A General Purpose Technology Explains the Solow Paradox and Wage Inequality: Appendix

Bas Jacobs*and Richard Nahuis ${ }^{\dagger}$

Abstract

This note contains the unpublished appendix of Bas Jacobs and Richard Nahuis (2002), "A General Purpose Technology Explains the Solow Paradox and Wage Inequality", Economics Letters, 74, 243-250. The appendix contains derivations of i) the first-order conditions, ii) equilibrium of the model, iii) the conditions for stability, and iv) the derivation of the slopes of the phase lines.

First-order conditions

Firms maximize the discounted value of profits flows $\Pi_{j} \equiv \int_{0}^{\infty} \pi_{j} \exp [-r t] d t$, subject to the demand function for their variety, $X_{j}=\left(\frac{p_{j}}{p_{X}}\right)^{-\varepsilon} X$, and the technology accumulation constraint given in equation (3) in the text. Instantaneous profits are given by: $\pi_{j} \equiv p_{j} X_{j}-w_{L} L_{j}-w_{H} H_{j}-r K_{j}$. Therefore, the current-value Hamiltonian of the optimal control problem for firm j reads as:

$$
\mathcal{H}_{j}=p_{j} X_{j}-w_{H} H_{j}-w_{L} L_{j}-r K_{j}+q_{j} B\left(1-u_{j}\right) H_{j} F_{j}
$$

[^0]Define $\theta \equiv(1-\alpha) \beta$ and $\xi \equiv(1-\alpha)(1-\beta)$. First-order conditions (FOC's) for an optimum are:

$$
\begin{gathered}
\frac{\partial \mathcal{H}_{j}}{\partial L_{j}}=p_{j} \frac{\varepsilon-1}{\varepsilon} \xi A K_{j}^{\alpha} F_{j}^{1-\alpha}\left(u_{j} H_{j}\right)^{\theta} L_{j}^{\xi-1}-w_{L}=0 \\
\frac{\partial \mathcal{H}_{j}}{\partial H_{j}}=p_{j} \frac{\varepsilon-1}{\varepsilon} \theta A K_{j}^{\alpha} F_{j}^{1-\alpha}\left(u_{j} H_{j}\right)^{\theta} H_{j}^{-1} L_{j}^{\xi}-w_{H}+q_{j} B\left(1-u_{j}\right) F_{j}=0 \\
\frac{\partial \mathcal{H}_{j}}{\partial u_{j}}=p_{j} \frac{\varepsilon-1}{\varepsilon} \theta A K_{j}^{\alpha} F_{j}^{1-\alpha}\left(u_{j} H_{j}\right)^{\theta} u_{j}^{-1} L_{j}^{\xi}-q_{j} B H_{j} F_{j}=0 \\
\frac{\partial \mathcal{H}_{j}}{\partial K_{j}}=p_{j} \frac{\varepsilon-1}{\varepsilon} \alpha A K_{j}^{\alpha-1} F_{j}^{1-\alpha}\left(u_{j} H_{j}\right)^{\theta} L_{j}^{\xi}-r=0 \\
\frac{\partial \mathcal{H}_{j}}{\partial F_{j}}=p_{j} \frac{\varepsilon-1}{\varepsilon}(1-\alpha) A K_{j}^{\alpha} F_{j}^{-\alpha}\left(u_{j} H_{j}\right)^{\theta} L_{j}^{\xi}+q_{j} B\left(1-u_{j}\right) H_{j}=r q_{j}-\dot{q}_{j}
\end{gathered}
$$

in addition to the transversality condition:

$$
\lim _{t \rightarrow \infty} F_{j} \exp \left(-\int_{0}^{t} r(v) d v\right)=0
$$

Equilibrium

The second and third FOC's give the no-arbitrage condition for the allocation of time of high-skilled workers in the production of goods and learning in the text.

The differential equation for $R \equiv F / K$ can be obtained using the economy's resource constraint - after imposing symmetric equilibrium:

$$
\frac{\dot{R}}{R}=B(1-u) H-s p A R^{1-\alpha}(u H)^{\theta} L^{\xi}
$$

The derivation of the differential equation describing u requires two additional steps. First, the no-arbitrage condition of high-skilled workers can be differentiated with respect to time to arrive at:

$$
\alpha \frac{\dot{R}}{R}+(1-\theta) \frac{\dot{u}}{u}=-\frac{\dot{q}}{q}
$$

Second, we can substitute the first term in the last FOC out by rewriting the no-arbitrage condition:

$$
(1-\alpha) A R^{-\alpha}(u H)^{\theta} L^{\xi}=\frac{1-\alpha}{\theta} q B u H
$$

Using the last three results we obtain the differential equation for u :

$$
\frac{\dot{u}}{u}=\frac{1-\alpha}{\theta} B u H+\frac{1-\alpha}{1-\theta} B H+\frac{\alpha(1-s p)}{\theta-1} A R^{1-\alpha}(u H)^{\theta} L^{\xi}
$$

Equilibrium follows by setting $\frac{\dot{u}}{u}=0$ and $\frac{\dot{R}}{R}=0$ and solving for u^{*} and R^{*}.

Stability

The stability of the equilibrium can be checked by evaluating the determinant of Jacobian matrix J at the equilibrium E. The four partial derivatives of J at E are:

$$
\begin{aligned}
&\left.\frac{\partial \dot{R}}{\partial R}\right|_{E}=-(1-\alpha) B\left(1-u^{*}\right) H<0 \\
&\left.\frac{\partial \dot{R}}{\partial u}\right|_{E}=-B H R^{*}\left(1+\theta\left(1-u^{*}\right) / u^{*}\right)<0 \\
&\left.\frac{\partial \dot{u}}{\partial u}\right|_{E}=2\left(\frac{1-\alpha}{\theta}\right) B H u^{*}+\left(\frac{1-\alpha}{1-\theta}\right) B H-(1+\theta)\left(\frac{(1-\alpha)}{\theta} B H u^{*}+\frac{(1-\alpha)}{(1-\theta)} B H\right) \\
&=\frac{1-\alpha}{\theta} B H u^{*}-\frac{\theta \phi}{u^{*}} \\
&\left.\frac{\partial \dot{u}}{\partial R}\right|_{E}=-(1-s p)\left(\frac{1-\alpha}{1-\theta}\right) \frac{r^{*} u^{*}}{R^{*}}<0
\end{aligned}
$$

where $\phi \equiv((1-\alpha) / \theta) B H u^{*}+((1-\alpha) /(1-\theta)) B H$. The equilibrium is saddle-point stable if $\partial \dot{u} / \partial u>0$. Then, the determinant of the Jacobian is negative. This will be the case if:

$$
\frac{1-\alpha}{\theta} B H u^{*}-\frac{\theta \phi}{u^{*}}>0
$$

substitution of ϕ gives:

$$
u^{*}>\left(\frac{\theta}{1-\theta}\right)^{2}
$$

Slopes phase-lines

The slopes of the curves in figure 1 are derived by totally differentiating the $\dot{R}=0$ and $\dot{u}=0$ lines with respect to R and u. The $\dot{R}=0$ locus is downward sloping:

$$
\left.\frac{d u}{d R}\right|_{\dot{R}=0}=-\frac{u(1-\alpha) / R}{\theta+u /(1-u)}<0
$$

The $\dot{u}=0$ locus is upward sloping:

$$
\left.\frac{d u}{d R}\right|_{\dot{u}=0}=\frac{(1-\alpha) \phi / R}{(1-\alpha) B H / \theta-\theta \phi / u}>0
$$

The denominator is positive as a consequence of the stability condition, i.e. when $u^{*}>(\theta /(1-\theta))^{2}$.

[^0]: *University of Amsterdam, Tinbergen Institute, NWO Priority Program 'Scholar', and CPB Netherlands Bureau for Economic Policy Analysis. Corresponding author: Faculty of Economics and Econometrics, University of Amsterdam, Roetersstraat 11, 1018 WB, Amsterdam, The Netherlands. Phone: (+31)-20-525 5088. Fax: $(+31)-20-5254310$. Email: jacobs@fee.uva.nl.
 ${ }^{\dagger} \mathrm{CPB}$ Netherlands Bureau for Economic Policy Analysis and KUN Nijmegen. E-mail: r.nahuis@cpb.nl.

