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Abstract  
 
Satellite measurements of sulphur dioxide (SO2) concentrations are used to set up an automated 
service which issues notifications by e-mail in case of exceptional SO2 concentrations. Such “SO2 
events” could signify volcanic activity, as SO2 is one of the major trace gases released during volcanic 
eruptions. Most eruptions also release ash and in that case SO2 can serve as a marker for the 
presence of volcanic ash. Volcanic ash, when transported high up in the troposphere, poses a great 
hazard to aviation: aircraft flying through a volcanic ash cloud may suffer major damage, including 
engine failure. The SO2 alert service – named the Support to Aviation Control Service (SACS) – thus 
provides information to the Volcanic Ash Advisory Centres (VAACs), whose official task is to gather 
information regarding volcanic ash clouds and to assess the possible hazard to aviation. Other users 
of SACS are volcanological observatories, health care organisations, scientists, etc. Currently SACS 
uses measurements of the SCIAMACHY, GOME-2 and OMI instruments for SO2 data. This will be 
extended with an Absorbing Aerosol Index (AAI) from these instruments, as well as SO2 data and an 
aerosol flag from the IASI instrument. Maps, data and product information can be found at the SACS 
website:  http://sacs.aeronomie.be/ 

A HAZARDOUS ENCOUNTER  

It is evening over Asia when on 24 June 1982 the scheduled British Airways flight 009, carrying 248 
passengers and 15 crew, flies over Indonesia at an altitude of 11 km, on its way from London 
Heathrow to Perth in Australia and then further to New Zealand. An hour and a half or so before the 
Boeing 747 had picked a fresh crew in Kuala Lumpur. The weather looks perfect, no meteorological 
problems are forecast, and the weather radar shows no echoes. [Wikipedia, 2009a; GVP 2009a; 
Diamond, 1986; Hanstrum and Watson, 1983.] 

The aircraft has just passed the Indonesian island Java when at 20:40 Jakarta time (13:40 UTC) 
the first signs show up that something may be wrong: flares are visible on the wind screen, like St. 
Elmo’s fire, smoke starts entering the passenger cabin, and the engines look unusually bright. Then at 
20:42 engine number four surges and flames out. The crew starts the standard shut-down procedure 
for engine four, while there is a yellow glow visible around the other engines. Less than a minute later 
engine two flames out, and immediately after that also engines one and three. 

Without any engine working, the Boeing 747 has become a glider. Given that it started from an 
altitude of 11 km, the crew knows it can glide for about 23 minutes and cover about 170 km before 
reaching the surface. The closest airport is Jakarta, but to reach that the aircraft has to pass the 
coastal mountain range at an altitude of at least 3.5 km. Restarting at least one the engines does not 
succeed, and therefore the crew heads for a gliding landing at the surface of the ocean – something 
no-one had ever attempted before with a 747, nor has it been done since. 

Cabin pressure falls and automatically the oxygen masks drop from the ceiling. But at the altitude 
of the aircraft there is not enough air to have all oxygen masks work, so the captain decides to 
descend rapidly (1.8 km in a minute) to an altitude with sufficient air pressure to make the oxygen 
masks work. This manoeuvre most likely saved everyone on board ... 
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Figure 1:   Part of one of the Boeing-747 engines 
of flight BA-009 after flying through the volcanic 
ash plume, June 1982. [Photo by captain Eric 
Moody, British Airways.] 

 
 
Figure 2:   Photograph of Redoubt's North face taken about 35 
minutes after the ash burst of 15 March 2009 during a monitoring 
flight. A dark area of fresh ash deposits lies on top of the snow 
on the sloping crater floor. In front of that a gas plume escapes 
from a vent near the crater rim. The sinuous dark stripe in the 
foreground is a watery debris flow that emerged from beneath the 
ice about 20 minutes after the ash event. [Photo by Heather 
Bleick; GVP, 2009b.] 

 
Suddenly, at 20:56, engine four comes back to life and shortly after that engine three, allowing the 

crew to increase the altitude slowly. Then also the other two engines restart, and the aircraft climbs to 
4.5 km. But then the flaring on the windscreens reappears, and engine two surges again, forcing it to 
be shut down. The crew takes the aircraft back down to an altitude of 3.6 km and heads for Jakarta 
airport. Visibility there is good, but the crew can see very little through the windscreens and the 
landing lights do not seem to give any light, so they have to land almost entirely on the instruments. 

Upon inspection of the engines (Figure 1), the windscreens, etc. of the aircraft it was found that 
the problems had been caused by an encounter with a volcanic ash cloud, released by the 2168-m 
high volcano Galunggung (7.25ºS, 108.06ºE), which had erupted some time before 19:00 Jakarta 
time. At the moment of the encounter with the ash cloud, the aircraft was some 150 km from the 
volcano at an altitude of about 11 km. The aircraft’s radar had not picked up the dry volcanic ash, as 
the radar is designed to pick up drops of moisture from clouds. The sharp drop of the aircraft to get to 
an altitude with more air pressure for the oxygen masks had brought the aircraft back into clean air, 
making a restart of some of the engines possible. 

Flight BA-009 was not the first to encounter an ash cloud from Galunggung: on 5 April 1982 – the 
day the volcano erupted for the first time since 64 years – a DC-9 of Garuda Airlines, on an internal 
Indonesian flight, experienced problems related to volcanic ash. After that first eruption, there were 
several eruption episodes, the tenth being from 24-27 June. Another eruption took place on 13 July 
that year and caused another major hazardous encounter: a Singapore Airlines Boeing 747 – on its 
way from Singapore to Melbourne, carrying 230 passengers – passed through an ash cloud at an 
altitude of 9 km. Three of the four engines failed and the aircraft descended some 3.5 km, after which 
one of those three engines restarted and the aircraft made it safely to Jakarta airport. After this second 
incident, the air space around Galunggung was closed for a while. Galunggung has been quiet again 
since early 1983. 

On 15 December 1989 there was another major incident: KLM Flight 867, on its way from 
Amsterdam to Tokyo, was descending into Anchorage airport when the Boeing 747, carrying 231 
passengers and 14 crew, flew through a thick ash cloud released by the 3108-m high volcano 
Redoubt (152.74ºW, 60.49ºN) at about 10:15 Alaska time, some 200 km away from the point of 
encounter. Again the volcanic cloud did not show up on the on-board radar. All four engines failed at 
11:50 Alaska time (23:50 UTC). Eight minutes later, after a descent of more than 4 km, the crew 
managed to restart the engines and safely land. The windshields were damaged, as were internal 
aircraft systems, avionics and electronics. The costs of repairing the damage amounted to more than 
80 million USD. Redoubt erupted on 14 December for the first time since 1966-68, and remained 
active until June 1990. [Wikipedia, 2009b; GVP, 2009b; Dean, et al., 1994; Carn et al., 2008.] The 
following eruption phase started on 15 March 2009 (Figure 2). 
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VOLCANIC ERUPTIONS: HAZARDS TO AVIATION 

Per year there are some 55 to 60 volcano eruptions, and some cases the volcanic ash reaches the 
altitudes of scheduled flights. Once high up in the troposphere, volcanic ash can travel over large 
distances. An ash cloud released by the Pinatubo eruption on 15 June 1991, for example, travelled in 
three days more than 7000 km, to the east coast of Africa. This ash cloud damaged more than 20 
aircraft, most flying more than 1000 km away from the volcano [USGS, 1997]. Over 90 encounters 
with a volcanic ash cloud have lead to damage to aeroplanes. The economic costs of this have been 
estimated at 250 million USD for the period 1982-2000. 

When flying through a volcanic ash cloud, ash particles enter the jet engines and this may 
immediately lead to a deterioration of the engine’s performance and possibly to engine failure, 
because the ash particles deposit in the hot sections of the engine. The molten ash will coat fuel 
nozzles, combustor and turbine, which reduces the efficiency of the fuel mixing and restricts air 
passing through the engine, leading to surging, a flame out and loss of engine thrust. Furthermore, the 
ash may also seriously erode moving parts in the engine. [USGS, 2009; Diamond, 1986] 

Volcanic ash is highly abrasive and any forward-facing surface of an aeroplane is likely to be 
damaged (“sandblasted” as it where): cockpit windows, landing light covers, leading edges of wings 
and tail, etc. The cockpit windows may become so scratched that pilots cannot see the runway 
anymore when they land, as in the case of the BA-009 flight described above. Furthermore, the ash 
may also end up in the ventilation system en eventually spread throughout the cabin. Any gases that 
are in the volcanic cloud, such as sulphur dioxide (SO2), may also end up in the cabin. Smoke and a 
strong odour of sulphur filled the cockpit and cabin of the B-747s mentioned above when they passed 
through the volcanic cloud. [USGS, 1997; Diamond, 1986.]  

SO2 itself is toxic and can seriously affect human health. In combination with water vapour (also 
present in volcanic clouds) it forms sulphuric acid (H2SO4), which is toxic and corrosive. It is at the 
moment unclear to what extent these compounds form a direct hazard to aviation [Bernard and Rose, 
1990]. But their presence at flight level may be a tell-tale sign of volcanic activity [Carn et al., 2008]. 

THE VOLCANIC ASH ADVISORY CENTRES (VAACS) 

The three incidents of the encounters in 1982 and 1989 of a Boeing 747 with a volcanic ash cloud 
changed the views on aviation safety forever, leading to awareness of the hazard to aviation of 
volcanic ash clouds and to Volcanic Ash Advisory Centres (VAACs). The VAACs were established in 
September 1995 at a meeting of the International Civil Aviation Organisation (ICAO). To ensure that 
volcanic cloud hazards were addressed, the VAACs would form an interface between volcano 
observatories, meteorological agencies and air traffic control centres. [USGS, 2009] The VAACs – 
there are nine, based at meteorological agencies, and covering most of the world – are part of the 
International Airways Volcano Watch (IAVW), which was set up in the early 1980s.  
 
 

   
 
Figure 3:   SO2 concentrations in Dobson Units (DU) measured by three 
UV/Visible satellite instruments on 14 May 2008. The SO2 was released during 
an eruption of Etna (Sicily). High SO2 values were measured by SCIAMACHY 
(left) around 08:50 UTC, by GOME-2 (centre) around 09:16 UTC, and by OMI 
(right) around 12:23 UTC. With its limited geographic coverage SCIAMACHY 
clearly misses most of the SO2 cloud. 
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THE SUPPORT TO AVIATION CONTROL SERVICE (SACS) 

Though SO2 clouds released by volcanic eruptions are not part of the VAAC tasks, monitoring SO2 
can be useful, as SO2 is often a good marker for the presence of volcanic ash [Carn et al., 2008; 
Krueger et al, 2008], notably during the first day or two of an eruption. After some time the two will 
separate due to gravitational effects: ash sinks faster to the surface than the SO2 or the sulphuric 
aerosols it forms into. SO2 is the third major trace gas released into the atmosphere during volcanic 
eruptions, after water vapour and carbon dioxide (CO2). 

The aim of the Support to Aviation Control Service (SACS) is to monitor in near-real time SO2 
concentrations worldwide using satellite instruments and in case of exceptional SO2 concentrations, 
i.e. “SO2 events”, to issue alerts by e-mail to the VAACs and other users, pointing them to dedicated 
web pages with maps and related information. In addition, SACS has an archive for case studies, for 
validation of the notification criteria, and for inter-comparison of satellite data. The near-real time and 
archive data, as well as the alerts of “SO2 events” are available at http://sacs.aeronomie.be/ 

Current SACS data products and alert service 

At the moment of writing, Sept. 2009, SACS employs SO2 data from three satellite instruments that 
measure in the UV/Visible, namely SCIAMACHY aboard ENVISAT, GOME-2 aboard MeTop-A, and 
OMI aboard EOS-Aura (Figure 3). Of these, the data from SCIAMACHY is currently in use for the alert 
service that notifies subscribers of an “SO2 event”. Criteria for alerts based on GOME-2 and OMI data 
will be implemented in the near future. For each alert a dedicated map of a 30 by 30 degree region 
around the location of the SO2 peak value that triggered the alert is made and put on a dedicated web 
page, mentioned in the email sent to the subscribers. The near-real time and archive data is presented 
in the form of 60 detailed maps of 30 by 30 degree regions plus two maps for the poles, thus covering 
the whole world (these predefined regions are marked by the green lines in Figure 4). As the presence 
of clouds is an important issue when observing volcanic ash clouds, maps of the cloud cover fraction 
are provided alongside the SO2 maps.  
 
 

 
 
 
 
 

 
Category 

Number 
of alerts 

SZA ≤ 75 º  
VCD > 10 DU 

 
81 

SZA ≤ 75 º 
VCD < 10 DU 

 
119 

SZA > 75 º 
all VCD 

 
60 

In SAA area, 
all VCD, SZA 

 
37 

 
Total  

 
256  

 
Figure 4:   Map of the location of SO2 alerts for June 2009 based on data from the SCIAMACHY instrument. Different 
sized or coloured symbols are used for different categories; numbers of alerts for each are given in the table on the 
right. Measurements taken at high solar zenith angle and over the area known as the South Atlantic Anomaly (SAA) are 
difficult and often lead to false alerts (data is limited to SZA ≤ 80º). A large number of the alerts over a part of the 
Northern Hemisphere is related to the eruption of the Sarychev Peak volcano (48.1º N, 153.2º E) on one of the Kuril 
Islands, which started on 12 June and continued for several days. The eruptions released a relatively large amount of 
SO2 in the atmosphere, which was subsequently transported by stratospheric winds across the Northern Hemisphere. 
Alerts triggered by this SO2 continued well into July. 
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Concentrations of SO2 are derived from SCIAMACHY and GOME-2 data with a Differential Optical 

Absorption Spectroscopy (DOAS) technique [e.g. Khokhar et al. 2005; Thomas et al., 2005; Richter et 
al., 2006; Rix et al., 2009]. Determination of SO2 concentrations involves taking into account the 
absorption by ozone in the same wavelength window (315 – 325 nm). In addtion a background 
correction is applied, based on a relationship between the thus determined O3 and SO2 
concentrations, such that on average and away from emission sources there is no SO2. An initial 
validation showed that GOME-2 and SCIAMACHY data are consistent [Van Geffen et al, 2008]. 

The SO2 data product based on OMI measurements uses different subsets of calibrated residuals 
of the NASA operational ozone retrieval algorithm at selected UV wavelengths: four in the range 310.8 
– 314.4 nm and two non-absorbing wavelengths at 345 and 370 nm [e.g. Krotkov et al., 2006; Carn et 
al., 2007]. According to intercomparisons performed within SACS, the method used for OMI leads to 
SO2 total columns consistent with those derived from SCIAMACHY and GOME-2. 

Planned extension of the SACS data products 

GOME-2 and SCIAMACHY measure in the local morning (09:30 and 10:00 local solar time, resp.) and 
OMI in the local early afternoon (13:45), all on the day-side of the Earth, thus providing basically two 
data points per day. For the benefit of aviation safety, the more data points the better. An additional 
data point will be available with the incorporation of SO2 data derived from measurements in the 
Infrared by IASI aboard MetOp-A: it measures in the morning at the same time as GOME-2, and also 
at the local night side of the Earth 12 hours later, thus providing a third data point (Figure 5). 

The detection of SO2 by IASI is based on the presence of absorption features in the thermal 
infrared, notably in the ν3 band. The retrieval provides an SO2 index in terms of a brightness-
temperature difference in Kelvin units [e.g. Clarisse et al., 2008; Clerbaux et al., 2009]. The approach 
is currently implemented at ULB and used with a special filter for issuing alerts (see http://cpm-
ws4.ulb.ac.be/Alerts/). This alert service will be incorporated in the system of SACS and SO2 maps 
similar to those of the UV/Visible instruments will be provided. 

The system set up under SACS is primarily concentrating on SO2 data, based on the idea that 
SO2 may serve as a marker for the presence of volcanic ash, in particular in the early hours to days 
after an eruption. To provide some additional information that may help to identify volcanic ash clouds, 
SACS plans to provide maps of the Absorbing Aerosol Index (AAI), based on UV/Visible observations, 
and an Aerosol Flag (AF), based on IASI data. As a start, the SACS near-real time web pages already 
provide maps of the OMI AAI. The AAI – determined from the radiance difference at two wavelengths, 
usually around 340 and 390 nm – is positive (negative) for absorbing (scattering) aerosols. It remains 
to be investigated whether the AAI is a good indicator of the presence of volcanic ash. The AF is 
determined from broad spectral features of volcanic aerosol in the wavelength range 700 to 1300 cm-1, 
though the retrieval may be hindered by the presence of meteorological clouds and other aerosol. 

Elevation and extension of the volcanic plume 

For their tasks to assess the possible hazard of volcanic ash clouds, the VAACs determine the motion 
of the ash clouds with dispersion models. These models currently rely on rather crude assumptions of 
the horizontal and vertical extent of the ash cloud, as little is known about this in near-real time. To 
improve their advices, the VAACs need more accurate information of in particular the altitude and 
vertical size of an ash plume. This is the main topic of the SAVAA – Support to Aviation for Volcanic 
Ash Avoidance – project: SAVAA aims to set up a demonstration system able to ingest satellite data 
and meteorological wind fields, in order to compute the injection height profile of volcanic emissions, 
using trajectory and inverse modelling [Prata et al., 2008]. SACS will set up a close link with SAVAA: 
SO2 data and alerts will be input for the SAVAA system, and results of the SAVAA analysis in case of 
“SO2 events” will be added to the dedicated alert web pages. 

Complementary information on the altitude of an SO2 cloud can also be derived directly from 
UV/Visible measurements by applying a more advanced retrieval scheme, based on a direct fit of SO2, 
ozone and other absorbers that play a role in the selected wavelength window. The possibilities of this 
approach – probably in combination with a first guess provided by the DOAS retrieval mentioned 
above – will be investigated under SACS. It is likely that this will provide at least a rough estimation (in 
terms of a few km) of the altitude of the SO2 plume. 
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Figure 5:   Maps of an SO2 concentration index from IASI data, in terms of a temperature-brightness difference, after an 
eruption of Etna (Sicily) in the afternoon of 10 May 2008, showing the motion of the SO2 cloud to the east. The times 
given are the times in UTC of the measurement of the SO2 patch. Note that the colour scale changes between the 
successive maps. The small pictures on the right are cuts from GOME-2 SO2 maps at the times corresponding to the 
IASI maps on the left; the colour bar of these maps is that of Figure 3. 
 
 

Likewise, the high spectral resolution of IASI allows for the retrieval of vertical profiles to estimate 
the altitude of peak concentration using a line-by-line inversion method [Clarisse et al., 2008]. These 
estimates will typically be better for larger eruptions. For the moderate Jebel at Tair eruption, for 
instance, the peak altitude was estimated to be 16.5 ± 2 km (Figure 6). With this approach also SO2 at 
lower altitudes can be detected. 

CONCLUDING REMARKS  

Volcanic ash clouds pose a hazard to aviation: when crossing through such a cloud, the ash can 
seriously hamper the functioning of aircraft systems and damage its structure. The best policy for 
aircraft is to stay clear from volcanic ash clouds. The Volcanic Ash Advisory Centres (VAACs) have 
the task to gather information on the location, altitude and motion of volcanic ash clouds and to issue 
advices to aviation control and airline organisations in case of possible threads to aviation. 
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Figure 6:   Vertical profile of SO2 concentrations derived from IASI measurements for the eruption of Jebel at Tair, a 
volcano on a small island in the Red Sea, on 30 September 2007.  
 
 

The Support to Aviation Control Service (SACS) is set up to assist the VAACs in their tasks by 
monitoring world-wide concentrations of sulphur dioxide (SO2) from satellite and issuing alerts in case 
of exceptional concentrations (“SO2 events”). Knowledge of the presence of SO2 itself is not part of the 
VAAC tasks, but SO2 may serve as a marker for the presence of volcanic ash clouds, since SO2 is one 
of the major trace gases released during volcanic eruptions. 

The present paper describes the implemented and planned elements of SACS. The main focus of 
SACS lies on providing SO2 data and maps of instruments onboard polar-orbiting satellites, measuring 
in the UV/Visible (SCIAMACHY, OMI, GOME-2) and the Infrared (IASI), and issuing alerts in case of 
“SO2 events” by e-mail, pointing the subscribers to dedicated web pages with additional information 
(such as the altitude and motion of the cloud). Further, there will be data and maps of the Absorbing 
Aerosol Index (AAI) from the UV/Visible instruments and an Aerosol Flag from IASI.  

Though SACS is in first instance set up to support the VAACs in their tasks, the data, maps and 
alerts are also of use to others, notably to local volcanological and public safety organisations. In this 
respect the potential of detecting so-called passive degassing of SO2 prior to eruptions, known to take 
place at some types of volcanoes, is very promising. SACS will collaborate closely with the SAVAA 
project [Prata et al., 2008], which focuses on determining origin, elevation and motion of volcanic 
clouds. 

The SACS data and map archive can be used for case studies to further the knowledge of SO2 
emissions during volcanic eruptions and the subsequent motion and lifetime of SO2 clouds through the 
atmosphere. Maps, data, alerts and product information can be found at the SACS website:  
http://sacs.aeronomie.be/ 
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