
1

Reliable Communication

between Applications with

Delphi and ActiveMQ

Jeroen Pluimers
better office benelux

jpluimers@better-office.com

Message Queueing

• Decoupling:
– Sender is decoupled from receiver (and vice versa)

• Asynchronous:
– Sender and receiver do not need to be active at the same time

(But they can)

• Reliable:
– Messages placed onto the queue are stored until the recipient

retrieves them

• See: http://en.wikipedia.org/wiki/Message_queue

MQ is facilitaties MOM

• Message Oriented Middleware
– Is all about sending and receiving messages
– Uses queues for sending/receiving

• MOM can be based on
– Message Queueing
– Broadcasting
– Multicasting

• See:
http://en.wikipedia.org/wiki/Message-oriented_middleware

MQ much more flexible than

Client/Server
• Multi-sender / receiver

– MQ is not limited to classic Client/Server
(where multiple clients can access one server)

– Each queue can have
• Multiple senders
• Multiple receivers

• Receiver independent of sender
– Receiver can start much
later than the client

ActiveMQ

• Is a JMS implementation by Apache
• Supports many protocols,

including Stomp
(Streaming Text Orientated Messaging Protocol)

• Is Open Source
• Is written in Java, so multi platform
• Is Pretty fast

(like: 100’s of messages per second)

• Requires JRE 1.5 or higher
– Tested with JRE (Java 5) 1.5 and JRE 1.6 (Java 6)

• See:
http://www.mostly-useless.com/blog/2007/12/27/playing-with-
activemq/
http://en.wikipedia.org/wiki/Java_Message_Service
http://stomp.codehaus.org/

Habari ActiveMQ client

• Supports
– Delphi 6 to 2010 and Free Pascal

– Apache ActiveMQ 4.0 to 5.2
– Stomp

(Streaming Text Orientated Messaging Protocol)

• Follows JMS API
(a lot of JMS documentation is available to get you going)

• Can do serialization
– XML
– JSON

• Requires a Delphi TCP/IP layer:
– Indy

– Synapse
– ICS6 (unsupported)
– Delphi Socket component (unsupported)

• See:
http://www.mikejustin.com/habari.html

2

What we used it for

•Transform

– From

•Classic client/server Delphi prototype

– To flexible structure

•Client = thick Delphi client

•Server = Delphi middleware to Firebird

•Server = Java middleware to Firebird (PC)

•Server = Java middleware on AS/400 (iSeries)

Delphi

Classic client/server structure

UI

ClientDataSets

FIBplus

DB

Delphi > Firebird
Java > DB2Delphi

Basic structure

UI

ClientDataSets

Active MQ Stomp

Client Interface
(Habari)

Active MQ

Active MQ

Server
Interface

Queries /
Stored Procedures

DB

Request
Queue

Response
Queue

SET/GET
Request

SET/GET
Response

SET/GET
Request

SET/GET
Response

How to get going

•Get acquainted to the JMS API
–Write some wrappers for this

•Define your message format
–We used XML with our own XSDs
XML looks a lot like ClientDataSet XML

•Write your own debugging tools
–Not much tooling around ActiveMQ

•Functionality in “Apache ActiveMQ Message
Admin Tool” came too late to help us

Test scenario

Client Echo server

Request-Queue

Response-Queue

Test scenario

•Easiest if you make queues configurable
� Config.xml

Client

Proxy forwarder

Echo server

Proxy
Request-Queue

Proxy
Response-Queue

Request-Queue

Response-Queue

Proxy forwarder

3

Business test scenario

Thick Client

Proxy forwarder

Middleware Server

Proxy
Request-Queue

Proxy
Response-Queue

Request-Queue

Response-Queue

Proxy forwarder

DBMS

Business scenario

Thick Client Middleware Server

Request-Queue

Response-Queue

DBMS

Demos - Client

• ActiveMQDemoClientMainFormUnit
– TActiveMQDemoClientMainForm

• .SendMessageToQueue
• .ProcessMessagesFromResponseQueue
• .ProcesMessageFromResponseQueue

• These follow the JMS API
– Have factory create a Connection

• Start Connection

– Have Connection create a Session
– Have Session create a Queue

and a MessageProducer on the Queue
and a Message
• Fill Message with content

– Have MessageProducer send the Message
– Close Producer, Session and Connection with finally blocks

Demos - Server

• ActiveMQDemoServerMainFormUnit
– TActiveMQDemoServerMainForm

• .EchoMessageInRequestQueueToResponseQueue
• .RespondToRequest

• These follow the JMS API
– Have factory create a Connection

• Start Connection

– Have Connection create a Session
with the right acknowlegement mode

– Have Session create a Queue
and a MessageConsumer on the Queue

– Have the MessageConsumer receive a Message
• Process the message

(in this case by echoing it like the Client does)
• Acknowledge the message

(so the Client or Proxy knows it was received)

– Close Producer, Session and Connection with finally blocks

Demos - Proxy

• ActiveMQDemoProxyMainFormUnit
– TActiveMQDemoProxyMainForm

• .ForwardMessage
used for both forwarding request and response

• These follow the JMS API
– Have factory create a Connection

• Start Connection

– Have Connection create a Session
with the right acknowlegement mode

– Have Session create a Queue
and a MessageConsumer on the Queue

– Have the MessageConsumer receive a Message
• Process the message

(in this case by forwarding it to the Server or Client;
this is the same as sending: like the Client does)

• Acknowledge the message
(so the Client or Server know it was received)

– Close Producer, Session and Connection with finally blocks

Client

Proxy forwarder

Echo server

Proxy
Request-Queue

Proxy
Response-Queue

Request-Queue

Response-Queue

Proxy forwarder

Extra demos (time permitting)

• Frames
– ConfigWebBrowserFrameUnit
– RequestResponseFrameUnit

•Components and property editors
– TDataLinkReflector
– TRecordArrivedNotifier
– TActiveMQDataSetProvider
– TXmlFileNameProperty

•unit ActiveMQDataSetProviderUnit;
– {$define CacheRequestConnection}
– {$define CacheResponseConnection}

4

Apache ActiveMQ Message

Admin Tool
• Got updated to 2.5.0 and now does much of what we needed
early this year:
http://sourceforge.net/projects/activemqbrowser/

• Requires JRE 1.6 (Java 6)
• Don’t forget to set this value to “true” in activemq.xml:

<managementContext>
<managementContext createConnector="true"/>

</managementContext>

• Connect with these settings:
– JMX URL service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi
– JMX role system
– JMX password manager
– Connection URL tcp://localhost:61616

Q & A

Jeroen Pluimers
better office benelux

jpluimers@better-office.com

If you have questions after the session, please mail me

Downloads will be on my blog: http://wiert.wordpress.com

