see Fig. 2), the syntax is easily extendible. The GXF semantics include 4 rules
that address graph connectivity, hierarchy, composition and scoping.

Although at this point in time our LIME prototype has a focus on SDR as
an application [13], we argue that the basic concepts are also applicable to more
dynamic forms of communication found in HPC and general-purpose computing.
LIME supports parallelism on all levels, in fact:

1. Task-Level Parallelism (TLP) is inherent: software is gradually decomposed
in a number of components of any required grain; each lime can (but is not
required to) be a task.

2. Data-Level Parallelism (DLP) is direct: this is modeled naturally as multi-
rate data flow and special edge & port types, see Subsection 3.2.

3. Memory-Level Parallelism (MLP) and Instruction-Level Parallelism (ILP)
are transparent: LIME seamlessly integrates with existing C tool-chains.

4. Evolutionary approach to legacy software: LIME has a focus on C as a com-
mon programming language and avoids custom APIs.

Because not all forms of communication are analyzable, provisions are made
as to bound, or relax expressiveness of the model depending on the level of
guarantees that each particular application and use-case has to provide.

3.1 Compilation flow

Middle−end

Analysis
BinaryXML XML

C
 s

h
el

ls
 e

tc
.

Algorithms
C, binary

LIME

Front−end

LIME

Back−end
C tool−chain

Profiling

Simulation

X
M

L

X
M

L 31 4

52

Fig. 3. LIME tool-chain compilation flow (slimer not shown).

The LIME tool-chain consists of the following engines:

1. Front-End (FE) parsing engine: responsible for converting C algorithms and
GXF graphs into machine-readable format. Already at this stage the algo-
rithms may be compiled, allowing 3rd parties to deliver binary components.

2. Middle-End (ME) static analysis & scheduling engine: responsible for static
task admission, mapping, grouping and scheduling, see Subsection 3.3.

3. Back-End (BE) code generation engine: responsible for generation of platform-
specific shells, OS configuration, and startup code, see Section 4.

4. C tool-chain that is used to compile generated and (optionally compile) al-
gorithm code. This allows extra optimizations and automated performance
tuning, if the algorithm source code is available to the platform integrator.

5. Profiling & simulation engine: provides feed-back to the ME.

6 LIME

A top-level compiler driver called slimer sequentially initiates the following
compilation engines: 1 7→ 2 7→ 3 7→ 4 7→ 5 (see Fig. 3).

The GXF language is also used to specify the distribution and connectivity of
cores as well as the mapping of software nodes to hardware nodes. Together with
the models extracted from the algorithms, this provides enough information for
the automated generation of CF, DF and static task life-cycle management prim-
itives. Most importantly for embedded RT systems, this arrangement supports
analysis engines that tackle compositionality and predictability, where proper-
ties of the smallest units - lime algorithmic components - are used to predict
the properties of a composition, such as a radio baseband modem application
containing a graph of filters running on a Digital Signal Processor (DSP). The
properties that are interesting for performance analysis include timeliness, mem-
ory/bus footprint as well as the usage of resources other than memory or cycles.

3.2 Syntax & Semantics

The current LIME syntax builds on existing concepts found in the ANSI C99
standard, as well as on GXF, which is loosely based on a semi-standard Graph
Exchange Language (GXL) schema [3]. The same basic ideas, however, can also
be applied to languages other than C and XML. For example, the graphs can be
entered in a visual way and saved using the DOT format used in Graphviz [11],
while C# could have been used to specify the algorithms. In this paper, however,
we use C99 for limes, GXF graphs in Figures 1 and 6, and DOT rendering
elsewhere because of space constraints.

Basics. We will give an exposition of LIME using a typical working example
from the data streaming domain using Synchronous DF (SDF) [32] with some
extensions. This simple graph connects 3 components (limes):

SOURCE int buf[10] int buf[5] COPY int obuf[5]fifo int buf[10] SINKfifo

Fig. 4. Example graph (using DOT rendering).

1. source with one out-port (buf), used to inject data into the stream.
2. copy with one in-port (buf) and one out-port (obuf).
3. sink with one in-port (buf), used to verify this trivial computation.

These limes are connected using edges typed “fifo”. This refers to FIFO
channels, although the exact implementation of these is of course hardware-
dependent and subject to specific optimizations, see Subsection 3.3 and Section 4.

Fig. 5 depicts the complete listings using the C K&R syntax, which together
with the graph in Fig. 4 provides enough information for slimer to generate
actual platform-specific shells, the Operating System (OS) configuration, and

LIME multi-core programming model 7

#include LIME

void p r o c e s s (b u f)
int b u f [1 0] ;

{
for (int i =0; i< 10 ; i++)

b u f [i]= i ;
}

#include LIME
void p r o c e s s (b u f , o b u f)

const int b u f [r e s t r i c t 5] ;
int o b u f [r e s t r i c t 5] ;

{
for (int i =0; i< 10 ; i++)

o b u f [i]= b u f [i] ;
}

#include LIME

void p r o c e s s (b u f)
const int b u f [1 0] ;

{
for (int i =0; i< 10 ; i++)

a s s e r t (b u f [i]== i) ;
}

Fig. 5. Algorithm sources for source, copy and sink (graph in Fig. 4).

startup code to run the streaming graph on a parallel platform. The following
syntactic properties of the LIME can be directly observed from this simple
application:

– no explicit communication & synchronization calls are present in the input.
Instead, the data dependencies are isolated inside the C function declaration
and then made explicit in the graph. Using SDF terms, the actor signature
coincides with the C function signature. This is effectively used by slimer
to generate a platform-specific shell for each component and to hook-up its
ports to other objects in the platform, e.g., pipes, sockets or FIFO channels.

– data-dependencies, or ports are out-ports by default. in-ports are specified
using the C const qualifier. This gives compiler protection against unwanted
writes. Also, the incorrect use of ports w.r.t. the direction or type can be
signalled early in the compilation flow.

– data-rates are explicit in the signature as array size specifiers. As a result,
the use of pointers is obsolescent. Furthermore, static code analysis can be
used to calculate optimal schedules, FIFO buffer sizes (see Subsection 3.3)
and to validate robustness properties (e.g., out-of-bounds accesses).

– the C99 restrict keyword can be used to indicate to the compiler that the
port’s data is never shared with other ports, i.e., avoiding aliasing. See the
paragraph on instantiation below for more details.

– in- and out-port rates do not have to match - an edge can be multi-rate, see
Fig. 4. This is an important source of DLP in LIME. If a producer writes
more data than a consumer can read, our tool-chain, under some conditions,
can choose to create as many instances of the consumer as needed (fan-out).

There are 3 semantic rules associated with the LIME model of computation
that focus on the embedding of parallel abstractions in standard C99 and avoid
task management chores related to life-cycle, scheduling, communication, and
synchronization that are inevitably specific to each particular architecture:

1. The C function call as task activation - all inputs are assumed to be ready
(using e.g., a read-lock or an acquire) and enough output space is assumed
to be available (using e.g., a write-lock or an acquire). All ports must be
used in this function, otherwise the C compiler will generate a warning.

2. The C function return as task de-activation - all inputs and outputs are
flushed (using e.g., an unlock, or a release) and can not be used by this
component until the next activation. This is enforced by the C language -

8 LIME

parameters (ports) have function scope, thus there is no way a component
can use them when it is not active.

3. A C function can not by default assume anything about the order of acti-
vation - given enough resources all limes (could) execute concurrently, their
global order fully determined by the graph and by the platform-specific BE.

Exact implementation of instructions that mandate a particular release con-
sistency model (acquires & releases, memory flushes) is completely defined by
a particular LIME BE that is used to compile the application. Because of this
decoupling, the BE can choose to apply double-buffering, or in-place process-
ing, depending on platform and/or application requirements. Similarly, the BE
may opt to generate blocking vs. non-blocking primitives (e.g., see Fig. 11). The
only invariant that is maintained by LIME for each iteration and each port of
a component is that all input and output data buffers are contiguous and ex-
actly the specified by data-rate amount of data is directly accessible via a pointer
argument, allowing the C tool-chain to exploit ILP present in the algorithm.

Data-flow extensions. Although the basic model looks simple, the abstrac-
tions it uses are powerful enough to be stretched for more advanced features:

Cyclo-Static DF (CSDF) allows further fine-grained decomposition of compo-
nents into sub-components each having its own dependencies. This supports
late-acquire and early-release optimization schemes as well as some level of en-
capsulation [15]. CSDF is expressed in LIME by simply specifying several limes
in one component and defining a local static schedule to order them. As depicted
in Fig. 6, the signature of the super-component is the union of all sub-component
signatures. The BE engine can optimize unneeded acquires and releases.
void p r o c e s s 1 (b u f , o b u f 1)
const int b u f [r e s t r i c t 1 0] ;
int o b u f 1 [r e s t r i c t 5] ;
{

for (int i =0; i< 5 ; i++)
o b u f 1 [i]= b u f [i] ;

}

void p r o c e s s 2 (b u f , o b u f 2)
const int b u f [r e s t r i c t 1 0] ;
int o b u f 2 [r e s t r i c t 5] ;
{

for (int i =0; i< 5 ; i++)
o b u f 2 [i]= b u f [5+ i] ;

}

/∗ S t a t i c a l l y o r d e r n o d e s :
∗ p r o c e s s 1 −> p r o c e s s 2 ∗/

void (∗ s p l i t s c h e d u l e []) ()=
{
[1]= p r o c e s s 1 ,
[2]= p r o c e s s 2
} ;

<node id=’ s p l i t ’>
<port id=’ buf ’ type=’ in t ’

s i z e=10 const r e s t r i c t />
<port id=’ obuf1 ’ type=’ in t ’

s i z e=5 r e s t r i c t />
<port id=’ obuf2 ’ type=’ in t ’

s i z e=5 r e s t r i c t />

<node id=’ proces s1 ’>
<port id=’ buf ’ type=’ in t ’

s i z e=10 const r e s t r i c t />
<port id=’ obuf1 ’ type=’ in t ’

s i z e=5 r e s t r i c t />
</node>

<node id=’ proces s2 ’>
<port id=’ buf ’ type=’ in t ’

s i z e=10 const r e s t r i c t />
<port id=’ obuf2 ’ type=’ in t ’

s i z e=5 r e s t r i c t />
</node>

</node>

Fig. 6. Example (non-strict) CSDF split component and its GXF representation.

Variable-rate DF allows ports to accept data with variable rates. Of course
analysability of the resulting graph will depend on the variation range. Variable-
rate DF is expressed within C99 in a straightforward fashion using the Variable-
Length Array (VLA) parameters: void process(const int size, const int
buf[size]); Ranges and individual size requirements can be specified by enumer-
ation of all possibilities: void process(const enum {ZERO=0, ONE=1}
size,const int buf[size]); specifies that process is activated irrespective of
whether there is 1 int in the input, or none, allowing asynchronous activation.

LIME multi-core programming model 9

int obuf[10] OTHER int buf[10]

struct state inst[1]

int buf[10]

PROCESS struct state outs[1]

int obuf[10]

fifo fifo

state

struct state inst[1] DTORdeinit_state
CTOR struct state outs[1] init_state

DELAY int obuf[10]
init

Fig. 7. Component having state (with a self-loop) and delay (loop via other)

Delays and instantiation. Any realistic PPM has to tackle practical issues
associated to multiple instantiation, in addition to the complication of having
loop delays as required by SDF analysis techniques. In LIME, both of these are
modeled using constructor and destructor nodes. Such nodes are not different
from regular DF nodes - what distinguishes them is the way they are connected.
This is in fact specified in the graph by sub-typing edges as “init” or “deinit”.
Fig. 8 is an example of a component in which the state port does not use First-In
First-Out (FIFO) protocol but rather maps to memory that is shared between
component instance’s activations. An edge specifies “state” type to indicate to
LIME that the ports connected by this edge are state ports, as in Fig. 7. This
information is needed by the tool-chain to calculate the state size per component,
as syntactically state ports are not different from regular FIFO ports.
void ctor (struct s t a t e o u t s [1]) {

o u t s−>param=123;
}

void dtor (const struct s t a t e i n s t [1]) {
dump(i n s t−>param) ;

}

void d e l a y (int o b u f [1 0]) {
memset (o b u f , ’\xFF ’ ,10∗ s izeo f (int)) ;

}

void p r o c e s s (b u f , o b u f , i n s t , o u t s)
const int b u f [r e s t r i c t 1 0] ;
int o b u f [r e s t r i c t 1 0] ;
const struct s t a t e i n s t [1] ;
struct s t a t e o u t s [1] ;

{
for (int i =0; i< 10 ; i++)

o b u f [i]= b u f [i]∗ i n s t−>param ;

o u t s−>param++;
}

Fig. 8. LIME specification of a state port & a delayed input port.

Instantiation is therefore achieved by specification of a constructor component
that initializes the process:inst port through ctor:outs port, see Fig. 8. The
tool-chain is responsible for generation of component state allocation, component
construction and garbage collection, primitives.

Delays are specified by the constructor’s port rate, see delay:obuf port in Fig. 8.
In this case, the FIFO that is associated to the process:buf port is pre-loaded
with the data generated by delay before the first activation of the process. This
is needed to avoid deadlocks when the SDF graph contains loops.

Broadcast and reduction operations. These important concepts are sup-
ported in LIME by port name expansion. Collective operations are expressed
with the union type for an out-port (broadcast) or an in-port (reduce), see Fig. 9.
Note that the number of ports is not necessarily static, it can be parameterized,

10 LIME

as shown in union collective template: the component may specify only one
union member, indicating to LIME that it should instantiate as many ports as
there are edge endpoint ports belonging to this component in the GXF graph.

void b r o a d c a s t (o u t)
union c o l l e c t i v e o u t [1] ;

{
memset (ou t−>b u f 1 , ’\xFF ’ , s izeo f (ou t−>b u f 1)) ;

}

union c o l l e c t i v e {
/∗ o n l y t h e s e a r e p r e s e n t : ∗/

int b u f 1 [1 0] ;
int b u f 2 [1 0] ;

} ;

union c o l l e c t i v e t e m p l a t e {
/∗ any number o f p o r t s can b e

i n s t a n t i a t e d : ∗/
int b u f 1 [1 0] ;

} ;

void p roc (const int b u f [1 0] , int o b u f [1 0])
{

comput e (b u f , o b u f) ;
}

void r e d u c e (i n)
const union c o l l e c t i v e i n [1] ;

{
dump(in−>b u f 1) ;

}

BROADCAST

int buf1[10] int buf2[10]

int buf[10]

PROC1

int obuf[10]

fifo

int buf[10]

PROC2

int obuf[10]

fifo

int buf1[10] int buf2[10]

REDUCE

+ +

Fig. 9. Collective operations in LIME (+ reduction operator as the edge type).

Restricted Control-Flow. As the concept of iteration is inherent in LIME (all
limes are activated repeatedly until there is no input), only the concept of asyn-
chronous activation and the concept of conditional activation needs extra atten-
tion. Both of these CF constructs are supported, the former by variable-rate DF
(see above) and the latter by variant record port types (see Fig. 10). Similarly to
parameterized collective template described above, struct selective template
containing an integer tag and a union with only one member (not shown in Fig. 10
because of space limitations) can be used to allow variability in the number of
ports associated to conditional activation; the value of this parameter is then
derived from the GXF graph description.

3.3 Applicable analysis models

Two different approaches to analysis are possible with LIME. The first one has
roots in the classic SDF domain, which integrates very well with LIME. Another
one originates in theory of SP graphs. Such graphs can also be expressed in
LIME. Many embedded RT applications contain graphs that are SP (e.g., figures
4 and 9), making this another useful analysis methodology.

Data-Flow based. Different flavors of data-flow modeling allow for different
degrees of temporal analysis, and for static allocation of resources such as static
scheduling or minimal buffer sizing.

At one extreme, the Dynamic DF (DDF) model can express the full range of
Turing-complete programs, but lacks many useful analytical properties. It may

LIME multi-core programming model 11

void s w i t c h (struct s e l e c t i v e o u t [1]) {
i f (rand () % 2) {

ou t−>tag=s e l e c t b u f 1 ;
memset (ou t−>port . b u f 1 , ’\xFF ’) ;
return ;

}
ou t−>tag=s e l e c t b u f 2 ;
memset (ou t−>port . b u f 2 , ’\x00 ’) ; }

struct s e l e c t i v e {
enum tag {

s e l e c t bu f 1 ,
s e l e c t bu f 2 ,

} tag ;
union {

int b u f 1 [1 0] ;
int b u f 2 [1 0] ;

} port ;
} ;

void p r o c 1 (b u f , o b u f)
const int b u f [1 0] ;
int o b u f [1 0] ;

{ c om p u t e 1 (b u f , o b u f) ; }

void p r o c 2 (b u f , o b u f)
const int b u f [1 0] ;
int o b u f [1 0] ;

{ c om p u t e 2 (b u f , o b u f) ; }

void s e l e c t (const struct s e l e c t i v e i n [1]){
i f (in−>tag==s e l e c t b u f 1) {

dump(in−>port . b u f 1) ;
return ;

}
dump(in−>port . b u f 2) ; }

SWITCH

int buf1[10] enum tag out_tag[1] int buf2[10]

int buf1[10] enum tag in_tag[1] int buf2[10]

SELECT

fifo

int buf[10]

PROC1

int obuf[10]

fifo

int buf[10]

PROC2

int obuf[10]

fifo

fifo fifo

Fig. 10. Boolean DF (BDF) conditionals in LIME.

be impossible to verify for an arbitrary DDF graph that the synchronization
structure it specifies is free of deadlocks. On the other hand, static data-flow
variants such as SDF [33], Homogeneous Synchronous DF (HSDF) [38], CSDF
[15] allow for powerful temporal analysis. This enables verification of execution
properties such as deadlock-freedom, latency and throughput constraints [34] as
well as determination of maximum achievable throughput [21] and minimized
FIFO buffers [24] and even the generation of fully-static rate-optimal schedules.

It is clear that static models have limited expressiveness: they can only ex-
press applications that work with fixed data rates, i.e., the amount of data trans-
ferred per task activation (i.e., actor firing) is not dependent on input data.
Because of this SDF models tend to be reserved for application domains where
RT guarantees are required and where task activation is strictly data-driven. In
between these two extremes there exist other variants.

Some restrictions of BDF [17], for instance, do not allow the generation of
static schedules, but allow at least for generation of so-called quasi-static sched-
ules [25]. Fig. 10 depicts a case with a boolean conditional. Besides BDF there
are other related models (e.g., Integer DF), each with different properties.

All SDF models can be seen as a sub-set of DDF. To define what kind of
DF model suits a particular application depends on firing rules for all of its
actors. Since LIME makes the firing rule of each actor explicit in the function
declaration, it is simple to detect by inspection of all function interfaces which DF
properties are applicable, which enables the correct-by-construction, automatic
generation of the analysis models that are needed for applying many of the
temporal analysis and resource allocation strategies previously referred.

Series-Parallel based. Task scheduling and resource allocation algorithms
that work with communication/synchronization graphs are related to a number
of well-known problems in graph theory (maximum independent set, graph col-

12 LIME

oring). These are NP-hard in general, precluding their efficient on-line usage.
Although static off-line schedulers & allocators can still be applied for some
problem domains, many practical applications exhibit dynamic behavior.

One of the important results of graph theory is that for graphs that have
limited tree-width k [39], i.e. for a partial k-trees (SP is a special case when
k = 2) many of these algorithms have polynomial complexity [16]. Calculating k
for any given graph, however, still is an NP-complete problem [9]. Most embedded
RT applications (with some notable exceptions) contain algorithmic kernels that
have SP synchronization structure [40]. Even if the structure is not strictly SP,
it can be reduced to SP with bounded overhead [23].

LIME supports SP analysis frameworks by isolating algorithm dependencies
in C modules and making the algorithm decomposition explicit in the GXF graph.
The off-line ME estimates the tree-width k of the graph, constructs its tree
decomposition or, if necessary, performs a reduction to a partial k-tree with
given overhead while the BE can automatically instantiate extra synchronization
nodes when needed. All this code & data is used to steer the on-line resource
managers in the OS in making better run-time decisions.

4 Applications and implementation

This section details the implementation of the LIME tool-chain as well as to
two real-life application use-cases, one from the embedded modem processing
RT domain - SDR, and another one from HPC GPGPU computing domain -
Compute Unified Device Architecture (CUDA).

4.1 Tool implementation

In the prototype LIME flow, we have chosen a pragmatic approach to building
software. Rather than e.g., implementing our own parser for C99, we:

– re-used GCC [20] C compiler’s -fdump-translation-unit option. Since no
regular plug-in interface is currently standard in GCC, we chose to rely on
this compiler debugging option to retrieve the parse trees.

– implemented the FE engine as an AWK script that extracts signatures and
data-types from the dump generated by the GCC and saves them as XML.

– used ad-hoc XML parsing framework to process user-supplied GXF graphs
as well as generated intermediate XML files.

– used an existing SDF analysis ME engine implemented in OCAML [35,34].
– implemented BE as another AWK script that generates SDR or CUDA spe-

cific C code from intermediate XML.

This sequence is initiated from slimer, which is built as a shell script that
encapsulates a collection of Makefiles and other scripts. We plan to rewrite these
ad-hoc scripting solutions using a single programming/scripting environment.

LIME multi-core programming model 13

4.2 SDR use-case

Next generation 4G as well as current 3G wireless standards force system sup-
pliers to start looking into programmable radio computers, where the hardware
deals with Radio Frequency (RF) front-end processing and provides raw compute
capability that can be utilized to run one, or more software baseband modems
simultaneously. This requires an extensive software support on the level of the
infrastructure, where modem processing tasks can be started and stopped, can
communicate, synchronize, and can be composed into radio applications with
predictable properties.

One such baseband platform is currently being developed at NXP, utilizing
a heterogeneous MPSoC comprising a number of ARM cores and a number
of Embedded Vector Processor (EVP) cores, having both shared-memory and
message-passing primitives (via dedicated DMA units) to assist data-transfers
to and from the host Application Processor (AP), which is handling higher-level
stacks such as the Internet Protocol and User Interface (UI).

The Sea-of-DSP (SoD) software that runs on top of this platform contains a
lightweight streaming kernel that implements task scheduling, FIFO communica-
tion, and synchronization primitives (not too different from POSIX ones depicted
in Fig. 1), as well as a Network Manager (NM) that is used to start/stop tasks,
configure them, and to setup the FIFO channels. The tasks & radio applications
are programmed in C, typically directly using proprietary streaming kernel &
NM APIs, which can be difficult to learn, use, maintain, and port.

extern void p r o c e s s (const int b u f [5] , int o b u f [5]) ;
int c o p y s h e l l (void) {

int b u f [5] , o b u f [5] ;
i f (! S e l e c t I n (0 , ((5)∗ s i z e (int))))

return BLOCKED;
i f (! S e l e c tOut (0 , ((5)∗ s i z e (int))))

return BLOCKED;

DPRINTF(” reading port %i \n” , 0) ;
Read (0 , b u f , ((5)∗ s i z e (int))) ;
p r o c e s s ((const int ∗) b u f , o b u f) ;
DPRINTF(” wr i te port %i \n” , 0) ;
Write (0 , o b u f , ((5)∗ s i z e (int))) ;
return OK;

}

Fig. 11. Generated SoD shell with non-blocking primitives and double-buffering.

LIME offers an attractive alternative to proprietary APIs because baseband
modem suppliers prefer to focus on their core business and allow integrators
to map modems to specific MPSoCs. This requires a fair degree of platform-
independence as well as binary component delivery. Also, modems require analyt-
ical properties that guarantee deadlock freedom and minimized resource usage.

As our initial prototype shows, all of these are guaranteed with LIME, where
the BE is able to generate shell wrapper code dealing with kernel primitives as
well as code/data related to the NM setup, see for example Fig. 11 which shows
generated shell for a copy component from Fig. 5. This proves that the modems
are flexibly yet efficiently isolated from details of a particular platform.

14 LIME

4.3 CUDA use-case

CUDA is a system architecture from NVidia, which is now emerging as a new
player in the HPC domain. It builds on a vision of a massive multi-core platform
(latest offerings comprising 240 cores per chip), organized in clusters of 8 SIMT
cores in MIMD mode. Each core has a register file, and each cluster has local
shared-memory on-chip. The GPU has access to global shared-memory on-board
as well as cached access to constant- and texture-memories.

The programming environment offered by CUDA is layered: the C-based ker-
nel programming language provides low-level atomics and inter-thread synchro-
nization. The C++-based runtime API provides high-level host interface to issue
memory transfers to/from the Graphics Processing Unit (GPU), launch compu-
tational kernels, and synchronize. The lower-level C-based driver API serves
similar purposes, but allows a more verbose but direct control of the GPU.
#include CUDA

device void p r o c e s s (b u f , o b u f)
const int b u f [r e s t r i c t 5] ;
int o b u f [r e s t r i c t 5] ;

{
for (int i =0; i< 10 ; i++)

o b u f [i]= b u f [i] ;
}

#define TID\
(b l o c k I d x . x∗ b l o c kD im . x+ t h r e a d I d x . x)
g loba l void c o p y k e r n e l (b u f , o b u f)
const unsigned int b u f [r e s t r i c t] ;
unsigned int o b u f [r e s t r i c t] ;

{
p r o c e s s (& b u f [TID∗5] ,& o b u f [TID∗ 5]) ;

}

Fig. 12. The copy lime and the generated CUDA kernel (host code not shown).

LIME fits well with the CUDA software infrastructure, especially its lower-
level driver API, because all communication, kernel startup, and synchronization
primitives are implicit in the lime code and are filled-in at compile time by the
CUDA BE. In fact, lime is conceptually identical to CUDA’s device function
- both are implemented as C functions and produce/consume data via function
arguments. The complexity of data distribution and inter-thread synchronization
is hidden by LIME in the component shell. Such a shell is mapped to a CUDA
computational kernel (i.e., global function callable from the host), which is
responsible of mapping chunks of data to an appropriate device function and
call-out to that function, see Fig. 12.

Because LIME is capable of generating both the host code as well as the device
code, the complexity of application development with LIME is greatly reduced
in comparison to direct usage of the CUDA runtime API. This is especially
applicable for streams and/or multiple GPU contexts, as CUDA requires context
of each GPU to run on a different OS thread [36]. In the LIME CUDA BE, we
directly use driver API calls, allowing more aggressive optimizations than what
is possible with the CUDA runtime API.

5 Conclusions & Future work

The freedom to map LIME algorithms to either shared-, distributed-memory or
message-passing architectures lies in the fact that despite that each algorithm’s
dependencies are explicit like in MPI, they are still expressed as pointers like in
OMP (see Subsection 3.2). The freedom to optimize LIME graphs specifically
for each computing domain lies in the fact that no API calls are mandated and

LIME multi-core programming model 15

that the tool-chain is not constrained by semantics associated to such calls and
has the freedom to generate virtually any shell. Even the overhead of a call from
the shell wrapper code to a group of limes implementing an algorithm can be
optimized away automatically by forcing inlining in the C compiler.

The input to the LIME flow addresses only the functional aspect of the
component and hence it is possible to document it well (e.g., using literate pro-
gramming [28]), and to encourage designers to keep the documentation in sync
with the implementation in the same LIME source, using C and GXF.

LIME has been shown to allow effective generation of 60-70% of the C code
from a LIME source, for typical embedded RT codes. The generated wrapper
code does not introduce any additional overhead - it is equivalent to hand-written
code both functionally and in performance. Wrappers only contain calls to the
underlying OS kernel, calls to the compiled representation of the algorithms,
and some debugging aids (see Figures 11 and 12). Overall, the code contains
therefore only 30-40% that implements the core algorithms (isolated as limes
manually), with the 60-70% being platform-specific glue (generated as shells).

Decoupling the generated wrapper source code from the binary representa-
tion of the functional block at the linker level allows 3rd party delivery of bi-
nary components, which is an essential mechanism for Intellectual Property (IP)
protection and suits current industrial development practices well, while still
supporting hardware-dependent parallelization to take place after IP delivery.

LIME supports an evolutionary approach to building parallel systems in the
embedded RT and HPC domains by leveraging an existing programming lan-
guage, C, which is well-known and widely used in the community. Although no
intrusive modifications are proposed by LIME, it encourages designers to split
their algorithms into variable-grained algorithmic components, limes, which are
still expressed using standard C. This increases scalability as well as analysability
and provides better opportunities for platform-specific optimization. We believe
that this is a promising way towards a model of parallel computing that is lever-
aging on legacy technology at the same time as being future-proof.

Future work includes a LIME BE for pthreads, direct comparison with MPI
and OMP, implementation of cooperative scheduling, dynamic allocation, Multi-
Dimensional DF (MDDF), relaxed type matching as well as improved ME analy-
sis techniques for partial k-trees. Also, we have planned to work on visual graph
editors, and support for other sequential languages such as C++ and C#.

Thanks: whole SDR team (in particular: D. van Kampen, M. van Splunter and
K. van Berkel) for providing challenging use-cases, SW Infra team (in particular:
Jack Goossen and Clara Otero Pérez) for providing valuable feed-back.

References

1. Charm. http://charm.cs.uiuc.edu/research/charm/.
2. Esterel. http://www.esterel-technologies.com/technology/WhitePapers/.

http://charm.cs.uiuc.edu/research/charm/
http://www.esterel-technologies.com/technology/WhitePapers/

16 LIME

3. Graph exchange language. http://www.gupro.de/GXL/.
4. Lustre. http://www-verimag.imag.fr/SYNCHRONE/.
5. Message passing interface. http://www.mpi-forum.org.
6. Openmp. http://www.openmp.org.
7. Parallel virtual machine. http://www.csm.ornl.gov/pvm/pvm_home.html.
8. Streamit. http://www.cag.lcs.mit.edu/streamit/.
9. S. Arnborg, D. Corneil, and A. Proskurowski. Complexity of finding embeddings in

a k-tree. SIAM Journal on Matrix Analysis and Applications, 8(2):277–284, 1987.
10. K. Asanovic et al. The landscape of parallel computing research: A view from

berkeley. Technical Report UCB/EECS-2006-183, EECS Department University
of California, Berkeley, Dec. 2006.

11. AT&T. Graphviz. http://graphviz.org/.
12. P. Bellens et al. Cellss: A programming model for the cell be architecture. In

Proceedings ACM/IEEE SC 2006 Conference, Nov. 2006.
13. K. v. Berkel et al. Vector processing as an enabler for software-defined radio in

handheld devices. EURASIP Journal on Applied Signal Processing, (16), 2005.
14. Berkeley. Ptolemy. http://ptolemy.eecs.berkeley.edu/.
15. G. Blisen et al. Cyclo-static dataflow. In IEEE Transactions on Signal Processing,

volume 44, pages 397–408, 1996.
16. H. L. Bodlaender. Dynamic programming on graphs of bounded treewidth.

317:105–118, 1988. Lecture Notes in Computer Science.
17. J. Buck. Scheduling dynamic dataflow graphs with bounded memory using the token

flow model. PhD thesis, Univ. of California, Berkeley, September 1993.
18. Cilk. Cilk. http://www.cilk.com/.
19. CodePlay. Sieve. http://www.codeplay.com/technology/sieve.html.
20. FSF. Gnu compiler collection. http://gcc.gnu.org/.
21. A. Ghamarian et al. Throughput analysis of synchronous data flow graphs. In

ACSD, pages 25–34, June 2006.
22. A. Ghuloum et al. Future-proof data parallel algorithms and software on intel

multi-core architecture, Nov. 2007.
23. A. Gonzalez-Escribano. Synchronization Architecture in Parallel Programming

Models. PhD thesis, Dept. Informatica, 2003. http://www.infor.uva.es/

~arturo/home.eng.html.
24. R. Govindarajan et al. Minimizing memory requirements in rate-optimal schedules.

In ASAPS, pages 75–86, Aug. 1993.
25. S. Ha and E. Lee. Compile-time scheduling of dynamic constructs in dataflow

program graphs. IEEE Transactions on Computers, 46(7):768–778, July 1997.
26. HPCL. Unified parallel c. http://upc.gwu.edu/.
27. M. Josep et al. A flexible and portable programming model for smp and multi-

cores. Technical report, Barcelona Supercomuputing Center, June 2007.
28. D. Knuth. Literate Programming. Number 27. CSLI, 2nd edition, 1992.
29. E. Kock et al. YAPI: Application modeling for signal processing systems. In Proc.

Design Automation Conference (DAC), pages 402–405, Los Angeles, June 2000.
30. A. Kukanov et al. The foundations for scalable multi-core software in intel thread-

ing building blocks, Nov. 2007.
31. R. Kumar, D. Tullsen, N. Jouppi, and P. Ranganathan. Heterogeneous chip mul-

tiprocessors. Computer, 38(11):32–38, Nov. 2005.
32. E. Lee and D. Messerschmitt. Sdf. In Proceedings of the IEEE, 1987.
33. E. Lee and D. Messerschmitt. Static scheduling of synchronous data flow programs

for digital signal processing. In IEEE Transactions on Computers, 1987.

http://www.gupro.de/GXL/
http://www-verimag.imag.fr/SYNCHRONE/
http://www.mpi-forum.org
http://www.openmp.org
http://www.csm.ornl.gov/pvm/pvm_home.html
http://www.cag.lcs.mit.edu/streamit/
http://graphviz.org/
http://ptolemy.eecs.berkeley.edu/
http://www.cilk.com/
http://www.codeplay.com/technology/sieve.html
http://gcc.gnu.org/
http://www.infor.uva.es/~arturo/home.eng.html
http://www.infor.uva.es/~arturo/home.eng.html
http://upc.gwu.edu/

LIME multi-core programming model 17

34. O. Moreira and M. Bekooij. Self-timed scheduling analysis for real-time applica-
tions. EURASIP Journal on Advances in Signal Processing, 2007.

35. O. Moreira, F. Valente, and M. Bekooij. Scheduling multiple independent hard-
real-time jobs on a heterogeneous multiprocessor. In Proc. Embedded Software
Conference (EMSOFT), October 2007.

36. NVidia. Cuda. http://www.nvidia.com/object/cuda_home.html.
37. RapidMind. Sh. http://rapidmind.com/technology.php#programming.
38. R. Reiter. Scheduling parallel computations. Journal of the ACM, Oct. 1968.
39. N. Robertson and P. Seymour. Graph minors. i. excluding a forest. Journal of

Combinatorial Theory Series B, (35):39–61, 1983.
40. A. Varbanescu et al. Sp@ce - an sp-based programming model for consumer elec-

tronics streaming applications. In LCPC 2006, pages 33–48. Springer, Nov. 2006.

http://www.nvidia.com/object/cuda_home.html
http://rapidmind.com/technology.php#programming

18 LIME

A Acronyms

ANSI American National Standards
Institute

AP Application Processor
API Application Programming Interface
ARM Acorn RISC Machine (or Advanced

RISC Machine)
AWK Aho, Weinberger, Kernighan (text

processor)
BB Base-Band
BDF Boolean DF
BE Back-End
CE Consumer Electronics
CellSs Cell Superscalar
CF Control-Flow
CSDF Cyclo-Static DF
CTM Close To Metal
CUDA Compute Unified Device

Architecture
DDF Dynamic DF
DF Data-Flow
DLP Data-Level Parallelism
DMA Direct Memory Access
DSP Digital Signal Processor
EVP Embedded Vector Processor
FE Front-End
FIFO First-In First-Out
FW Framework
GCC GNU Compiler Collection (formerly

GNU C Compiler)
GPGPU General Purpose GPU
GPU Graphics Processing Unit
GXF Graph Exchange Format
GXL Graph Exchange Language
HPC High-Performance Computing
HPF High-Performance Fortran
HSDF Homogeneous Synchronous DF
HW Hardware
ILP Instruction-Level Parallelism
IP Intellectual Property
LIME Less Is More
MDDF Multi-Dimensional DF
ME Middle-End
MIMD Multiple-Instruction Multiple-Data
MLP Memory-Level Parallelism
MPI Message Passing Interface
MPSoC Multi-Processor SoC
NM Network Manager
NXP Next Experience Semiconductors
OCAML Objective CAML
OMP OpenMP
OS Operating System
PL Programming Language
PM Programming Model
POSIX Portable Operating System

Interface
PPM Parallel Programming Model
pthreads POSIX threads
PVM Parallel Virtual Machine
RF Radio Frequency
RT Real-Time
SAC Single Assignment C
SDF Synchronous DF
SDR Software-Defined Radio
SIMT Single-Instruction Multiple-Thread
SK Streaming Kernel

SMPSs SMP Superscalar
SoD Sea-of-DSP
SP Series-Parallel
STL Standard Template Library
SW Software
TBB Threading Building Blocks
TLP Task-Level Parallelism
UI User Interface
UNIX Unified Information and Computing

System
VLA Variable-Length Array
XML Extensible Markup Language
YAPI Y-API

	LIME programming model
	Pjotr Kourzanov
	Introduction & Problem Statement
	Related work
	Programming model
	Compilation flow
	Syntax & Semantics
	Basics.
	Data-flow extensions.
	Delays and instantiation.
	Broadcast and reduction operations.
	Restricted Control-Flow.

	Applicable analysis models
	Data-Flow based.
	Series-Parallel based.

	Applications and implementation
	Tool implementation
	SDR use-case
	CUDA use-case

	Conclusions & Future work
	Acronyms

