Optimal Income Taxation with Endogenous Human Capital: Appendix

Bas Jacobs*

January, 2003

Household optimization

Consolidating the household budget constraint yields - omitting indices α :

$$
c=(1-t) w(1-x)-p y+(1-t) w l \phi(.)+2 g .
$$

Substitution of the household budget constraint in the utility function yields and unconstrained maximization problem:

$$
\max _{\{l, x, y\}} u=\ln \left((1-t) w(1-x)-p y+(1-t) w l \phi(.)+2 g-\frac{l^{1+1 / \varepsilon}}{1+1 / \varepsilon}\right) .
$$

This is equivalent to maximization of the transformed problem:

$$
\max _{\{l, x, y\}} u^{*}=(1-t) w(1-x)-p y+(1-t) w l \phi(.)+2 g-\frac{l^{1+1 / \varepsilon}}{1+1 / \varepsilon}
$$

First-order conditions are:

$$
\begin{aligned}
\frac{\partial u^{*}}{\partial l} & =(1-t) w \phi(.)-l^{1 / \varepsilon}=0 \\
\frac{\partial u^{*}}{\partial x} & =(1-t) w l \phi_{x}(.)-(1-t) w=0 \\
\frac{\partial u^{*}}{\partial y} & =(1-t) w l \phi_{y}(.)-p=0
\end{aligned}
$$

[^0]Rewriting yields:

$$
\begin{gathered}
l=[(1-t) w \phi(.)]^{\varepsilon} \\
\frac{\phi_{x}}{\phi_{y}}=\frac{\gamma y}{v x}=\frac{(1-t) w}{p}, \\
l \phi_{x}=1
\end{gathered}
$$

We can solve for the optimal values of l, x, and y. First, use the marginal rate of technical substitution for goods and time invested in education to get:

$$
y=\frac{v w(1-t)}{\gamma p} x
$$

Substitute the last result in the equation for labor supply then we get l as a function of x only:

$$
l=[(1-t) w]^{\varepsilon} h^{\varepsilon} x^{\gamma \varepsilon} y^{v \varepsilon}=[(1-t) w]^{\varepsilon} h^{\varepsilon} x^{\gamma \varepsilon}\left(\frac{v w(1-t)}{\gamma p} x\right)^{v \varepsilon}
$$

Simplifying yields:

$$
l=\left(\frac{v}{p \gamma}\right)^{\varepsilon v} h^{\varepsilon}(w(1-t))^{\varepsilon(1+v)} x^{\varepsilon(\gamma+v)} .
$$

Second, we can rewrite the first-order condition for leisure:

$$
l \phi(.)=[(1-t) w]^{\varepsilon} \phi(.)^{1+\varepsilon} .
$$

And we have:

$$
\gamma l \phi(.)=x
$$

which follows from the arbitrage condition for learning. Substitution of the rewritten first-order condition for leisure in the last expression gives:

$$
\gamma[(1-t) w]^{\varepsilon} \phi(.)^{1+\varepsilon}=x
$$

Third, substitute the production function of human capital to obtain:

$$
\gamma[(1-t) w]^{\varepsilon} h^{1+\varepsilon} x^{\gamma(1+\varepsilon)}\left(\frac{v w(1-t)}{\gamma p} x\right)^{v(1+\varepsilon)}=x .
$$

Simplifying results in the expression for the optimal x :

$$
x^{*}=\gamma^{\frac{1}{\mu}} h^{\frac{1+\varepsilon}{\mu}} w^{\frac{\varepsilon+v(1+\varepsilon)}{\mu}}\left(\frac{v}{\gamma p}\right)^{\frac{v(1+\varepsilon)}{\mu}}(1-t)^{\frac{\varepsilon+v(1+\varepsilon)}{\mu}},
$$

where $\mu \equiv 1-(1+\varepsilon)(\gamma+v)>0 . y^{*}$ and l^{*} follow from plugging the value for x^{*} into the equations for y and l.

Second-order conditions

To check the second-order conditions we first derive the utility function as a function of x only. Then, we evaluate the second derivative of the utility function at the optimum. If this second derivative is negative we know that utility reaches a maximum in (x, y, l) space, since optimum values of y and l are positive transformations of x.

Substitution of the optimal values of y and l yields indirect utility as a function of x only. First use:

$$
\frac{1}{1+1 / \varepsilon} l^{1+1 / \varepsilon}=\frac{1}{1+1 / \varepsilon}\left([(1-t) w \phi(.)]^{\varepsilon}\right)^{(1+1 / \varepsilon)}=\frac{1}{1+1 / \varepsilon}[(1-t) w \phi(.)]^{1+\varepsilon} .
$$

Second, note that:

$$
(1-t) w \phi(.) l=(1-t) w \phi(.)[(1-t) w \phi(.)]^{\varepsilon}=[(1-t) w \phi(.)]^{1+\varepsilon} .
$$

Indirect utility is given by:

$$
v^{*}=(1-t) w(1-x)-p \Omega x+(1-t) w l \phi(.)+2 g-\frac{1}{1+1 / \varepsilon} l^{1+1 / \varepsilon}
$$

Now substitute the expressions for $\frac{1}{1+1 / \varepsilon} l^{1+1 / \varepsilon}$ and $(1-t) w \phi()$.$l to obtain:$

$$
v^{*}=(1-t) w(1-x)-p \Omega x+\frac{1}{1+\varepsilon}[(1-t) w \Phi(x)]^{1+\varepsilon}+2 g
$$

Where we substituted $y=\frac{v}{\gamma} \frac{(1-t) w}{p} x \equiv \Omega x$, and $\Phi(x) \equiv \phi(x, \Omega x)$.
The second derivative of the utility function at the optimum values for y and l is:

$$
\frac{\partial^{2} v^{*}}{\partial x^{2}}=((1-t) w)^{1+\varepsilon} \Phi(x)^{\varepsilon}\left(\varepsilon \frac{\Phi_{x}^{2}}{\Phi}+\Phi_{x x}\right) .
$$

For utility to reach a maximum the term in brackets must be negative, since all other terms are positive. Next use the properties of Φ : $\Phi_{x}=h(\alpha)(\gamma+$ $v) \Omega^{v} x^{\gamma+v-1}$, and $\Phi_{x x}=h(\alpha)(\gamma+v)(\gamma+v-1) \Omega^{v} x^{\gamma+v-2}$. Upon substitution in the term in brackets we derive:

$$
(1+\varepsilon)(\gamma+v)<1
$$

Derivation optimum tax rate

The Lagrangian for maximization of social welfare is given by:

$$
\mathcal{L}=\int_{\underline{\alpha}}^{\infty}(\Psi(V)+\eta(t w l \phi(.)+t w(1-x)-G-\Lambda)) d F(\alpha),
$$

where η is the Lagrange multiplier associated with the government budget constraint.

First, we have:

$$
\frac{\partial \mathcal{L}}{\partial G}=\int_{\underline{\alpha}}^{\infty}\left(\Psi^{\prime} \lambda-\eta+\eta t \frac{\partial H}{\partial G}\right) d F=0 .
$$

Note that there are no income effects on both labor supply and investment in human capital, so that $\frac{\partial H}{\partial G}=0$. This equation can be rewritten using the definition of b :

$$
\int_{\underline{\alpha}}^{\infty}(b-1) d F=0,
$$

so that:

$$
\int_{\underline{\alpha}}^{\infty} b d F=\bar{b}=1 .
$$

Second, we have:

$$
\begin{gathered}
\frac{\partial \mathcal{L}}{\partial t}=\int_{\underline{\alpha}}^{\infty}-\Psi^{\prime}(w l \phi(.)+w(1-x))+\eta(w l \phi(.)+w(1-x))+ \\
\eta t w \phi(.) \frac{\partial l}{\partial t}+\eta\left(t w l\left(\phi_{x} \frac{\partial x}{\partial t}+\phi_{y} \frac{\partial y}{\partial t}\right)-t w \frac{\partial x}{\partial t}\right) d F=0 .
\end{gathered}
$$

(If goods invested in education are deductible we would have an additional $-p \frac{\partial y}{\partial t}$ in the last term in brackets). Rewriting yields:

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial t}=\int_{\underline{\alpha}}^{\infty}\left(-\frac{\Psi^{\prime}}{\eta}+1\right)(w l \phi(.)+w(1-x))+ \\
& \quad t w \phi(.) \frac{\partial l}{\partial t}+t w l\left(\phi_{x} \frac{\partial x}{\partial t}+\phi_{y} \frac{\partial y}{\partial t}\right)-t w \frac{\partial x}{\partial t} d F=0 .
\end{aligned}
$$

This formula can be simplified in four steps. First, use the definition of ξ to rewrite the first term:

$$
\int_{\underline{\alpha}}^{\infty}\left(-\frac{\Psi^{\prime}}{\eta}+1\right)(w l \phi(.)+w(1-x)) d F=\xi \int_{\underline{\alpha}}^{\infty} H d F .
$$

Second, rewrite the second term:

$$
\int_{\underline{\alpha}}^{\infty} t w \phi(.) \frac{\partial l}{\partial t} d F=\frac{t}{1-t} \int_{\underline{\alpha}}^{\infty} w l \phi(.) \frac{1-t}{l} \frac{\partial l}{\partial t} d F=-\frac{t}{1-t} \varepsilon_{l t} \int_{\underline{\alpha}}^{\infty} w l \phi(.) d F .
$$

Third, note that from the first order condition for x we have:

$$
t w l \phi_{x} \frac{\partial x}{\partial t}-t w \frac{\partial x}{\partial t}=0 .
$$

And, fourth, rewrite the last term:

$$
\begin{aligned}
& \int_{\underline{\alpha}}^{\infty} t w l\left(\phi_{x} \frac{\partial x}{\partial t}+\phi_{y} \frac{\partial y}{\partial t}\right)-t w \frac{\partial x}{\partial t} d F=\int_{\underline{\alpha}}^{\infty} t w l \phi_{y} \frac{\partial y}{\partial t} d F \\
& =\frac{t}{1-t} \int_{\underline{\alpha}}^{\infty} w l \phi(.) \frac{\phi_{y} y}{\phi(.)} \frac{1-t}{y} \frac{\partial y}{\partial t} d F=-\frac{t}{1-t} v \varepsilon_{y t} \int_{\underline{\alpha}}^{\infty} w l \phi(.) d F .
\end{aligned}
$$

(If goods invested in education are deductible this term is zero. In that case the first line would contain the extra term $-t p \frac{\partial y}{\partial t}$. Similarly as above one may then substitute the first order condition for y : $t w l \phi_{y} \frac{\partial y}{\partial t}-t p \frac{\partial y}{\partial t}=0$.)

Substituting all terms in the first-order condition for t gives - after simplifying:

$$
\frac{t}{1-t}=\frac{\xi}{\omega\left(\varepsilon_{l t}+v \varepsilon_{y t}\right)},
$$

where $\omega \equiv \int_{\underline{\alpha}}^{\infty} w l \phi() d. F / \int_{\underline{\alpha}}^{\infty} w l \phi()+.w(1-x) d F$ is the average ratio of second period income in total income.

[^0]: *University of Amsterdam, Tinbergen Institute, and CPB Netherlands Bureau for Economic Policy Analysis. Address: Faculty of Economics and Econometrics, University of Amsterdam, Roetersstraat 11, 1018 WB Amsterdam, The Netherlands. Phone: (+31) -20-525 5088. Fax: $(+31)-20-525$ 4310. E-mail: b.jacobs@uva.nl.

