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ANOTA – Analysis Of Tables 

Jelke Bethlehem, January 2006 

1. Introduction 

1.1 About ANOTA 

ANOTA (ANalysis Of TAbles) is a statistical technique to explore possibly existing 
relationships between categorical (nominal) variables. One of the variables is 
assigned a special role. It is called the dependent variable. All other variables, the 
explanatory variables, are considered to be predictors of the dependent variable.  

ANOTA resembles linear regression analysis. The main difference is that the 
dependent variable in linear regression analysis must be numerical. In ANOTA 
dependent as well as explanatory variables are categorical. The estimated 
coefficients have the same interpretation as regression coefficients. They measure 
the effect of the categories of the explanatory variables on the categories of the 
dependent variable. The coefficients are corrected for possible effects of other 
explanatory variables and therefore present 'pure' effects. In terms of the Nelder & 
Wedderburn (1972) generalized linear models, ANOTA analyses a linear model with 
main effects only, and with identity link function. So the main effects can be 
interpreted as contributions to proportions (rather than to transformed proportions).  

Due to the specific nature of the model, it is not necessary to have the raw data. If 
suffices to input all possible bivariate tables. This reduces the amount of data which 
have to be processed.  

1.2 An example 

To provide the reader with some feeling of what ANOTA does, this section treats a 
very simple example. In a CBS household survey, called the Survey on Well-being 
of the Population in The Netherlands 1977 (see CBS, 1978), questions were asked, 
among others, about Satisfaction, Income, and Education. The three relevant 
bivariate frequency tables are displayed in tables 1.2.1, 1.2.2 and 1.2.3, where also 
the categories are described. The relevant sample size is 4108. All figures are 
unweighted sample frequencies; we will assume that the sample design is simple 
random sampling.  
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Table 1.2.1. Satisfaction (S) by Income (I) 

Satisfaction                                      Income *) Total 

 <21 21 - 40 > 40 Unknown  

Not too satisfied 132 78 13 41 264 
Rather satisfied 208 198 46 87 539 
Satisfied 631 773 192 261 1857 
Very satisfied 282 485 152 169 1088 
Extremely satisfied 103 155 51 51 360 

Total 1356 1689 454 609 4108 

*) Dutch Guilders x 1000 per annum, 1977 
 

Table 1.2.2. Satisfaction (S) by Education (E) 

Satisfaction                                     Education Total 

 Low Medium High Unknown  

Not too satisfied 175 54 22 13 264 
Rather satisfied 304 140 59 36 539 
Satisfied 1159 452 169 77 1857 
Very satisfied 632 291 115 50 1088 
Extremely satisfied 222  90 36 12 360 

Total 2492 1027 401 188 4108 

 

Table 1.2.3. Income (I)  by Education (E) 

Income *)                                      Education Total 

 Low Medium High Unknown  

< 21 1037 196 59 64 1356 
21 -40 912 546 154 77 1689 
> 40 146 152 133 23 454 
Unknown 397 133 55 24 609 

Total 2492 1027 401 188 4108 

*) Dutch Guilders x 1000 per annum, 1977 

 

Let us consider Satisfaction as dependent and Income and Education as predictor 
(independent) variables. A good way to represent the sample information with 
respect to this view is displayed in table 1.2.4.  

This table displays for each category of a predictor variable (Income or Education) 
the distribution over the categories of the dependent variable (Satisfaction) as 
deviations from the average proportions of the categories of Satisfaction in the 
sample. From this table we concluded that more Income or more Education will in 
general increase the chances on a positive Satisfaction score and decrease the 
chances on a negative score. Besides the average proportions and the deviations of 
proportions, also their standard errors, based on a multinomial sampling process, are 
shown.   
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Table 1.2.4. Satisfaction by Income and Education as deviations from average, in % 
(standard errors in parentheses). 

Satisfaction Average  Income *) 

   <21 21 - 40 > 40 Unknown 

Not too satisfied 6.4 
(0.4) 

 3.3 
(0.6) 

-1.8 
(0.4) 

-3.6 
(0.8) 

0.3 
(0.9) 

Rather satisfied 13.1 
(0.5) 

 2.2 
(0.8) 

-1.4 
(0.6) 

-3.0 
(1.4) 

1.2 
(1.3) 

Satisfied 45.2 
(0.8) 

 1.3 
(1.1) 

0.6 
(0.9) 

-2.9 
(2.2) 

-2.3 
(1.9) 

Very satisfied 26.5 
(0.7) 

 -5.7 
(0.9) 

2.2 
(0.8) 

7.0 
(2.1) 

1.3 
(1.7) 

Extremely satisfied 8.8 
(0.4) 

 -1.2 
(0.6) 

0.4 
(0.5) 

2.5 
(1.4) 

-0.4 
(1.0) 

Total 100.0  0.0 0.0 0.0 0.0 

*) Dutch Guilders x 1000 per annum, 1977 

 
 
Table 1.2.4. Satisfaction by Income and Education as deviations from average, in % 
(standard errors in parentheses), continue). 

Satisfaction Average  Education 

   Low Medium High  Unknown 

Not too satisfied 6.4 
(0.4) 

 0.6 
(0.3) 

-1.2 
(0.6) 

-0.9 
(1.1) 

0.5 
(1.8) 

Rather satisfied 13.1 
(0.5) 

 -0.9 
(0.4) 

0.5 
(0.9) 

1.6 
(1.7) 

6.0 
(2.8) 

Satisfied 45.2 
(0.8) 

 1.3 
(0.6) 

-1.2 
(1.3) 

-3.1 
(2.3) 

-4.2 
(3.5) 

Very satisfied 26.5 
(0.7) 

 -1.1 
(0.6) 

1.9 
(1.2) 

2.2 
(2.1) 

0.1 
(3.1) 

Extremely satisfied 8.8 
(0.4) 

 0.1 
(0.4) 

0.0 
(0.8) 

0.2 
(1.4) 

-2.4 
(1.8) 

Total 100.0  0.0 0.0 0.0 0.0 
  
 
However, if we look at the distribution of the predictor variables Income and 
Education, as displayed in table 1.2.5, it will be clear that these two variables are not 
independent: more Education in general means more Income and vice versa. So, 
now we are in doubt whether the higher Satisfaction scores for higher Education are 
caused by Education itself or by Income, in view of the relatively higher Income in 
the categories of higher Education. This question is completely analogous to the 
explanation problem behind multiple regression models.  
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Table 1.2.5. Income(I) by Education(E)  as deviations from average, in %. 

Income *) Average  Education 

   Low Medium High  Unknown 

< 21 33.0  8.6 -13.9 -18.3 1.0 
21 - 40 41.1  -4.5 12.0 -2.7 -0.2 
> 40 11.1  -5.2 3.7 22.1 1.2 
Unknown 14.8  1.1 -1.9 -1.1 -2.1 
Total 100.0  0.0 0.0 0.0 0.0 

*) Dutch Guilders x 1000 per annum, 1977 
 
 
ANOTA supplies us with a simple answer: see table 1.2.6. This table contains the 
effects of the predictor variables on the dependent variable. They are displayed in 
the same way as in table 1.4, but now corrected for the interdependencies between 
the predictor variables. To be more precise, the effect of, say, Education on 
Satisfaction is computed as if the Income distribution per Education category is the 
same as the average distribution in the sample. In other words, it is the net effect of 
Education on Satisfaction under constancy of Income; or it is the effect of Education 
after removal of the Income-effect. The interpretation is exactly the same as the 
interpretation of regression coefficients in multiple regression analysis (with dummy 
variables) or as the interpretation of effects in analysis of variance.  

Looking at table 1.2.6, we see that, after correcting for the interdependencies 
between Income and Education, the effect of Education on Satisfaction is changed in 
sign with respect to table 1.2.4: now more Education means less Satisfaction. The 
positive effect of Income on Satisfaction is accentuated in the ANOTA result. Note 
that we may read the ANOTA table two ways: in one column the 'standardized' 
distribution, expressed as a deviation from the average, can be read, while one row 
gives the regression coefficients explaining the proportion in that row as a function 
of the predictor variables.  
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Table 1.2.6. Satisfaction by Income and Education as deviations from average, in % 
(standard errors in parentheses). 

Satisfaction Average  Income *) 

   <21 21 – 40 > 40 Unknown 

Not too satisfied 6.4 
(0.4) 

 3.3 
(0.6) 

-1.8 
(0.4) 

-3.6 
(0.8) 

0.3 
(0.9) 

Rather satisfied 13.1 
(0.5) 

 2.2 
(0.8) 

-1.4 
(0.6) 

-3.0 
(1.4) 

1.2 
(1.3) 

Satisfied 45.2 
(0.8) 

 1.3 
(1.1) 

0.6 
(0.9) 

-2.9 
(2.2) 

-2.3 
(1.9) 

Very satisfied 26.5 
(0.7) 

 -5.7 
(0.9) 

2.2 
(0.8) 

7.0 
(2.1) 

1.3 
(1.7) 

Extremely satisfied 8.8 
(0.4) 

 -1.2 
(0.6) 

0.4 
(0.5) 

2.5 
(1.4) 

-0.4 
(1.0) 

Total 100.0  0.0 0.0 0.0 0.0 

*) Dutch Guilders x 1000 per annum, 1977 

 

Table 1.2.6. Satisfaction by Income and Education as deviations from average, in % 
(standard errors in parentheses), continued. 

Satisfaction Average  Education 

   Low Medium High  Unknown 

Not too satisfied 6.4 
(0.4) 

 0.6 
(0.3) 

-1.2 
(0.6) 

-0.9 
(1.1) 

0.5 
(1.8) 

Rather satisfied 13.1 
(0.5) 

 -0.9 
(0.4) 

0.5 
(0.9) 

1.6 
(1.7) 

6.0 
(2.8) 

Satisfied 45.2 
(0.8) 

 1.3 
(0.6) 

-1.2 
(1.3) 

-3.1 
(2.3) 

-4.2 
(3.5) 

Very satisfied 26.5 
(0.7) 

 -1.1 
(0.6) 

1.9 
(1.2) 

2.2 
(2.1) 

0.1 
(3.1) 

Extremely satisfied 8.8 
(0.4) 

 0.1 
(0.4) 

0.0 
(0.8) 

0.2 
(1.4) 

-2.4 
(1.8) 

Total 100.0  0.0 0.0 0.0 0.0 
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The theory 

1.3 Notation  

Since matrix algebra eases the notation and derivation of the regression coefficients 
considerably, we will mainly use matrix algebra when dealing with theory, but also 
use scalar notation when it helps the interpretation.  

Let the dependent variable in the model have q categories. For each category of this 
variable there is a dummy variable which assumes the value 1 if the particular 
observation belongs to that category, and otherwise it assumes the value 0. The n×q-
matrix of scores of the dummy variables is denoted by Y, where n is the sample size. 
The columns of Y sum up to the sample frequencies of the categories of the 
dependent variable.  

Suppose there are m predictor variables in the model. Let the i-th predictor variable 
have ci categories. For each category of this variable there is a dummy variable 
which assumes the value 1 if the particular observation belongs to that category, and 
otherwise it assumes the value 0. The n×ci-matrix of scores on the dummy variables 
corresponding to the i-th predictor variable is denoted by Xi. The columns of Xi sum 
up to the sample frequencies of the categories of the i-th predictor variable.  

Beside m true predictor variables, an additional predictor variable (called 'the 
constant') is included in the model. This special predictor variable has only one 
category, on which everyone scores. The n×1-matrix of scores on this variable is 
denoted by X0. So X0 is a single column consisting of 'ones'.  

The scores on all m +1 predictor variables are collected in one n×p-matrix X = (X0, 
X1, ..., Xm) with p = 1 + c1 + ... + cm.  

With the indicator matrices Y and X spelled out, we are ready to translate tables into 
matrices. The q×ci-table of frequencies (= number of individuals) of the dependent 
variable against the i-th predictor variable can now be written as Y'Xi, as can easily 
be confirmed (Y' denotes the transpose of Y). Analogously, the ci×cj-table of 
frequencies of predictor variable i by predictor variable j simply becomes Xi'Xj. The 
score frequencies on the categories of the dependent variable equal Y'X0 = f(Y), while 
the q×p-matrix Y'X contains all the relevant scores on the Y variable in the categories 
of all the X variables (subsequently, we will use Y, Xi and X to denote either the 
indicator matrices or the variables themselves).  

The p×p-matrix X'X contains all the crossings of (X0, X1, ..., Xm) by (X0, X1, ..., Xm). 
The diagonal matrix Xi'Xi with the vector of frequencies f(Xi)  on the diagonal is 
located as submatrix around the diagonal of X'X. The vector containing the 
frequency distribution of all explanatory variables, i.e. the diagonal of X'X, is 
denoted by f(X). This completes our notation.  
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1.4 The model 

The ANOTA model is a direct derivate from the well-known linear model for 
regression analysis or analysis of variance:  

 XbyE =)(  

where y is an n-vector of dependent scores, X an n×p-matrix of predictor scores, b a 
p-vector of regression coefficients, and E(y) the expectation of y. This model is 
amended in a number of ways.  

In the first place, the model is generalized to a multivariate linear model   

 XBYE =)(                    (2.1) 

with Y an n×q-matrix, and B now a p×q-matrix of regression coefficients.  

In the second place, X is assumed to represent the scores on the m predictor 
variables as described in the previous section. Hence, each row of X contains exactly 
m+1 times the value '1', and p-m-1 times the value '0'.  

In the third place, Y is now a matrix of scores on a dependent variable only assuming 
the values 0 or 1, with each row containing exactly one '1'. Hence each row of E(Y) 
is a vector of probabilities, adding up to 1.   

In order to interpret equation (2.1), we consider the scalar representation of an 
arbitrary element in the k-th column of (2.1). We have   

∑
=

+=
m

i
ikikmk jbbjjjp

1
021 )(),...,,(                 (2.2) 

with bk0 standing for the 'constant term' in the model, i.e. the k-th element in the first 
row of B, and with bki(ji) equal to the k-th element of B in the row corresponding to 
the ji-th category of the predictor variable Xi. So, our model says that the cell 
probabilities are equal to the sum of regression coefficients which depend only on 
the bivariate indices.  

For our simple example of chapter 1, we have in an obvious notation  

)()(),( 0 jbibbjip kEkIkk ++= , 

saying that the probability pk(i,j) of a score on category k of Satisfaction, given the 
predictor scores i of Income and j of Education, equals a constant bk0 depending only 
on k, plus a regression coefficient bkI(i) reflecting the effect of the i-th category of 
Income on the k-th score of Satisfaction, plus a regression coefficient bkE(j) for the 
effect of the j-th category of Education on the k-th category of Satisfaction.   

1.5 Estimation 

 
To estimate B, we consider the (normal) equation  
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XXBXY ''' = .                  (2.3) 

By solving this equation, with the theory of ordinary least squares theory (OLS), the 
ANOTA estimator is obtained. Formally this is just the OLS estimator of model (2.1), 
but more important is the following, very simple and interesting interpretation of 
(2.3): the left hand side corresponds to the set of tables Y × Xi (for i = 1, 2, ..., m). 
X'X corresponds to the set of tables Xi × Xj (for i, j = 1, 2, ..., m), and can be seen as a 
normalising constant, eliminating the interactions between the predictor variables.  

As with ANOVA, some restrictions on B are necessary, in order to allow for unique 
identification of the coefficients. Since the columns of each matrix Xi sum up to a 
column vector of ones, at least m additional restrictions on B are needed for each 
category k of the dependent variable. Keller et al. (1985) propose  

∑
=

=
ic

j
ijki Xfjb

1
0)()(                   (2.4) 

for k = 1, 2, ..., q and i = 1, 2, ..., m. The quantity fj(Xi) denotes the sample frequency 
of category j of the i-th predictor variable. The interpretation of (2.4) is simple: The 
average regression coefficient corresponding to a predictor variable (excluding the 
constant) is zero when weighted with the sample proportions of its categories. It can 
be shown that, as a consequence of this set of restrictions, the coefficients 
corresponding to the constant can be written as  

,/)(0 nYfb kk =                   (2.5) 

i.e. they are equal to the sample proportions in the categories of the dependent 
variable. In matrix notation we may formulate (2.4) as  

0=RB                    (2.6) 

with R an m×p-matrix with R = (R0, R1, ..., Rm). The i-th row of the m×ci-matrix Ri is 
equal to the vector f(Xi) of sample proportions of the i-th predictor, and all other 
rows are zero (for i = 1, 2, ..., m). The restrictions just identify the coefficients in B if 
all vectors f(Xi) are non-zero and the rank of X is equal to p - m. In that case B is 
obtained as the unique solution of  

 BRRXXYX )''(' +=                  (2.7) 

The variance-covariance matrix of b, the k-th column of B, is obtained by solving   

 ),'()'')(()''( yXVRRXXbVRRXX =++                (2.8) 

where y denotes the column of Y corresponding to b.   

To estimate the variance-covariance matrix of X'y it is assumed that the sample was 
drawn from a finite population with equal probabilities and with replacement. So y is 
a random n-vector of independently (but not identically) distributed zeros or ones, 
and V(y) is diagonal. For an observation in category j1 of the first predictor, category 
j2 of the second predictor, ..., and category jm of the m-th predictor, the 
corresponding value on the diagonal is   
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( )),...,,(1),...,,( 2121 mkmk jjjpjjjp −                (2.9) 

For simplicity V(y) is approximated by  

 ( ) nYY IkpkpyV )(1)()( −= ,               (2.10) 

where In is an n×n identity matrix. Here pY(k) is the unconditional probability that an 
observation falls into category k of the dependent variable. This approximation 
conveniently ignores the heteroscedasticity of y, and thus leads to a great 
simplification.  

Certainly for pk(j1, j2, ..., jm) in the range (0.15, 0.85) the heteroscedasticity is rather 
limited: the standard deviation only ranges from 0.36 to 0.50. Now (2.10) is 
estimated by substitution of the sample value fY(k) / n for pY(k), and (2.8) simplifies 
to  

 ),'(ˆ)'')((ˆ)''( yXVRRXXbVRRXX =++              (2.11) 

where 

 n
YY I
n

kf
n

kf
yV ⎟

⎠
⎞

⎜
⎝
⎛ −=

)(
1

)(
)(ˆ ,               (2.12) 

For a discussion and comparison of ANOTA with other estimation procedures, and 
other models, see Keller et al. (1985).  
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