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Abstract

This note contains the unpublished appendix of Bas Jacobs and Richard
Nahuis (2002), “A General Purpose Technology Explains the Solow
Paradox and Wage Inequality”, Economics Letters, 74, 243-250. The
appendix contains derivations of i) the first-order conditions, ii) equi-
librium of the model, iii) the conditions for stability, and iv) the deriva-
tion of the slopes of the phase lines.

First-order conditions

Firms maximize the discounted value of profits flows Πj ≡
∫∞
0 πj exp[−rt]dt,

subject to the demand function for their variety, Xj =
(

pj

pX

)−ε
X, and the

technology accumulation constraint given in equation (3) in the text. Instan-
taneous profits are given by: πj ≡ pjXj − wLLj − wHHj − rKj. Therefore,
the current-value Hamiltonian of the optimal control problem for firm j reads
as:

Hj = pjXj − wHHj − wLLj − rKj + qjB(1− uj)HjFj
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Define θ ≡ (1− α)β and ξ ≡ (1− α)(1− β). First-order conditions (FOC’s)
for an optimum are:

∂Hj

∂Lj

= pj
ε− 1

ε
ξAKα

j F 1−α
j (ujHj)

θLξ−1
j − wL = 0

∂Hj

∂Hj

= pj
ε− 1

ε
θAKα

j F 1−α
j (ujHj)

θH−1
j Lξ

j − wH + qjB(1− uj)Fj = 0

∂Hj

∂uj

= pj
ε− 1

ε
θAKα

j F 1−α
j (ujHj)

θu−1
j Lξ

j − qjBHjFj = 0

∂Hj

∂Kj

= pj
ε− 1

ε
αAKα−1

j F 1−α
j (ujHj)

θLξ
j − r = 0

∂Hj

∂Fj

= pj
ε− 1

ε
(1− α)AKα

j F−α
j (ujHj)

θLξ
j + qjB(1− uj)Hj = rqj − q̇j

in addition to the transversality condition:

lim
t→∞

Fj exp
(
−
∫ t

0
r(v)dv

)
= 0

Equilibrium

The second and third FOC’s give the no-arbitrage condition for the allocation
of time of high-skilled workers in the production of goods and learning in the
text.

The differential equation for R ≡ F/K can be obtained using the econ-
omy’s resource constraint - after imposing symmetric equilibrium:

Ṙ

R
= B(1− u)H − spAR1−α(uH)θLξ

The derivation of the differential equation describing u requires two ad-
ditional steps. First, the no-arbitrage condition of high-skilled workers can
be differentiated with respect to time to arrive at:

α
Ṙ

R
+ (1− θ)

u̇

u
= − q̇

q
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Second, we can substitute the first term in the last FOC out by rewriting the
no-arbitrage condition:

(1− α)AR−α(uH)θLξ =
1− α

θ
qBuH

Using the last three results we obtain the differential equation for u:

u̇

u
=

1− α

θ
BuH +

1− α

1− θ
BH +

α(1− sp)

θ − 1
AR1−α(uH)θLξ

Equilibrium follows by setting u̇
u

= 0 and Ṙ
R

= 0 and solving for u∗ and R∗.

Stability

The stability of the equilibrium can be checked by evaluating the determinant
of Jacobian matrix J at the equilibrium E. The four partial derivatives of J
at E are:

∂Ṙ

∂R

∣∣∣∣∣
E

= −(1− α)B(1− u∗)H < 0

∂Ṙ

∂u

∣∣∣∣∣
E

= −BHR∗ (1 + θ(1− u∗)/u∗) < 0

∂u̇

∂u

∣∣∣∣∣
E

= 2
(

1−α
θ

)
BHu∗ +

(
1−α
1−θ

)
BH − (1 + θ)

(
(1−α)

θ
BHu∗ + (1−α)

(1−θ)
BH

)
= 1−α

θ
BHu∗ − θφ

u∗

∂u̇

∂R

∣∣∣∣∣
E

= −(1− sp)
(

1− α

1− θ

)
r∗u∗

R∗
< 0

where φ ≡ ((1 − α)/θ)BHu∗ + ((1 − α)/(1 − θ))BH. The equilibrium is
saddle-point stable if ∂u̇/∂u > 0. Then, the determinant of the Jacobian is
negative. This will be the case if:

1− α

θ
BHu∗ − θφ

u∗
> 0

substitution of φ gives:

u∗ >

(
θ

1− θ

)2
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Slopes phase-lines

The slopes of the curves in figure 1 are derived by totally differentiating the
Ṙ = 0 and u̇ = 0 lines with respect to R and u. The Ṙ = 0 locus is downward
sloping:

du

dR

∣∣∣∣∣
Ṙ=0

= − u(1− α)/R

θ + u/(1− u)
< 0

The u̇ = 0 locus is upward sloping:

du

dR

∣∣∣∣∣
u̇=0

=
(1− α)φ/R

(1− α)BH/θ − θφ/u
> 0

The denominator is positive as a consequence of the stability condition, i.e.
when u∗ > (θ/(1− θ))2.
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