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The interaction of a monopolar vortex with a cosine-shaped topographic ridge at the
equator is investigated with a two-dimensional numerical model, where the (cyclonic)
monopole has a self-induced northwest-ward motion due to the S-effect. The fate of the
monopole depends on the width and height of the ridge, but, more importantly, on the
orientation of the ridge. Whereas monopoles are always seen to cross an east-west or
northeast-southwest ridge, a north-south ridge can cause such deformations in the
monopole’s shape that it either splits into two parts (where the associated secondary
vortex may or may not also cross the ridge) or it is destroyed. The computations show
that the monopole can only cross the top of the ridge once it has gathered sufficient
positive potential vorticity at its (north)west side. The vortex achieves this by moving
along the ascending side of the ridge, westward for the east-west ridge and northward for
the north-south ridge, before crossing the summit.
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1. INTRODUCTION

Vortices are common features under many geophysical circumstances.
Observations (see e.g., Richardson 1993a,b; Bower et al., 1995;
Kamenkovich et al., 1996; Bograd et al., 1997) have, for instance,
shown the existence of several kinds of vortices in the Earth’s oceans,
such as Meddies, Gulf Stream eddies and anticyclones, Agulhas
eddies, efc. These eddies are quite abundant; Richardson (1993b)
estimates that there are roughly 1000 discrete eddies in the North
Atlantic. The vortices move due to a combination of the latitudinal
variation of the Coriolis force (the so-called S-effect) and the general
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background oceanic flow. As such vortices move, they inevitably
encounter submarine topographic features at the bottom of the ocean
or the edges of coastal shelves.

Interactions with topographic features are known to influence the
trajectories of the vortices and it is possible that the vortex is destroyed
by the topography. For instance, Richardson (1993a,b) gives the
example of a Meddy off the westcoast of Portugal that had a
catastrophic end in the vicinity of Hyéres Seamount after an estimated
life time of 2.5 years. As a result, the Meddy’s contents — Medi-
terranean water with its high salinity and pollution — was released into
the Atlantic Ocean. Shapiro et al. (1995) report observations of a
Meddy that was damaged by a collision with a group of seamounts but
kept its coherent structure (though it lost some of its contents).

Eddies are thus thought to play an important role in transporting
water properties within the oceans and it is therefore of interest to
understand the basic mechanisms behind the interaction of a vortex
with a bottom topography. In this regard, a two-layer model has been
used by Kamenkovich ez al. (1996) for studying Agulhas eddies that
encounter a ridge, which showed that Agulhas eddies that cross the
ridge can carry their contents far into the South Atlantic subtropical
gyre. Smith and O’Brien (1983) used a two-layer model for an eddy on
a coastal shelf. Such eddies move along the shore with a tendency to
go onshore (offshore) for a cyclonic (anticyclonic) vortex (see also
Grimshaw et al., 1994). The latter tendency is caused by the [(-effect
(or its dynamical equivalent of a sloping bottom, with “north”
towards decreasing fluid depth; see e.g., Van Heijst, 1994): a cyclonic
(anticyclonic) monopole moves on the northern hemisphere to the
northwest (southwest). It is also this effect that causes a cyclonic
vortex to climb out of a conical valley and to the top of a hill
(Carnevale et al., 1991). Verron and Le Provost (1985) showed that
in a flow over an isolated seamount (anti)cyclonic vortices may be
formed, depending on the flow characteristics and the presence or
absence of the 3-effect. Ezer (1994) showed that eddies are formed in
the region where the Gulf Stream passes over a chain of scamounts.

The present paper employs a simple one-layer two-dimensional
(shallow water) model to study the basic features of vortex-—
topography interactions. As a first step in this investigation, a cyclonic
monopole that encounters a smooth ridge located at the equator is
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simulated, where the height and width of the ridge and its orientation
are varied. The numerical model used for the simulations is outlined
in Section 2. In Section 3 the effects of a topographic disturbance on
an approaching vortex are discussed and a simple example is given
to show that these effects are well represented by the model. The
monopole used for the interaction-study and the mechanism for its
motion (the (-effect) are introduced in Section 4. Sections 5 to 7
present the results of the simulations and some concluding remarks are
formulated in Section 8.

2. THE NUMERICAL MODEL

This section presents in brief the basic equations that describe the
evolution of a two-dimensional vorticity distribution in the presence of
a bottom topography and the numerical method used for the flow
simulations.

2.1. Governing Equations

In oceanic cases, typical bottom topographic disturbances induce
three-dimensional motions in the surrounding flow. Assuming,
however, that the vertical motions induced by the topography are
small compared with the horizontal velocities, viz.

wLu,v, (1)

where v = (u,v,w) is the relative velocity field of the flow, bottom
topography can be incorporated in a two-dimensional (2D) model.
With assumption (1) in mind, conservation of mass for a flow across a
topography with fluid depth H = H(x, y) is given by z

_0(Hu)  O(HY)
V-Hyv = o - 3 =0, (2)

or
Vey= -~ (v.-V)H, 3)

=
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for an incompressible fluid (where the fluid density p is constant). In
the case of the fluid depth H being uniform, this equation obviously
reduces to the familiar form V.v = 0. In order for the assumption of
(quasi) 2D motions (1) to remain valid, H must be of order 1: the
topography cannot be too high or too deep in a 2D model.

For incompressible (quasi) 2D flows across a topography, i.e. with
(1) and (3), conservation of momentum can be written as

._11)_)_[ (“’—?) E%-FH(V-V)(Q%—f) =V, (4)

with D/Dr¢ the material derivative, w the relative vorticity, defined by
w=VXy=wk=(000uw), (5)

v the kinematic viscosity, and f the so-called Coriolis parameter
f=2Qsin ¢, (6)

which describes the latitudinal (¢) variation of the vertical component
of the Earth’s angular rotation . (Both H and f are assumed to be
time-independent.) The ratio between large brackets in (4) is the
potential vorticity:

g =4 )

and (4) states that for inviscid fluids w, is conserved.

It is convenient to introduce what can be denoted the potential
stream function 9, (denoted the “mass transport streamfunction” by
Grimshaw et al., 1994), defined as

_ % Hv:—%, (8)

Hu = ay’ Ox

or, more generally

Hy = V X ki, = Vi, X k, )
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which satisfies (3). With definition (9), equation (4) becomes the 2D
Navier —- Stokes equation in the vorticity —streamfunction formulation
Ow

—6~t-+ J(wp, ) = vV, (10)

where the Jacobian operator J:

0A0B 0AOB

J(A,B) = 'é—x‘é;”‘ a_yg'x'y

(11)
describes the nonlinear advection effects. If this equation is made
dimensionless using a typical length scale Ly and a typical time scale
Ty, the familiar Reynolds number Re appears as
LT, T
Re=-"02_20 (12)

v v

where I'y is a typical scale for the circulation of the vorticity dis-
tribution. In what follows, all typical scales are set equal to unity, so
that the Reynolds number, in effect, is Re = 1/v, and all quantities are
given in dimensionless units. This implies that a vortex with a
translation velocity of 2, say, travels 2 length units in 1 time unit. The
default fluid depth, away from any topography, is H = 1.

From (3), (5) and (9) follows the relation between vorticity and
streamfunction

Hw = -V, + %I(VH Vi,), (13)

which may be denoted the modified Poisson equation, to distinguish it
from the regular Poisson equation -

W= _vZ,‘p, (14)

valid for cases with a uniform bottom topography. Here ¢ is the
regular streamfunction, defined by u = 94/dy and v = — 9¢/Ox and
satisfying V.v» = (.

Expanding the Coriolis parameter faround a reference latitude ¢ at
a sphere of radius R; leads to (e.g., Van Heijst, 1994):

f=/fo+ By+00?, (15)
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in the so-called B-plane approximation used in this paper. In (15) the
local north coordinate is y and

fo=20singg, B = 20;cospo/R;, (16,17)

with (), the rotation rate of the sphere.

Equations (10) and (13) form the set of equations to be solved by the
numerical method for given H = H(x,y), fo and 3, starting from an
initial vorticity distribution w(x, y,t = 0).

2.2. Numerical Method

The numerical method used for modelling the interactions of vortices
with topography is a finite difference method that solves the two-
dimensional (2D) Navier - Stokes equation in the vorticity-stream-
function formulation (Van Geffen, 1998). The time integration part of
the code is based on work by Orlandi and Verzicco (see e.g., Orlandi,
1990; Verzicco et al., 1995). Their code has been greatly extended and
improved to allow for a great variety of initial vorticity distributions,
to allow for different boundary conditions, to have the possibility of
following the motion of passive tracers, and to include background
vorticity and/or topography if needed. That viscous effects are handled
well by this method is shown by Van Geffen and Van Heijst (1998),
who considered among other things the decay of a Rankine vortex.

The method applies a discretization of the equations on a
rectangular grid in a rectangular domain in the x, y-plane. The time
evolution in (10) is computed with an explicit third-order Runge—
Kutta scheme, the viscous term »V2w with a Crank — Nicolson scheme,
and the nonlinear term J(w,, ¥,) with the Arakawa scheme. The use of
the Arakawa scheme (Arakawa, 1966) guarantees on the one hand
that in the inviscid case energy, enstrophy and skew symmetry are
conserved, and on the other hand that the computation has a high
degree of stability.

The regular Poisson equation (14) can be solved with a relatively
fast standard routine FACR (Fourier Analysis and Cyclic Reduction;
see Hockney, 1965). Unfortunately, this routine cannot solve the
modified Poisson equation (13) that is needed when bottom topo-
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graphy is present, and a considerably slower (5—10 times) standard
routine from the NAG Library has to be used (this routine is based
on a multigrid method). Both routines limit the choice of the number
of grid cells to 2" (n = 1,2, 3, ...) in either direction.

For the study of vortex—topography interactions the effect of the
boundaries of the computational domain should, of course, be
minimised, hence a relatively large domain is used. At the boundaries
of this domain the “free-slip”’ condition is applied: fluid cannot move
through the boundary, but it can move freely along it. Thus, the
boundary is a streamline. This boundary condition has much less
influence on the flow in the domain than the physically more realistic
“no-slip” condition, which has zero velocities at the boundaries due to
viscous friction effects. It is not possible to use periodic boundaries for
this study because (i) the use of such boundaries requires that the total
circulation [wdA in the full domain equals zero, which is not the case
for the monopole used below, and (ii) the NAG routine needed for
cases with topography cannot handle periodic boundaries.

3. BASIC EFFECTS OF A BOTTOM TOPOGRAPHY

The basic effects of a bottom topography can, perhaps, be explained
best by assuming that the fluid is inviscid. Equation (4) then states that
the potential vorticity w, is conserved:

BD;(‘-"-Ii;-f) ~0. (18)

Assume for the moment that the background rotation f'is constant
throughout the domain. If a vortex initially located where the fluid
depth is H = 1, moves to the top of a ridge (fluid depth H < 1), then
(18) states that the vortex becomes weaker. At the same time, the
vortex, which has a finite horizontal size, becomes shorter (since
H < 1) and wider (the fluid inside the vortex is incompressible). When
the vortex then moves away from the ridge it becomes stronger and
narrower again.

Since the numerical model employed here is two-dimensional, the
squeezing and stretching of the vortex, as it climbs and descends the
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topography, is of course absent. The widening and narrowing,
however, and the weakening and strengthening can be seen clearly in
the example discussed below, namely a Lamb dipole crossing a ridge.
This example was used as one of the cases to test the numerical model
in handling a bottom topography correctly. The reason that this
example is a good test is that the motion of the dipole is self-induced,
so that the presence of background rotation is not necessary to make it
move. For such cases, the effect of the topography alone can be seen.

3.1. A Lamb Dipole Crossing a Ridge

The Lamb dipole (Lamb, 1932; see also Meleshko and Van Heijst,
1994, who showed that the Lamb dipole is a special case of the more
general Chaplygin dipole) is a circular vortex structure consisting of
two oppositely-signed vorticity patches with a vorticity distribution
given by

2
-—%5"—1, (kgr) sin @, r<R;

w={ JolkaR) (19)
0, r >R,

where Uy is the strength of the dipole, r the radial distance to the
centre of the vortex, R its radius, and 6 the angle with respect to the
line of motion of the dipole. Jy and J, are Bessel functions of the first
kind and k,R=~3.8317 is the first non-zero root of J,. This dipole
moves due to a self-induced motion along a straight line (6 = 0). If the
fluid is inviscid and the domain is infinite, its velocity equals Up and is
constant in time, and the size of the vortex does not change. If there
are viscous effects, the vortex gradually slows down and becomes
bigger (see Van Geffen and Van Heijst, 1998). The time interval used
here, however, is so short that the effects of viscosity are small.

The Lamb dipole is placed on the negative x-axis and directed
towards larger x, i.e. with Uy > 0. A cosine-shaped ridge is placed
along the y-axis, such that the fluid depth H is given by

1 — Acos(xm/w) — A, —w<x< +w;
H= (20)
1, elsewhere
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with the maximum height of the ridge (at x = 0) being 24 (A4 is the
average height) and the width at its foot being 2w; see Figure 1 for an
illustration.

Consider, as an example, a Lamb dipole with radius R = 0.5 and
strength Uy = 2 initially at (-1.5,0) and approaching the ridge given
by (20) with 4 = 0.2 and w = 1. The domain measures 6 x 6 (with
128 x 128 grid cells) and Re = 1000. There is no background rotation
(f = 0), so that w /H is constant in time, if viscosity is ignored. Hence,
if H decreases, so does w, and equally so for both dipole halves. Since
the dipole reaches the ridge perpendicularly, the dipole will not move
away from its initial line of motion (the x-axis).

Figure 2 shows contours of vorticity at several moments in time for
the evolving dipole. It can be seen clearly from these graphs that the
dipole widens and weakens as it climbs the ridge (7 =0 to 7 = 0.75)
and becomes narrower and stronger again as it descends the ridge.
When it has left the ridge (7 = 1.75), the dipole is (almost) as small
and strong as it was before reaching the ridge.

The weakening and strengthening of the dipole can also be seen in
Figure 3, which shows the vorticity maximum of the dipole as a
function of time. Since there is no background rotation, w/H is
constant in time as mentioned above, except for a small decrease due
to viscosity. At the moment (7 = T},,,) when the extrema of vorticity
reach the edge of the ridge, their values are +43.5 (initial values:
+44.3). At the top of the ridge the fluid depth is H# = 0.6 and it then
follows from conservation of potential vorticity that the extrema of
vorticity at that point are wes (Tiop) = west (Tho) *¥0.6/1 = £26.1.

h'(xy y) = h(.’l!)
2A] /\
.
{ 1 '<——ﬁuj—> ¥ 1 1
3 2 -1 0 1 2 3

FIGURE 1 Cross-section of a cosine-shaped ridge A(x) along the y-axis, given by (20);
here, w = 1 and the maximum height of the ridge is 24. The fluid depth His H = 1 —hA.
The vertical dimension is introduced here for illustrative purposes only; the numerical
method is two-dimensional in the x, y-plane.
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Aapi

HER R 1 =028 = T =030

FIGURE 2 Contours of vorticity on the x, y-plane of a Lamb dipole crossing the
cosine-shaped ridge (shaded region) given by (20) with 4 = 0.2 and w = 1. Contours are
drawnat £0.1, +5, 10, ..., £ 35, + 40 (positive contours are solid, negative dashed).

This estimate is in good agreement with the results in Figure 3: the
computed values are £25.6. Futhermore, the curve of the maximum of
vorticity in Figure 3 can be fitted quite well with a cosine function,
especially the part where the dipole climbs the ridge. Figure 3 also
shows the Courant number CFL as a function of time, which is a
measure of the maximum velocity in the domain: the dipole slows
down as it becomes weaker and moves faster again as it descends
the ridge. That both quantities do not return exactly to their initial
value is due to the loss of some vorticity as the dipole crosses the ridge
(visible as a “‘tail” behind the vortex in Fig. 2) and due to a small
viscous decay.
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FIGURE 3 The maximum of vorticity (solid line) and the value of the Courant
number CFL (dashed line) as a function of time for the dipole of Figure 2. Note that
CFL has been multiplied by 30. The vertical lines represent the moments in time when
the maximum of vorticity crosses the edges and the top of the ridge.

At T = 0 a contour of passive tracers is placed around each dipole
half, at vorticity levels w = + 0.1. The surface of one of these contours
is given in Figure 4 as a function of time, showing clearly the change
in size as the dipole crosses the ridge. (Note that without topography
the surface of the contour should remain constant since the fluid
is incompressible.) Figure 4 also shows the divergence V-.v of that
contour, computed by integrating v-n along the contour, where 2 is the
unit normal vector of the contour. When the dipole is away from the
topography the divergence is zero, as expected from the relation given
in (3). (The divergence is not exactly zero after the dipole has crossed
the ridge due to the loss of some vorticity.) Both curves in Figure 4
again indicate that the dipole has (almost) returned to its original state
after it has crossed the ridge.

Although the dipole is not the main subject of this paper, a few
additional remarks might be in order.

For lower positive values of A the disturbance of the ridge is of
course correspondingly less and for 4 = 0 there is no disturbance at
all. For negative A-values, the nature of the disturbance is the same
but reversed: the dipole first becomes smaller and stronger as it
descends into the trough and it widens and weakens again when it
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FIGURE 4 Surface (solid line) and divergence V-v (dashed line) as a function of time
for one of the contours of tracers initially at vorticity levels w = £0.1 of the dipole of
Figure 2. Note that the surface value has been multiplied by 20. The vertical lines are as
in Figure 3.

climbs out of the trough. For values of 4 larger than the 4 = 0.2 used
above, the disturbance is correspondingly bigger. For 4 = 0.4, for
example, the dipole appears to be torn apart, though such a high ridge
is unacceptable since it violates the restrictions of the model to 2D
motions,

If the dipole encounters the ridge from another angle, then one half
of the dipole will start climbing the ridge before the other half has
reached the edge of the ridge. Consequently, the leading half will
become weaker than the trailing half and the result is an asymmetric
dipole that climbs the ridge along a curved path. Depending on the
angle of incidence, the dipole can be rebounded by the ridge.

An asymmetric dipole is also formed when the dipole reaches the
ridge perpendicularly, as above, but in the presence of a non-zero
background rotation fy. Since for this case (w + f)/H is constant
(inviscid case), the dipole halves are not affected in the same way as the
dipole climbs the ridge, and one half will become weaker than
the other half. Depending on the strength of the background rotation,
the dipole can be deflected from its path (e.g., for /= fo = 4), or its
path can be curved so much that the dipole cannot cross the ridge
(f = fo = 8). For intermediate cases (f = f, = 6) the dipole can be
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destroyed by the ridge, leaving a monopolar vortex from one half of
the dipole, while the other half can be torn apart to form a monopole
that leaves the ridge again at the ascending side (see also Carnevale
et al., 1988).

4. THE MONOPOLE USED FOR THE INTERACTION-STUDY

For the study of the interaction of a monopole with a topographic
ridge, a Bessel monopole is used. This is a monopolar vortex of Bessel
type with a vorticity distribution given by

(kR)T
N e A < R
w={ 2nR%J, (kR) Jo(kr), rs k& (2])

0, r> R,

where r is the radial distance to the centre of the vortex, R its radius,
and I' its strength or circulation, Jy and J, are Bessel functions of
the first kind and kR~2.4048 is the first non-zero root of J,. The
maximum of the vorticity is located at the centre of the monopole,
where Jy equals unity. The choice for a Bessel function monopole is
arbitrary, in so far that it seems best to start with a single-signed
monopole with an initial vorticity distribution that is smooth and
confined to a finite region. Furthermore, the vortex given by (21) is an
exact, stationary solution of the inviscid vorticity equation without
topography and a background rotation which is independent of
location —i.e. (10) with v = 0, f = constant and /# = | — in an infinite
domain, satisfying the linear relationship w = k*y. The interaction
processes are therefore not influenced by possible instabilities in the
vortex itself.

The monopole is made to move using the B-effect and Section 4.1
outlines why a monopole moves on the 3-plane and what its trajectory
is. Trajectories of monopoles that encounter a ridge can then be
compared with this pure 8-plane trajectory. The ridge used is of the
type given by (20) and sketched in Figure 1, and it is placed either
along the x-axis (Section 5), the line y = x (Section 6) or the y-axis
(Section 7). In all cases the ridge is centred on the equator y = 0. The
ridge has variable height and width, with the default values 4 = 0.2
and w = 1.0.
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Unless specified otherwise, all computations presented here are
made in a 20 x 20 domain (centred around the origin) with 256 x 256
grid cells; only a part of this domain is shown in plots of trajectories
and contours. The background rotation is given by fo = 0 and § = 0.3.
The Bessel monopole has radius R = 0.5 and strength I' = 4 and is
initially located at position (3, —3). The time step is Az = 0.05 and
the Reynolds number is Re = 1000. Each simulation ends at T = 50,
unless it is at that moment unclear what the fate of the monopole is
going to be, in which case the computation is continued.

Initially, a passive tracer is placed at the centre of the monopole,
where the maximum of vorticity wmax 18 located. If the monopole
moves on a pure 3-plane this tracer stays nicely at wpyax and the tracer
can be used to plot the trajectory of the monopole. If, however, the
monopole crosses the ridge, the tracer is often no longer located at the
true wmax and the tracer then moves around wp,«. Thus, for such cases,
the tracer cannot be used to track the monopole and wn,,, itself must
be used. Since wyax (location and value) is only determined at grid
points — whereas a tracer can move between grid points — a plot of
wmax hecessarily shows steps from grid point to grid point. This ob-
scures the effects being studied and therefore a running average over
20 time steps is used in graphs like Figures 7 and 8.

4.1. A Bessel Monopole on a Pure f-plane

In the absence of any background vorticity (i.e. f=0and H= 1), a
single circular monopole will remain fixed at a certain position: it
possesses no self-propelling mechanism and all it does is rotate about its
centre. Note that a monopole placed in a finite domain moves around
the centre of the domain due to the presence of the boundaries, as
discussed by Van Geffen et al. (1996). To minimise this effect in the
computations presented in this paper, the domain is made large relative
to the size of the monopole.

On a pure G-plane (with H = 1), however, the situation is essentially
different. As the monopole rotates, fluid parcels are advected around
its centre and conservation of potential vorticity then results in the
creation of relative vorticity. The lowest order term in 3 causes a
westward drift of the vortex, and the next term adds a north- or
south-ward component. As a result of this, a cyclonic (anticyclonic)
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monopole moves to the north-west (south-west) on the northern
hemisphere. It is this effect that is used below to make a monopole
cross a topography. For more about the characteristics of the motion
of a monopole on a B-plane, the reader is referred to McWilliams et al.
(1986), Carnevale et al. (1991), Korotaev and Fedotov (1994), Sutyrin
et al. (1994), Van Heijst (1994), and references therein.

The motion to the north-west of a cyclonic (positive) Bessel
monopole can be seen in Figure 5 — a simulation carried out in order
to provide a reference with which the simulation of the interaction of a
Bessel monopole with a ridge (see below) can be comparted. Figure 5
shows the trajectories of such a monopole until 7' = 50 for Re = 1000
and Re = 10,000. The two trajectories do not differ significantly, as
can also be seen from the straight-line fits through the data of these
simulations. The difference that is visible is due to the faster decay of
the monopole at Re = 1000, as a result of which it moves slower than
the monopole at Re = 10,000. Figure 5 also shows what the trajectory
of such a monopole would be in the absence of any background
rotation, i.e. the motion due to the presence of the boundaries cf. Van
Geffen et al., 1996). Clearly, the overall motion of the monopoles on

7y ' : " 8=03 Re= 1000 —— |
RN : 8= 0.3, Re = 10000 --- --
3 b R g no B, Re = 1000 —-—-- |
2
o 1
0
1
-2
.3 .
"3 '2 -1 0 1 2 3 4
X

FIGURE 5 Trajectories of a Bessel monopole on a S-plane for Re = 1000 (solid line)
and for Re = 10,000 (short-dashed line). The two straight lines are fits through the data
points of the curves. The dot-dashed line to the right shows the trajectory of the
monopole in the absence of a S-effect.
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the G-plane is due to the presence of the S-effect and the effects of the
boundaries are negligible.

The path the monopole follows is not a straight line. The reason
for this is that as the vortex moves it sheds vorticity in the form of
Rossby-waves and the vortex interacts with these Rossby-waves. Such
interactions lead to somewhat more complicated trajectories. These
Rossby-waves are visible in the contour plots shown in Figure 6. The
larger the value of 3, the faster the monopole sheds vorticity in the
form of Rossby-waves, and hence the more bends the trajectory of
the monopole shows. Trajectories like those shown in Figure 5 have
also been observed in laboratory experiments, where the (-effect can
be mimicked with a sloping bottom boundary in a rotating tank, with
the north direction being oriented towards decreasing fluid depth
(Carnevale et al., 1991; Van Heijst, 1994). Using a sloping bottom in
the numerical model with 8 = 0 also leads to trajectories similar those
in Figure 5.

The size of the domain does not have a significant influence on the
direction of the motion of the monopole on the B-plane: it moves to
the northwest along a trajectory such as shown in Figure 5. The
Rossby-waves shed by the moving vortex are confined to the finite-
sized computational domain and *‘reflect™ at the boundaries back into
the domain. A domain of different size thus means that the interaction
of the monopole with the Rossby-waves is different, which leads to a
difference in the number and location of the bends in the trajectory
only, not in the overall direction of motion. A linear fit through the
trajectory data as in Figure 5 shows that for a 20 x 20, 30 x 30 and
40 x 40 the average motion is the same to within 0.5%. A 10 x10
domain shows a much larger difference (5%) and initially a clear
tendency of the monopole to go to the north-east due to the
boundaries. Hence, a 20 x 20 domain is sufficiently large to neglect
boundary effects.

For different values of the strength T of the monopole, the main
difference is the distance the monopole travels in a certain time in-
terval: the larger the value of I', the faster the monopole moves; the
number of bends in its trajectory is not affected significantly.

The north-west motion of the monopole can be observed for a wide
range of B-values and the trajectories lie around that in Figure 5. For
very small 3 (say 8 = 0.01) the monopole first tends to go to the north-
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FIGURE 6 Contours of vorticity of the x, y-plane of a Bessel monopole and of the
Rossby-waves it leaves behind as it moves on a S-plane for Re= 1000; its trajectory is
shown in Figure 5. Contours are drawn at intervals of 0.1 between — 2.0 and 2.0; positive
contours are solid, negative dashed, and the zero contour is dotted. Note that in this and
following plots only the central part of the computational domain is shown.

east, a motion induced by the boundaries (cf. the dash-dotted line in
Fig. 5) but it quickly turns to the north-west. For low 3, the monopole
moves slower than the case shown in Figure S. For larger G-values the
monopole loses vorticity (as Rossby-waves) faster, and hence it travels
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slower than in Figure 5. For 8 = 1 the monopole decays so fast that it
disappears between T = 45 and 50.

In the following sections, where the monopole encounters a
topographic ridge, the domain size (20 x 20), the strength of the
monopole (I'= +4) and the S-parameter (3 = 0.3) are not varied.

5. A RIDGE ALONG THE x-AXIS

Consider first of all a ridge of the type given by (20) but oriented along
the x-axis, with 4 = 0.2 and w = 1.0. Figure 7 shows the trajectory of
a Bessel monopole that encounters this ridge as it travels to the north-
west under the action of the (-effect. The same graph shows for
comparison the trajectory of the monopole in the absence of the ridge
(as in Fig. 5, Re = 1000): though the trajectory is changed by the
ridge, the position at 7 = 50 is seen to be almost the same for both
cases. The monopole travels first more to the north than without a
ridge. When it has reached the ridge, it climbs the ridge somewhat,
then travels westward along the ridge, before it crosses over the top.
Figure 8 shows that the monopole becomes weaker during this time
interval, and then slightly stronger again as it descends the ridge

------- S rid1ge: A=0.2, w=1—o
: no topography ----
o | i
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FIGURE 7 Trajectory of the maximum of vorticity of a Bessel monopole that
encounters a ridge like (20) along the x-axis with 4 = 0.2 and w = 1 (solid line) and its
trajectory in the absence of the ridge (dashed line). The thick horizontal lines mark the
edges of the ridge.
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FIGURE 8 The maximum of vorticity as a function of time of the Bessel monopole
whose trajectory is shown in Figure 7. The vertical lines represent the moments in time
when the maximum of vorticity crosses the edges and the top of the ridge.

somewhat. The vorticity reaches a minimum value when the monopole
crosses the top of the ridge. As soon as it descends along the north-side
of the ridge, the monopole becomes stronger again. When it has left
the ridge, it continues its normal -induced, north-west motion, From
Figure 8 it is clear that the maximum of vorticity is then even some-
what larger than expected from the viscous decay of the monopole
in the absence of a topography.

Figure 9 presents the evolution of the monopole by way of con-
tour plots of vorticity (see Fig. 6 for the same evolution without
topography). The graph of T = 15 indicates that when the monopole
travels westward along the ridge its core becomes distorted to an
elliptic shape for a while. At closer inspection (not shown) the
monopole appears to shed some vorticity at one tip of the ellipse. At
about T = 20 the monopole is roughly circular again and it crosses the
top of the ridge.

This process becomes clearer if the time evolution of the potential
vorticity w,, as defined by (7), is considered. Initially, at T =0,
sufficiently far from the ridge and the vortex, the contours of potential
vorticity are all equidistant from each other and parallel to the x-axis,
since w, = By there; the north direction is solely determined by 3 and
is in the positive y-direction. The presence of the ridge deforms this
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FIGURE 9 Contours of vorticity on the x.y-plane of a Bessel monopole that
encounters a ridge along the x-axis (shaded region); its trajectory is shown in Figure 7.
Contour levels as in Figure 6.

equidistant pattern since the topography introduces a local north in
the direction of decreasing fluid depth. On the south side of the ridge
the local north is therefore parallel to the S-induced north, and at the
other side of the ridge the local north is anti-parallel to the S-induced
north. Since the 3-effect is much stronger than the effect of the ridge,
the overall north direction remains the positive y-direction, but the
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contours of potential vorticity are no longer equidistant from each
other over the topography. It is this property that disturbs the
monopole’s trajectory.

Figure 10 shows contours of potential vorticity w, of the evolving
monopole for the crucial period between 7= 12 and T = 23 when the

FIGURE 10 Contours of potential vorticity on the x,y-plane of the evolving
monopole of Figure 9 during the period it crosses the ridge (shaded region). Contours
are drawn at intervals of 0.1 between + 1.0 and — 1.0; positive contours are solid,
negative dashed, and the zero contour is dotted.
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ridge effect is strong. When the monopole reaches the ridge it is
surrounded by negative w,, with a rather large gradient at its north-
side. Evidently, this configuration prevents the monopole from going
further north and it travels westward along the ridge. This motion
occurs because of the westward drift caused by the lowest order term
in 3 (Section 4.1) and also because of the presence of so much negative
w,. The negative potential vorticity makes the monopole somewhat
elliptic and then more circular again. Meanwhile, the monopole rolls
up the w,-contours and pulls positive w,-values southward and to
itself. At 7 = 20 there is positive w, close to the north-west side of the
monopole and the latter can then cross the top of the ridge and
descend at the other side of the ridge. Evidently, the negative potential
vorticity temporarily forms a barrier for the (positive) monopole until
the monopole is able to shed it. Once there is enough positive poten-
tial vorticity west of the monopole — i.e. left of the monopole seen
with respect to the orientation of the ridge - the monopole can cross
the ridge.

The degree of the influence of the ridge on the monopole depends
on its characteristics 4 and w (and its shape, of course, but that is kept
as in Fig. 1). As seems intuitively obvious, the larger the value of A,
the more the trajectory differs from the trajectory it follows when
there is no topography. For 4 = 0.25 the position at T = 50 differs
nearly one length unit in the x-direction, indicating that a ridge with
A = 0.25 might be too large for a model assuming two-dimensional
motions.

If the ridge is wider than in Figure 7, the monopole crosses the ridge
more to the right (east) and ends up more to the right at 7 = 50. If the
ridge is narrower the opposite takes place: the monopole travels more
to the west along the ridge before it crosses the top, and at 7 = 50 the
monopole has a position more to the west. It thus seems that a ridge
of w1 results in a trajectory most similar to the trajectory in the
absence of the ridge. The reason for this difference in behaviour for
different w-values is not yet clear, though it appears to be linked to the
value of the ratio between the size of the monopole and the width of
the ridge. Examination of this point is complicated by the growth in
size of the vortex due to viscous decay as it moves towards and across
the ridge.
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6. A RIDGE ALONG THE LINE y=x

The ridge discussed above has an influence on the trajectory of the
monopole, but this influence is not so significant that the monopole is
deformed sufficiently that it does not survive crossing the ridge. This is
mainly so because the potential vorticity contours of the S-effect are
only slightly displaced in the y-direction by the presence of the east-
west oriented ridge.

A similar ridge oriented along the line y = x gives rise to a larger
deformation in the contours of w, and these contours are no longer
parallel to the x-axis over the ridge. The result is that a monopole
that reaches the ridge, starting from the same initial position, is rela-
tively more deformed. Figure 11 shows as an example comparable
trajectories for several values of the height of the ridge. These
trajectories are clearly more different from the ridge-less case than is
the case for a ridge along the x-axis and the positions at T = 50
are further apart. Compare, for instance, the trajectory for 4 = 0.20
in Figure 11 (dash-dotted line) with Figure 7: in Figure 11 the mono-
pole performs a loop over the ridge before it leaves the ridge and

no t(')pography L
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FIGURE 11 Trajectories of the maximum of vorticity of a Bessel monopole that
encounters a ridge like (20) along the line y = x with w = 1 and different values for 4, as
well as its trajectory in the absence of the ridge. The thick diagonal lines mark the edges
and top of the ridge.
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travels further north-west. A smaller loop is visible in the trajectory
for 4 =0.15 (dotted line), and a bigger one in that for 4 = 0.25
(not shown).

Again, it appears that negative potential vorticity acts as a kind of
barrier for the monopole as in Figure 10: the monopole can only
definitively cross the ridge when the negative w, patch north-west of it
is no longer present and the monopole has only positive w, to its left,
seen with respect to the ridge. With a ridge along the line y = x this
state is apparently more difficult to attain than with a ridge along the
X-axis.

7. A RIDGE ALONG THE y-AXIS

A ridge oriented north-south appears to have a more disturbing effect
on a monopole that tries to cross it: the monopole can be destroyed, in
contrast to the cases discussed above. For this reason, the effect of a
ridge along the y-axis is studied in more detail.

7.1. A Ridge with 4 = 0.20 and w = 1.0

A topographic ridge along the y-axis introduces relatively large
deformation of the contours of potential vorticity from the pure
(B-effect, as can be seen in the top-left panel of Figure 12: the local
north induced by the ridge points to decreasing fluid depth, which
is perpendicular to the overall north direction from the (-effect. The
result is that at the top of the ridge the w,-contours are squeezed
towards y = 0, the more so the higher the ridge. Figures 12 and 13
show for a ridge given by (20) with 4 = 0.2 and w = 1.0 contours of
potential vorticity w, and relative vorticity w, respectively. As the
monopole approaches the ridge, contours of potential vorticity are
rolled up around it. Once the monopole is on the ascending (east) side
of the ridge, at 7 = 20, it starts to move to the north along the ridge.
This direction of motion is, at first sight, unexpected since the local
west direction induced by the ridge is pointing to the south. It would
therefore seem logical that the monopole travels to the south (as it
travels to the local west in Fig. 10). But this is apparently prevented by
the presence of negative w, south of the monopole.
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FIGURE12 Contours of potential vorticity on the x, y-plane of a Bessel monopole
that encounters a ridge like (20) with 4 =0.2 and w = 1.0 along the y-axis (shaded
region). Contour levels as in Figure 6.

Once the monopole has gathered enough positive potential vorticity
around it, it can cross the top of the ridge, which it does at about
T = 25. Due to a rather large shear on the monopole’s north-east side,
it is deformed strongly and splits into two parts between 7 = 30 and
35. The front part strengthens as it descends the ridge and manages to
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e

FIGURE 13 Contours of relative vorticity on the v, y-plane of the case shown in
Figure 12. Contour levels as in Figure 6.

get clear from the ridge, followed by the usual north-west motion
induced by the J-effect. The smaller trailing vortex visible at 7' = 35
seems somehow stuck on top of the ridge: it is too weak to descend the
ridge permanently and it is torn apart by the strong shear in the “tail”
of the leading vortex.
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At T = 20, when the vortex is still on the east side of the ridge, the
maximum of vorticity wmax 1S Clearly located at the centre of the
monopole. As the vortex moves to the north, so does wpayx. At some
point between 7T = 25 and 30, when the deformed vortex has partly
crossed the top of the ridge, the location of wp,ax is suddenly at the west
side of the ridge, when that part of the vortex has become stronger
than the trailing part. The trajectory of wnax, plotted in Figure 14,
therefore shows a “jump”. The maximum of vorticity, given in Figure
15 as a function of time, reaches a minimum value at the moment of
this jump. Due to the loss of a part of the vortex while crossing the
ridge, the monopole is damaged and apparently this results in a lower
wmax than expected from viscous decay (Fig. 15). Yet, the position at
T = 50 is not so very different from the ridge-less case.

7.2. Ridges of Different Widths

A north-south ridge clearly can have a significant effect on a mono-
pole trying to cross it. In order to investigate the interaction more
closely, consider first of all a change in the width of the ridge, with w
ranging from 0.25 to 2.0 in steps of 0.25 (the total width of the ridge

ridge: A=02,w=1——0o
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FIGURE 14 Trajectory of the maximum of vorticity of the Bessel monopole of
Figure 12 (solid line) and its trajectory in the absence of the ridge (dashed line). The
dotted line piece in the solid line indicates that the location of wpax jumps from the right to
the left side of the ridge at 7 = 27.6. The thick vertical lines mark the edges of the ridge.
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FIGURE 15 The maximum of vorticity as a function of time for the Bessel monopole
whose trajectory is shown in Figure 14. Vertical lines represent the moments in time
when the maximum of vorticity crosses the edges and the top of the ridge.

is 2w; see Fig. 1) for A = 0.2. Figure 16 shows plots of the potential
vorticity w, at T = 30 for all w-values and Figure 17 shows trajectories
of the maximum of vorticity wnax for selected w-values.

For the case w = 0.25, the diameter of the monopole is twice the full
width of the ridge. The ridge affects the monopole slightly (Fig. 16) but
its trajectory (Fig. 17) is much like the ridge-less case except for an
increase in the westward velocity of the monopole. As w increases to
w = 0.50, the width of the ridge and the diameter of the monopole are
almost the same (due to viscous effects the monopole has grown a little
when it reaches the ridge) and, in this case, the monopole is clearly
split into two portions (Fig. 16). The trajectory of wnax (Fig. 17) 1s
quite different from the ridge-less case and as in Figure 14 for w = 1.0,
it shows a jump. In fact, this case looks rather much like the w =1.0
case of Figures 12— 15. The trailing vortex visible in Figure 16 does not
manage to cross the ridge before it is dissipated.

A ridge slightly wider than the monopole (see the case with w = 0.75
in Fig. 16) does deform the vortex but there is no splitting into two
parts. The trajectory of wmax (not shown) is quite complicated, with an
Q-shaped turn at the west-edge of the ridge. At T = 50, however, the
position is almost the same as for w = 0.50 and w = 1.0.
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FIGURE 16 Contours of potential vorticity on the x, y-plane at T = 30 of a Bessel
monopole that encounters a ridge like (20) along the y-axis with A = 0.2 for various
widths of the ridge (shaded region) and for the ridge-less case (top-left). Contour levels
as in Figure 6.

The case of w = 1.00, discussed in more detail above, leads to a
splitting of the vortex as for w = 0.50, but unlike the w = 0.75 and
w = 1.25 cases. For the latter case, where the ridge is about twice as
wide as the monopole, the vortex is deformed considerably (Fig. 16),
leaving behind a trail of vorticity, but without a secondary vortex
being formed. The trajectory of wp.x (not shown) lies between the
trajectories for w = 0.25 and w = 1.50 (Fig. 17) and at the west-edge of
the ridge it shows a loop that is larger than for w = 1.50. The position
at T = 50 lies near the penultimate bend in the w = 0.25-trajectory.

For w = 1.50, the deformation of the monopole due to the ridge is
less than the deformation for smaller w-values. At T = 30 (Fig. 16), the
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FIGURE 17 Trajectories of the maximum of vorticity of a Bessel monopole that
encounters a ridge like (20) along the y-axis with 4 = 0.2 and selected values for w, as
well as its trajectory in the absence of the ridge.

vortex is on the top of the ridge, with a trail of vorticity behind it
(which does not lead to a secondary vortex). After 7 = 30, the vortex
descends the ridge at the west, performs a small loop near the edge and
then goes westward (Fig. 17).

Figure 16 shows that for a wide ridge, such as w = 1.75 and
w = 2.00, the deformation of the monopole is less than for smaller
ridges, a feature that is true for T < 30 also. But the centre of the
monopole is still at the east side of the ridge. Subsequently - see
Figure 18 — the vortex undergoes another deformation, and then
restores itself (at 7 = 40), but it still has not passed the top of the ridge
completely. Another deformation follows and, by then, the vortex is so
weak that it does not survive: it is destroyed by the vorticity induced
by the ridge.

In all these cases the initial position of the monopole is the same:
(3,—3). This means that when the vortex reaches the edge of the ridge it
is not in all cases of the same size and strength because of viscous
effects. Consider instead initial positions such that the centre of the
monopole is always 2 length units from the edge of the ridge (no
graphs of these simulations are shown). For the narrower ridges,
w < 1, the difference in evolution is not significant, though the forms of
the deformations are slightly different. For wider ridges, w > 1, there is
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FIGURE 18 Contours of potential vorticity on the x, y-plane of a Bessel monopole
that encounters a ridge like (20) with 4 = 0.2 and w = 1.75 along the y-axis (shaded
region). Contour levels as in Figure 6.

a bigger difference. Ridges with w = 1.25 and w = 1.50, for instance,
are too wide for the monopole to cross before it decays due to
viscosity. And for larger w-values the vortex is dissipated at earlier
times. This indicates that viscosity plays an important role in the
evolution of the vortex —topography interaction.

7.3. Effect of a Lower Viscosity

Reducing the viscosity has two notable effects: the strength of the
monopole reduces less fast and the low-level vorticity induced by the
ridge, the Rossby-waves and the motion of the vortex across the grid
decays slower. To see the effect of this on the monopole’s evolution,
the same simulations as above are made at Re = 10,000 [with the
monopole always starting from (3, —3) again]. Using a 256 x 256 grid
for these simulations is not enough since a 512 x 512 gives significantly
different results when there is a ridge in the domain, so the latter grid
is used (with time step A, = 0.025). Perhaps an even denser grid is
desirable, but for computational reasons this option is not feasible.
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(Using a 512 x 512 grid for the Re = 1000 simulations proved to make
little difference).

Figure 19 shows contours of potential vorticity at 7 = 30 for all the
w-values and Figure 20 shows the trajectory of the maximum of
vorticity for some w-values. These graphs can be compared directly
with Figures 16 and 17 for Re = 1000, respectively. The vortex
survives crossing the ridge in all cases, with the formation of a
secondary vortex for w = 0.50, 0.75 and 1.0. The trajectories are more
complicated, as can be seen from Figure 20. At 7" = 50, the vortices are
located south-west of the vortex in the ridge-less case, except for
w = 0.75 (not shown): then the vortex is just north of the ridge-less
case. For ridges with w > 1 the positions at T = 50 are quite close

w
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FIGURE 19 Contours of potential vorticity on the x, y-plane at 7 = 30 of a Bessel
monopole that encounters a ridge like (20) along the y-axis with 4 = 0.2 for various
widths of the ridge (shaded region) and for the ridge-less case (top-left), for Re = 10,000.
Contour levels as in Figure 6.
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FIGURE 20 Trajectories of the maximum of vorticity of a Bessel monopole that
encounters a ridge like (20) along the y-axis with 4 = 0.2 and selected values for w, as
well as its trajectory in the absence of the ridge, for Re = 10,000.

together (see w = 1.50 in Fig. 20). There are more bends and loops in
the trajectories than in Figure 16 due to the presence of the vorticity
induced by the ridge and Rossby-waves. A brief summary of the case
study results is as follows.

w = 0.25

w = 0.50

There is, as with the Re = 1000 case, little deformation
when the vortex crosses the ridge. The vorticity shed by the
monopole, visible in Figure 19, does not lead to a
secondary vortex and the monopole crosses the ridge
without much damage. The maximum of vorticity wp,x,
however, is after it crossed the ridge (around 7 = 30)
higher than expected from viscous decay without a ridge, as
can be seen in Figure 21 (for Re = 1000 this is not the
case). The reason for this increase in wpayx 1S unclear, but it
is evidently associated with the reduction in size of the
monopole. This excess in wp,, decays relatively fast and at
T = 50 it is only a little higher than expected.

At T = 30 (Fig. 19), a secondary vortex is formed at the east
side of the ridge, originating from a splitting of the initial
vortex as it crosses the top (shortly after 7 = 25). The
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FIGURE 21

The maximum of vorticity as a function of time of the Bessel monopoles

whose trajectories are shown in Figure 20.

w=0.75
w = 1.00
w=1.25

leading vortex (where wmax within the domain is located)
moves away from the ridge after 7= 30 along a complex
curved path. The secondary vortex manages to cross the top
of the ridge as well, but it is not yet free from the ridge
at 7 = 50.

The monopole is slightly smaller than the ridge when it
crosses the top (at about T = 25) and there is a deforma-
tion similar to the case with Re = 1000, but now a
secondary vortex is formed in the wake of the main vortex
on the west side of the ridge. This secondary vortex follows
the leading one on its north-west path.

This case again looks more like w = 0.50 than like w = 0.75
and a clear secondary vortex is formed on the east side of
the ridge. This secondary vortex, which seems to be of the
same size as the leading vortex, also crosses the top of the
ridge, but is not free from the ridge at 7 = 50. The value of
wmax (Fig. 21) shows an oscillatory behaviour after it has
reached a peak value when located at the edge of the ridge
(just before T = 40).

This ridge deforms the monople somewhat as it crosses the
top, but there is no sign of a secondary vortex being formed.
At T = 30 (Fig. 19), the monopole is at the top of the ridge.
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From there, it moves westward away from the ridge before
going somewhat more to the north-west after 7 = 40.
w = 1.50 This case looks similar to w = 1.25, except that the
trajectory of wnmax (Fig. 20) lies after it has crossed the ridge
first more to the south and then to the west of the w = 1.25-
trajectory, though the positions at 7 = 50 are not far apart.
Again, the value of wya.x West of the ridge is higher than
expected from viscous decay (Fig. 21), but not as high as
for lower w-values.
= 1.75 and w = 2.00 These two cases are rather alike, leaving the
ridge slightly more to the south thanw = 1.50,
but meeting near the same point at 7 = 50.

7.4. Ridges with Different Heights

The ridges along the y-axis discussed above all have 4 = 0.2 in (20),
which means that the maximum height of the ridge is 24 = 0.4.
Compared with the default fluid depth H = 1 this is probably about
the maximum value of 4 allowed for the assumption of 2D motions to
remain valid. Therefore, only smaller A-values (4 = 0.15, 0.1 and 0.05)
are investigated. For all these cases, at every w-value used above, the
monopole appears to be able to cross the ridge. For 4 = 0.15, de-
formations in the shape of the vortex are visible at 7= 25-30, but the
monopole recovers from this, without an indication of splitting into
two parts. For lower values of A deformations are hardly visible.
Hence, a ridge with 4 = 0.2 is much more disturbing for the monopole
than lower ridges.

Figure 22 presents, as an example, the trajectories of the maximum
of vorticity wmax for w = 1.0 (with Re = 1000 again). For low ridges,
these trajectories do not differ significantly from each other. For
A = 0.15, wpnax performs a loop just before crossing the top of the
ridge, in contrast to the cases for lower values of 4, where there is no
such loop near the top, but there is a rather sharp turn to the west.
Near the western edge of the ridge there is a loop in the trajectory for
all three cases. For 4 = 0.2 the trajectory is quite different from the
other cases and it shows no loop, only a kind of §2-turn west of the ridge
(see also Fig. 13). Even a very low ridge (see for example 4 = 0.05)
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FIGURE 22 Trajectories of the maximum of vorticity of a Bessel monopole that
encounters a ridge like (20) along the y-axis with w = 1.0 and several values for A4, as well
as its trajectory in the absence of the ridge.

clearly affects the trajectory of the monopole, especially near the wes-
tern edge of the ridge.

As for the value of wy,, for these cases: there is a small decrease for
A = 0.05 and 0.1 when the monopole crosses the ridge, as expected,
and wnay recovers to the value expected from viscous decay quite well.
For A = 0.15, the decrease in wpay is bigger and shows a bump (like in
Fig. 8) when the monopole performs the loop near the top of the ridge.
When the monopole has left the ridge, wnax 1s larger than expected
from viscous decay: crossing the ridge has strengthened the vortex,
(wmax for 4 = 0.2 is shown in Fig. 14).

8. CONCLUDING REMARKS

The interaction of a monopolar vortex with a topographic ridge has
been investigated with a two-dimensional numerical method. In the
model, the (cyclonic) monopole, which is of Bessel type, moves
through the domain to the north-west due to the so-called (-effect, i.e.
the latitudinal variation of the Coriolis force: f = By, with y the local
north coordinate. As the monopole moves it leaves behind vorticity
in the form of Rossby-waves and the monopole interacts with these
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waves. Because of this interaction the monopole’s trajectory is not a
simple straight line to the north-west (see Fig. 5).

In the course of its motion through the domain, the monopole
encounters a topographic ridge with a cosine shape (Fig. 1), oriented
in different ways and with the possibility of having different heights
and widths. From the results presented in this paper it is clear that the
width and height of the ridge are important for what happens to a
vortex that encounters the ridge. Even more important, however, is
the orientation of the ridge, i.e. the degree to which the topography
deforms the contours of potential vorticity from the S-effect, which lie
equidistant from each other and parallel to the x-axis. The nature of
the interactions occuring as the controlling parameters are varried is
extremely complex, requiring a parametric case study approach to
understand the associated dynamics.

A ridge along the x-axis causes only a minimal deformation of these
contours and hence only a small disturbance in the trajectory of the
monopole that encounters the ridge. It seems that the vortex can only
cross the top of the ridge once it has positive potential vorticity
sufficiently close to its (north)west side, and the vortex achieves this
by moving westward along the ascending side of the ridge (Fig. 10).
If the ridge is along the line y = x the contours from the g-effect
are deformed more and the monopole’s trajectory differs more from
the ridge-less case than for a ridge along the x-axis. In both cases,
however, the vortex manages to..cross the top of the ridge after
gathering sufficient positive potential vorticity, even for very high and
wide ridges (“very high” of course within the assumption of two-
dimensional motions in the model).

A north-south oriented ridge causes considerable deformation of the
contours from the S-effect: the local north coordinate induced by the
ridge is directed uphill, i.e. perpendicular to the north coordinate of
the (-effect. Because of this, such a ridge can have a more significant
effect on the fate of the vortex, depending on the width and height,
than the earlier ridges. There does not seem to be a simple criterion to
distinguish different regimes of the monopole’s evolution, but a few
remarks can be made. For low ridges, the disturbance is minimal and
for these low ridges the width is not of influence on the survival of the
vortex; different widths lead, however, to slightly different trajectories
after the monopole has crossed the ridge. Somewhat higher ridges
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cause more disturbances in the monopole’s trajectory and deform its
shape more, but the vortex can cross the ridge.

For a very high ridge, with a height of 0.4 times the fluid depth away
from the ridge, the results can be summarised as follows. A very
narrow ridge (smaller that the size of the monopole) seems to have
little effect on the monopole itself, though its trajectory is shifted
somewhat. Wider ridges can deform the vortex so much that it splits
into two parts when it crosses the top of the ridge (where the secondary
vortex may or may not also cross the ridge). And for even wider ridges,
3 to 4 times the size of the monopole, the deformation can lead to the
destruction of the monopole if the monopole is not strong enough
(anymore). The latter condition also depends on the strength of the
viscous effects.

Higher ridges no doubt lead to more deformations and the possible
destruction of the monopole even for narrow ridges. In principle it
is even possible that the relative vorticity changes sign when the
monopole climbs the ridge. Let wo and w, be the relative vorticity
of the monopole away from the ridge and at height 2= 1-H,
respectively. Conservation of potential vorticity (neglecting viscous
effects for a moment) then implies that w;, = wy(1 —A)—Ahf. For a
positive monopole a change of sign thus takes place if 4 > wp/(w + f).
For a ridge with /= 1/3 this occurs if wy < f/2 = (By/2. This means
either a very weak monopole, or a strong [(-effect or a very large
y-value —all of which seems not realistic within the model. The higher
the ridge, the more plausible such a change of sign. But since a height
of 0.4 seems to be about the maximum allowed height within the
assumption of two-dimensional motions, this cannot be investigated
with the model.

The computations described in this paper are performed with a
monopole of radius 0.5 in a 20 x 20 domain. If a larger domain is used,
two effects influence the evolution of the monopole. A detailed study
of this point falls outside the scope of the present paper, but a few
remarks are in order. As noted in Section 4.1, the trajectory of the
monopole will show a difference in the number and location of the
bends caused by the interaction with the Rossby-waves. Without any
topography, this has no significant effect on the average motion of the
monopole. If the monopole encounters a ridge, however, there will be
a difference in the evolution since the monopole will reach the ridge at
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a slightly different location under a somewhat different angle because
of the bends in its trajectory. Hence, the interaction of the monopole
with the ridge-induced relative vorticity — clearly visible north and
south of the monopole in, for example, Figure 13 — will be a little
different. A larger domain also means that for a north-south ridge the
generation of relative vorticity at the ridge near the boundaries will be
stronger, since this depends on the north-south coordinate y, that is
on the degree in which the ridge deforms the contours of potential
vorticity of the S-effect, which is more for larger |y|. Since this stronger
ridge-induced relative vorticity is at the same time further away from
the centre of the domain (where the monopole’s evolution takes place),
the effect on the monopole’s evolution is less than the effect of the
vorticity induced by the ridge near the monopole. The combined effect
of a slightly different approach of the north-south ridge by the
monopole and the stronger ridge-induced vorticity further away (for
larger |y|) is that there will be a small difference in the monopole’s
evolution if a larger domain is used. But there is no indication that a
larger domain means better or more accurate results, since the relative
vorticity at the ridge is generated by the ridge, not by the boundaries of
the domain. A 20 x 20 domain is thus sufficiently large and the results
should be considered with respect to this domain.

In all cases when the monopole actually crosses the top of the ridge,
it can only do so after it has gathered sufficient positive potential
vorticity on its (north)west side. For a north-south ridge, the vortex
achieves this by going north along the ascending (east) side of the ridge
(Fig. 12). The computations discussed in this paper are made on a pure
B3-plane, with f= fy + By = By, which means that the domain has a
part with negative (y < 0) and a part with positive (y > 0) potential
vorticity when the monopole approaches the ridge (see for instance the
top-left panel of Fig. 12). In other words, the ridge is centred on the
equator (y = 0), where f changes sign. It therefore seems likely that
the fate of the monopole also depends on the initial y-position of the
vortex. This point is currently under study and results will be presented
elsewhere.

Another point that will be addressed is the effect of a non-zero f; in
the Coriolis parameter f= f, + By. For motions in the absence of
topography the value of f, does not matter since it is a constant that
drops out of the equations: it only appears in derivatives. If the fluid
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depth H does depend on position, however, this is no longer the case
since the potential vorticity w, = (w + f')/H appears in the derivatives.
The value of f; will therefore matter for the evolution of the monopole
when it is on the ridge and hence f, may determine the actual fate of
the vortex.
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