
Chapter 7

Mesh representation

All implementations in the previous chapters also manipulate meshes of triangles and

tetrahedra. Since the focus of our work has been on changing meshes, a data structure

has been developed where change operations are easy to specify and implement. In this

chapter we will discuss the data structure, and explain how other parts of the program

are grouped around it. It only applies to simplicial meshes of any dimension, for exam-

ple, triangle and tetrahedron meshes. The data structure makes a distinction between

how the connectivity of the mesh—objects connected with pointers—is stored, and its

abstract definition—ordered sequences of vertices, so-called simplexes. Such simplexes

are also used to describe triangulations abstractly in the field of algebraic topology [29].

Subdivisions, be them triangulations, tetrahedralizations or more general complexes

of polyhedral cells, are usually represented by objects connected with pointers. Many

such data structures exist for storing subdivisions of the plane, for example the doubly

connected edge list [31], and the quad edge structure [48]. These structures all store

the connectivity in slightly different ways at slightly different memory costs. Memory

usage is an important issue when manipulating large meshes, so Campagna et al. [23]

propose a triangle mesh representation where the choice between computation costs

and memory costs can be made at compile time.

For 3D subdivisions, Dobkin and Laszlo [39] describe a data structure that can

represent general complexes of cells. The cells can have any shape and may be infinite;

the only restriction is that they must meet properly. The central notion of their data

structure is the facet-edge: it represents the combination of a facet (a 2-dimensional

cell) and an edge (a 1-dimensional cell). A cell complex is stored as a set of objects, each

representing a single facet-edge. Every object contains references to the four adjacent

facet-edge objects: the next and previous edge of the same face, and the next and

previous facet that is incident with the same edge. Since neighboring facet-edges are

stored explicitly, it is very easy and efficient to traverse all the facets incident to an edge,

and all edges contained in a facet. Mücke [68] uses a simplified version of the facet-edge

structure for maintaining the connectivity of tetrahedral meshes.

Brisson [16] proposes a generalization of the concept of facet-edge to d dimensions:

mesh features are represented by so-called cell tuples. A cell tuple is a tuple (c0, . . . , cd),

128

7.1 Abstract oriented simplexes 129

where each cj represents a j-dimensional mesh feature, and ci ⊂ ci+1. In 3D, a cell-

tuple represents a vertex as part of a specific edge and a specific face. For k = 0, . . . , d

the switch operator is defined: switchk(t) is the unique cell tuple that agrees with t except

in its kth component. For example, in 3D, the switch3 operator moves from a vertex

of a volumetric cell to the same vertex as part of the same edge and face, but from a

neighboring volumetric cell. Data structures such as the facet-edge structure discussed

above, the edge algebra discussed by Guibas and Stolfi [48] and various other mesh

data structures [61,99] can be expressed in terms of cell tuples.

In summary, meshes are typically represented by objects connected by pointers.

Relations between objects, such as incidence, inclusion and neighborhood, are main-

tained by storing pointers between these objects. This structure allows for efficient

traversal of the mesh: jumping between mesh features is a matter of following pointers.

In this sense, our data structure resembles much of the previous work. However, we

have chosen to make explicit what the mesh connectivity objects represent. This makes

it possible to specify correctness of the data structure, prove algorithms dealing with

meshes correct, and formally specify what change operations should do. Moreover, im-

plementing such operations is easy. Two operations are provided to change the mesh

connectivity, change-elements and replace-elements. These are generic operations, and

can be used to implement high level mesh operations. All code for maintaining mesh

connectivity is concentrated in these two routines, enhancing the modularity of the total

system.

In this chapter we first discuss the underlying abstract mesh representation. This

representation uses abstract oriented simplexes, a basic concept in algebraic topol-

ogy [29]. Then we discuss how connectivity is stored in the program, and how it can be

modified, in other words, how change-elements and replace-elements are implemented.

Finally, we show how the rest of the system interfaces with mesh changes.

7.1 Abstract oriented simplexes

Domains with general shapes in the Finite Element Method are usually represented us-

ing unstructured meshes. These meshes consist of triangles (in 2D) or tetrahedra (in

3D). In conforming Finite Element Methods, shape functions should be admissible as

solutions to the original, continuous problem. In the case of elastic problems, this im-

plies that the functions should be piecewise continuously differentiable. This continuity

condition (also known as compatibility condition), implies that the common interface of

two elements should also be a mesh feature. In other words, mesh elements should be

properly joined.

In a triangulated or tetrahedral mesh, mesh features are formed by convex hulls

of vertices, so-called geometric simplexes. For example, let a1, . . . , a4 be an affinely

independent set of points in R
d, then conv{a1, a2}, the convex hull of a1 and a2, is

an edge, conv{a1, a2, a3} is a triangle, and conv{a1, . . . , a4} is a tetrahedron. Proper

joining of simplexes can be expressed as follows. Let a1, . . . , ak ∈ R
d and b1, . . . , bl ∈

R
d, then conv{a1, . . . , ak} and conv{b1, . . . , bl} are properly joined if

conv{a1, . . . , ak} ∩ conv{b1, . . . , bl} = conv S,

130 Mesh representation

where S ⊂ {a1, . . . , ak, b1, . . . , bl}. Properly joined simplexes are demonstrated in

Figure 7.1.

Figure 7.1: Properly joined simplexes (left), and improperly joined ones (right)

We can see that properly joined geometric simplexes are characterized by their sets

of vertices. Hence, for reasoning with simplexes, it suffices to consider the discrete set

of their vertices, and disregard the continous nature of convex subsets of R
d. If we

only consider sets of vertices, then the type of the vertices themselves is not relevant.

Therefore, we will assume for the remainder of the chapter that vertices come from

some set V, which is left unspecified.

Simplexes can have orientations. For example, an edge can have two directions, and

a triangle can have a normal pointing in two directions. This orientation is related to

ordering of the vertices: if two vertices in a triangle are swapped, the direction of the

normal is flipped. The orientation of a simplex can also be defined in terms of swaps.

Let a0, . . . , ak ∈ V be a sequence of k + 1 vertices, for k ≥ 1. A permutation π of

these vertices may be decomposed into a number of swaps. If this number is even,

then π is an even permutation, otherwise it is an odd permutation. The positive simplex

〈a0, . . . , ak〉 is formed by the equivalence class of all even permutations of a0, . . . , ak,

i.e.,

〈a0, . . . , ak〉 = {π(a0, . . . , ak) : π is an even permutation } .

Analogously, the equivalence class of uneven permutations forms the other orientation

−〈a0, . . . , ak〉 = {π(a0, . . . , ak) : π is an odd permutation } .

The number k is also called the dimension of the simplex. 1-simplexes correspond to

edges, 2-simplexes to triangles and 3-simplexes to tetrahedra. The above definition

requires k > 0. For simplexes of one vertex, we simply assume that they exist in two

orientations.

Containment of oriented abstract simplexes is defined with help of the subsimplex

operation. This operation is defined as follows.

subsimplexaj
〈a0, . . . , ak〉 = (−1)j〈a0, . . . , ak\aj〉, a0, . . . , ak ∈ V, k ≥ 1.

The notation a0, . . . , ak\v means the sequence a0, . . . , ak with v removed. This defini-

tion is independent of the representative chosen. This operation implies an inclusion re-

lation. We have σ ⊂ τ, if σ = τ or when there is some v ∈ τ such that σ ⊂ subsimplexvτ.

7.2 Representing the mesh 131

We call the set of abstract simplexes K an oriented d-dimensional pseudo-manifold,

or a simplicial mesh if the following conditions hold:

1. if τ in K and σ ⊂ τ then σ in K

2. Every σ in K is a subsimplex of some τ ∈ K, where τ has dimension d.

3. if σ ∈ K is a (d − 1)-simplex, then it is subsimplex of only one d-simplex.

Two d-simplexes τ1 and τ2 are neighbors if there is a (d − 1)-simplex ρ ⊂ τ1 such

that −ρ ⊂ τ2. The boundary of a simplicial mesh K, denoted by ∂K is formed by the

set of d − 1 simplexes whose opposite orientation is not part of K. Since all simplexes

in a pseudo-manifold are part of some d-simplex, we can characterize the structure by

its set of d-simplexes.

�

�

�

�

Figure 7.2: A simple 2-dimensional pseudo-manifold. We have T = {abc, bdc}

(leaving out the angled brackets in the notation of simplexes), and K = T ∪
{ab, bc, ca, cb, bd, dc, a, b, c, d, −a, −b, −c, −d}. The boundary of K is formed by

{ab, ca, bd, dc}; the other edges (bc and −bc) form a pair that connect abc and bcd.

The orientation of triangles and edges are indicated with arrows.

7.2 Representing the mesh

The mesh representation discussed in the previous section can be directly implemented.

In the next two sections, we show how this is done, both using class declarations (in

C++ syntax) and pseudo-code. In this pseudo-code, we will refer to simplexes with

the greek letters σ and τ. The variable t always refers to an Element object representing

a d-simplex, and the variable f always refers to a Face object representing a (d − 1)-

simplex. In general variables are denoted by words printed in italic. In the pseudo-code

we will equate maps, search structures that store a value v for some keys k, with a set of

key/value tuples. This is done for the sake of notational convenience. In practice, such

search structures will typically be implemented by balanced trees. We assume that sets

of key/value tuples can be indexed, and that it supports the method keys that returns all

keys in the map, and the method erase, that removes a single (key,value) tuple from the

set. Examples of the use of these maps are given here.

132 Mesh representation

m← {(k1, v1), (k2, v2)}

m.keys() (∗ returns {k1, k2} ∗)
m[k1] (∗ returns v1 ∗)
m[k1]← w1 (∗ changes the value corresponding to k1 ∗)
m[k3]← v3 (∗ adds the tuple (k3, v3) ∗)
m.erase(k2) (∗ removes (k2, v2) ∗)

If V is totally ordered, then we can define a canonical representation for each sim-

plex. Let a0, . . . , ak ∈ V. We can sort the vertices in a oriented simplex, while count-

ing the number of swaps s, and take (−1)s sort(a0, . . . , ak) as the representative of

〈a0, . . . , ak〉. In effect, this the canonical representation translates a k-simplex in a

k + 2 tuple, consisting of the k + 1 vertices and the value of s. Since the elements of

each tuple can be ordered, the tuples themselves can also be ordered, e.g. by the lexi-

cographic order. This implies that the canonical representation can be used as a key in

a lookup structure. In this way, we can create tables of objects with simplexes as keys.

The canonical representation of a simplex can be used to implement it. Assuming

that there is some type Vertex representing vertices, the data of the Simplex type may

expressed (in C++ syntax) as follows.

class Simplex {

Vertex vertices[MAXDIMENSION+1];

int dimension;

};

Let us assume for the remainder that a Simplex object can be created from a sign

q ∈ {−1, 1} and a sequence of vertices b0, . . . , bk, yielding the canonical representation

p〈a0, . . . , ak〉 with a0 < · · · < ak and p ∈ {−1, 1}. Let σ and τ be Simplex objects, j an

integer from 0, . . . , k, and v and w Vertex objects. Then the following operations can be

defined and implemented for the Simplex type.

• σ.count() returns k + 1, the number of vertices in σ.

• σ.dimension() returns k, the dimension of the simplex.

• σ.index (v) returns j such that aj = v.

• σ.sign () returns p.

• σ.vertex(j) returns aj.

• σ.subn (j) returns (−1)jq〈a0, . . . , ak\aj〉, the jth subset of σ.

• σ.subv (v) returns subsimplexvσ.

• σ.mate() returns −σ.

• σ.substituted (v, w) returns σ with v replaced by w in the vertices of the simplex.

• compare (σ, τ) is a signed comparison of σ and τ. It can be implemented by

lexicographic ordering.

7.2 Representing the mesh 133

• σ.sup (v) returns p〈v, a0, , . . . , ak〉, the unique (k+1)-simplex containing both the

vertex v and the simplex σ.

Since a d-dimensional pseudo-manifold is characterized by a set of d-simplexes,

a simplicial mesh can be succinctly specified as a set of Simplex objects of dimension

d. However, traversing the elements of a mesh cannot be done efficiently with this

representation. Therefore, d-simplexes and (d − 1)-simplexes are also represented as

objects, i.e. chunks of memory with a unique identity that can be referenced to by means

of pointers. The base class for both objects is Mesh-feature. It contains the simplex that

it is supposed to represent. One derived class represents d-simplexes, and is called

Element, by analogy with naming of Finite Elements. Objects of the class Face represent

(d − 1)-simplexes.1 The definition of Mesh-feature in C++ notation is as follows.

class Mesh_feature {

Simplex simplex;

};

Each d-simplex contains d + 1 faces, so the Element object has d + 1 pointers to Face

objects.

class Element : public Mesh_feature {

Face * faces[MAXDIMENSION+1];

};

A face of an element is obtained by removing one vertex from its simplex. Faces and

vertices in an element are related. This relation is used in opposite-vertex and opposite-

face methods of Element objects. The method opposite-vertex for an Element object e

takes a face f from e.faces, and returns a vertex from e.simplex such that

f.simplex = e.simplex.subv(e.opposite-vertex(f))

Similarly, the function opposite-face, takes a vertex v from e.simplex, and returns a Face

object from e.faces such that

e.opposite-face(v).simplex = e.simplex.subv(v)

Both functions are also illustrated in Figure 7.3.

The faces variable must contain Face objects. The following invariant specifies in

what order they are stored.

t.faces[i].simplex = t.simplex.subn(i), i = 0, . . . , d. (7.1)

In a pseudo-manifold, each face is in exactly one d-simplex. Hence we may store

pointers from Face objects to Element objects. The Face object also stores a pointer to

its mate, the Face object with the opposite orientation

1This is in contrast with traditional terminology for simplicial complexes, where simplexes of all dimen-

sions are called “faces.”

134 Mesh representation

σ

f

v

e.opposite-vertex(f)

e.opposite-face(v)

Figure 7.3: The body of the cycle-around algorithm illustrated: an element e is entered

through f (dotted arrow), and left through e.opposite-face (v) (other dotted arrow). In

this case, σ is a 0-simplex, i.e. a vertex. The orientation of the triangle and the edges

are indicated with arrows.

class Face : public Mesh_feature {

Element *element;

Face *mate;

};

The element pointer in a Face object f satisfies the following invariant

f ∈ f.element.faces, (7.2)

where we treat the array faces as a set. The mate field of a Face object f satisfies

f.mate = null ∨ f.mate.simplex = −f.simplex. (7.3)

The connectivity of a simplicial mesh then is a collection of Element and Face objects

such that invariants (7.1) to (7.3) are satisfied, and each d and (d − 1)-simplex is

represented by exactly one Element and Face object respectively, i.e., for all Mesh-feature

objects t, u in the mesh we have

t.simplex = u.simplex =⇒ t = u. (7.4)

This connectivity information is sufficient to traverse the mesh. We give the example

of traversing Element objects incident with one particular (d − 2)-simplex. In 2D, this

routine traverses all triangles incident with a vertex, and in 3D all tetrahedra incident

with an edge. It takes a Face object entry as argument, and a number j ∈ {0, . . . , d −

1}. It returns a set of d-simplexes that contain entry.simplex.subn(j). Termination and

correctness of the algorithm can be proved using the integrity of the data structure, and

properties of the simplicial mesh.

procedure cycle-around (entry: Face, j : {0, . . . , d − 1})

star← ∅
f← entry

v← entry.simplex.vertex(j)

while f 6= null

7.3 Changing the mesh 135

e← f.element

exit← e.opposite-face(v)

v← e.opposite-vertex(f)

star.add (e)

f← exit.mate

if f = entry:

f← null

return star

This code is also illustrated in Figure 7.3.

This routine builds a set of Element objects that contain σ = entry.simplex.subn(j).

This can be seen by considering the following loop invariant.

f = null ∨ subsimplexv(f.simplex) = σ.

If f 6= null, then f.simplex = σ.sup(v), and e.simplex = σ.sup(v).sup(w) for some vertex

w. Hence exit.simplex = −σ.sup(w). In the next step, either the loop exits because

exit.mate = null, or f and v are changed such that the invariant holds again.

In addition, we see that the loop adds a sequence of Element objects with d-simplexes

(τ1, τ2, . . .) to star. These d-simplexes are of the form

σ.sup(p1).sup(p2), σ.sup(p2).sup(p3), σ.sup(p3).sup(p4), . . .

for a sequence of vertices (p1, p2, . . .). All simplexes of the sequence are unique. To

see this, suppose that τj = τi for some j ≤ i. In other words

σ.sup(pj).sup(pj+1) = σ.sup(pi).sup(pi+1).

This implies pi = pj and pj+1 = pi+1. Their predecessors in the sequence are τj−1 =

σ.sup(pj−1).sup(pj) and τi−1 = σ.sup(pi−1).sup(pj) respectively. Since τj−1 and τi−1

both contain the face −σ.sup(pj) they must be equal, implying that pj−1 = pi−1. This

argument can be continued inductively, until we have τ1 = τi−j+1 = σ.sup(p1).sup(p2).

The integrity of the data structure implies that entry is the only Face object whose sim-

plex is σ.sup(p1). Therefore, if i < j the if statement would have aborted the loop before

τi is added in the i-th step. Therefore i = j. Since the mesh only contains finitely many

d-simplexes, the loop must terminate.

7.3 Changing the mesh

In this section we show how mesh connectivity objects can changed in a generic fashion.

This is done by two routines, replace-elements and change-elements. First we show how

replace-elements can be implemented. In situations where the number of elements does

not change, a different routine with additional desirable properties can be used. This is

the change-elements routine. Finally, we show how cuts can be expressed with change-

elements.

136 Mesh representation

Every change in the mesh can be encoded as removing existing elements, expos-

ing more of the boundary of the mesh, and attaching new elements to the boundary.

The actual connectivity information is stored in Face objects, since their mate fields

link neighboring elements. To update these fields properly, it is necessary to store the

boundary of the pseudo-manifold. This is done with the following data structure for

the mesh connectivity.

class Mesh_connectivity {

set<Element*> elements;

map<Simplex, Face*> boundary;

};

This definition uses the generic types set and map. The variable elements is a set of

Element objects. The variable boundary maps simplexes to their Face objects for all

boundary faces.

Let the (d − 1)-simplexes of a set of d-simplexes T be given by

faces(T) = { σ : σ = subsimplexv(τ), v ∈ τ, τ ∈ T } .

Then, the boundary map of a simplicial mesh formed by T may be characterized as

boundary(T) = {(σ, f) : f.simplex = σ, ∧ − σ 6∈ faces(T) ∧ σ ∈ faces(T)} (7.5)

The primary mesh change operation is replacing elements. The simplest way to

implement it is by removing elements one-by-one, and adding new elements one-by-

one. This is achieved by the following procedure.

procedure replace-elements (mesh: Mesh-topology,

old-objects: set of Element, new-simplexes: set of Simplex):

for e in old-objects:

remove-element (mesh, e)

for τ in new-simplexes:

add-element (mesh,τ)

When a single element is added, the connectivity can be maintained by removing

boundary faces that attach to the new element, and adding other new faces of the ele-

ment to the boundary.

procedure add-element (mesh: Mesh-topology, τ: Simplex)

e← new Element(τ)

mesh.elements←mesh.elements ∪ {e}

for j in 0, . . . , d:

σ← τ.subn(j)

f← new Face(σ)

f.element←e

7.3 Changing the mesh 137

e.faces[j]←f

if −σ ∈ mesh.boundary.keys():

f.mate←mesh.boundary[−σ]

f.mate.mate←f

mesh.boundary.erase (σ)

else :

mesh.boundary[f.simplex]←f

f.mate← null

Similarly, the boundary can be updated during element removal.

procedure remove-element (mesh, e)

for f in e.faces:

if f.mate:

mesh.boundary[−f.simplex]← f.mate

f.mate.mate← null

f.mate← null

else :

mesh.boundary.erase(f.simplex)

mesh.elements← mesh.elements\{e}

This code maintains mesh connectivity, but is not very efficient and replaces all Face

objects, even the ones that were not changed. The following improvements solve these

problems. First, in some cases, a mesh change modifies elements, but may leave certain

faces in place. In the code shown below, these faces are maintained, so that pointers

to these faces remain valid after the change. It achieves this by remembering old faces,

and reusing those that also occur in the new configuration.

procedure replace-elements (mesh: Mesh-topology, old-objects: set of Element,

new-simplexes: set of Simplex):

oldfacemap← { (f.simplex, f) : f ∈ e.faces, e ∈ old-objects }

newfacemap← {(σ, f) : σ = τ.subn(j), j = 1, . . . , d, τ ∈ new-simplexes,

f = (if σ ∈ oldfacemap.keys()) : oldfacemap[σ] else: null)}

discard← oldfacemap\newfacemap

(*)

for (σ, f) in discard:

(**)

if f.mate:

f.mate.mate← null

f.mate← null

mesh.boundary[f.simplex]← f.mate

else :

boundary.erase (f)

mesh.elements← mesh.elements\old-objects

138 Mesh representation

for τ in new-simplexes:

e←new Element (τ)

mesh.elements← mesh.elements ∪ {e}

for j in 0, . . . , d:

(σ, f)← newfacemap[τ.subn(j)]

if f = null:

f← new Face(σ)

if −σ ∈ mesh.boundary.keys():

f.mate← mesh.boundary[−σ]

f.mate.mate← f

mesh.boundary.erase (-σ)

else :

mesh.boundary[σ]← f

f.element← e

e.faces[j]← f

a

bc

d a

bc

d

Figure 7.4: An edge flip changes the edge db to ad. This can be encoded as replacing

the 2-simplexes {bcd, abd} by {abc, acd}. The elements on the left contain edges ab,

bc, cd, and da which are also present after the flip.

This code is still not optimal. For example, in the edge flip from Figure 7.4, the

boundary does not change, while orientations of bd and ad are temporarily added to

and removed from the boundary. When the boundary is large, these temporary changes

may be expensive. They can be prevented by adding matched pairs to newfacemap

before processing it. If the following code is added in the place marked with (∗) in the

previous algorithm, then these unnecessary updates are prevented.

for σ in newfacemap.keys ():

if −σ ∈ newfacemap.keys () ∧ σ.sign() = 1 ∧

newfacemap[σ] = null ∧ newfacemap[−σ] = null:

f1 ← new Face(σ)

f2 ← new Face(−σ)

f2.mate← f1

f1.mate← f2

newfacemap[σ]← f1

newfacemap[−σ]← f2

7.3 Changing the mesh 139

Similarly, the updates of the boundary, following (∗∗) in the pseudo-code, only have to

be performed when −σ 6∈ discard.keys().

Some types of mesh modifications do not change the number of mesh elements,

only their connectivity. For example, in Figure 7.5, two faces are dissected and two

other are glued together at the same time, leaving the number of faces and elements

invariant. It is possible to implement this operation with replace-elements. However,

there is a one-to-one correspondence for every face and element before and after the

change, and this correspondence is lost when replace-elements is used. Therefore, we

propose a second operation, change-elements that maintains this correspondence. Its

argument is a substitution, that is applied to a number of elements. Abstractly speaking,

a substitution s is a set of (τ, π)-tuples, where τ is a d-simplex, and π : V → V is

a substitution on the vertices. If T is set of d-simplexes in the original mesh, then

applying the substitution s entails forming the mesh

K ′ = { σ : σ ⊂ τ, τ ∈ T ′ } T ′ = { τ ∈ T : τ 6∈ s.keys() } ∪ {π(τ) : (τ, π) ∈ s } .

When implementing this operation, the substitution takes the form of a set of tuples

(t, π), where t is an Element object, and π a vertex substitution.

procedure change-elements (mesh: Mesh-connectivity,

substitution: element/node-substitution map):

oldfaces←{ t.faces[j] : (t, π) ∈ substitution, j = 0, . . . , d }

for f in oldfaces:

if f.mate:

mesh.boundary[f.simplex]← f

f.mate← 0

f.mate.mate← 0

else :

mesh.boundary.erase(f.simplex)

for (e, π) in substitution:

τ← e.simplex

τ ′ ← π(τ)

newfaces←{ (πσ, f) : f = e.face(j), σ = τ.subn(j), j = 0, . . . , d }

e.simplex←τ ′

for j in 0, . . . , d:

σ ′ ← τ ′.subn(j)

f← newfaces[σ ′]

e.faces[j]←f

f.simplex← σ ′

if −σ ∈ mesh.boundary.keys():

f.mate← mesh.boundary[−σ ′]

f.mate.mate← f

mesh.boundary.erase[−σ ′]

else :

mesh.boundary[σ ′]← f

140 Mesh representation

a

b

cd

e

f

a

b

c

f

e ′

d ′

Figure 7.5: Cutting and stitching can be achieved using replace-triangles. The

operation shown here can be effected as replacing {abd, bcd, cfe, aef} with

{abe ′, ae ′f, d ′cf, bcd ′}. The operation can also be written as a vertex substitution,

e.g. substitute d := d ′ in abd. By specifying the operation like this, objects can be

made persistent. Then bd (left) and be ′ (right) are represented by the same object,

marked in bold.

The primary example of the change-elements operation is the dissect operation, also

discussed in Chapter 3, which produces cuts along faces in a simplicial mesh. We show

how a vertex substitution for a cut along a surface C can be defined. Let us assume that

a simplicial mesh is given as T , a set of oriented d-simplexes, satisfying the conditions

for a simplicial mesh, and K is the complex induced by T , i.e.

K = { σ : σ ⊂ τ, τ ∈ T } .

We assume that the cut is specified by a set of faces C ⊂ faces(T), such that

σ ∈ C =⇒ −σ ∈ C.

In other words, C is a set of face pairs from K. The star of a vertex v is the set of all

elements incident with v, in other words,

star(v) = { τ ∈ T : v ∈ τ } .

Let v be a vertex, and let τ and τ ′ be elements from star(v). We say that τ and τ ′

are (v, C)-connected if there are d-simplexes τ = τ1, . . . , τk = τ ′ in T such that all τi

contain v, and all τi and τi+1 are neighbors for i = 1, . . . , k − 1 and

faces(τi) ∩ (−faces(τi+1)) 6∈ C, i = 1, . . . , k − 1.

In other words, τ1, . . . , τk is a chain of elements containing v that does not cross C.

The notion of (v, C)-connectedness is an equivalence relation on star(v), so for each

vertex v of T , we may partition star(v) into equivalence classes. Assume that these

classes are given by Sv,1, . . . , Sv,l for some l ≥ 1. Let us assume that a unique vertex

wv,i for each equivalence class Sv,i is given. In practice this may be a ‘copy’ of v with a

different number, or perhaps a vertex that is slightly displaced with respect to v. Let τ

7.3 Changing the mesh 141

be a d-simplex, then we define for v ∈ τ the node substitution

ϕτ(v) =

{
v if star(v) is the single (v, C)-equivalence class,

wv,i if τ ∈ Sv,i, for some 1 ≤ i ≤ k and l > 1.

By construction, the mapping v 7→ ϕτ,S(v) is injective. We can define a complex K ′

induced by a set of d-simplexes T ′ as follows.

K ′ = { σ : σ ⊂ τ, τ ∈ T ′ } ,

T ′ = { 〈ϕτ(a0), . . . , ϕτ(ak)〉 : τ = 〈a0, . . . , ak〉 ∈ T } .

Since v 7→ ϕτ(v) is injective, all elements of T ′ are d-simplexes, and all (d−1)-simplexes

are unique within faces(T ′). Hence K ′ is a d-dimensional pseudo-manifold.

v
1

2 3

4

5

6

7

wv,1 wv,2

wv,3

Figure 7.6: A dissection can be expressed as a node substitution. In the above example,

the cut surface C (bold) partitions the 2-simplexes incident with v in 3 sets. Elements

5, 6 and 7 are (v, C) connected, but 1 and 7 are not. In the result v is substituted by

three different nodes wv,1, wv,2 and wv,3. Elements 5, 6 and 7 share the node wv,3.

The dissect operation leaves faces that are not in C joined together. If σ ∈ K and

−σ ∈ K but σ 6∈ C, then the d-simplexes τ1 and τ2 containing σ and −σ respectively,

obviously are (v, C)-connected for all vertices v of σ, hence both σ and −σ are mapped

to corresponding faces σ ′ and −σ ′. However, not all faces in C also have to end up on

the boundary of K ′. An example is given in Figure 7.7.

v w

Figure 7.7: Face vw is not dissected by the cut surface marked in bold, since the surface

does not split the elements around v and w into different components.

Finally, the dissect operation implies a connectedness condition. It is reasonable

to assume that for C = ∅, the dissect operation does nothing. This implies that for

every vertex v, star(v) forms a (v, ∅)-connected component. In other words all elements

containing v should be connected to each other via (d − 1)-faces. This is a desirable

property, for star(v) can then be found by traversing the mesh starting from an arbitrary

τ ∈ star(v).

142 Mesh representation

7.4 Interfacing with mesh connectivity

Both change-elements and replace-elements are characterized by changes to the set of

elements and the boundary. Such changes are signaled to other parts of the simula-

tion by the following mechanism. A Mesh-connectivity object maintains a list of Mesh-

connectivity-watchers. These are objects that to take some special action upon changes

to the connectivity. They can be characterized by a C++ class declaration as follows.

class Mesh_connectivity_watcher {

virtual void process_changed_element (Element*);

virtual void process_changed_boundary (Face*);

virtual void init_elements (set<Element*> const*);

virtual void init_boundary (map<Simplex,Face*> const*);

};

When a Mesh-connectivity-watcher is added to a Mesh-connectivity object, it is ini-

tialized with the current list of all Element and Face objects. After this initialization, the

virtual functions process-changed-boundary and process-changed-element are called for

every change to the mesh boundary and every element removed or added.

An example of a Mesh-connectivity-watcher is the following routine

procedure process-changed-boundary (f):

n← normal of f

if (f.mate = null) ∧ (n · e3 < 0):

for v in f.simplex.vertices:

deformation-constraints.fix-node (v)

This code assures that the deformable object is always fixed on one side. All boundary

faces pointing in e3 direction have their faces fixed.

In our implementation, the set of vertices simply is given by the positive integers,

with natural ordering. For a linear FEM discretization, simplex vertices and nodes

(interpolation conditions) coincide. This fact is exploited by taking vertex numbers as

array indices for nodal quantities. For example, in a mesh with m vertices in 3D, nodal

quantities like force and displacement are vectors from R
3m. Such a vector is stored as

an array of floating point numbers. The entries corresponding to a vertex v ∈ N are

stored at locations 3v to 3v + 2 in the array.

7.5 Discussion

We have presented a data structure for maintaining the connectivity of simplicial meshes

in an arbitrary spatial dimension. The data structure can be specified in terms of abstract

simplexes, ordered sequences of vertices. These simplexes can be represented directly

in the computer, and are also used to specify and implement operations changing the

mesh connectivity. Properties of the mesh and the integrity of the data structure, which

are crucial in proving traversal algorithms correct, can be verified automatically.

7.5 Discussion 143

We have discussed two operations to change mesh connectivity, replace-elements

and change-elements, and have shown how to implement them. Unfortunately, neither

change-elements nor replace-elements are guaranteed to deliver valid data structures, un-

less extra conditions are given on their arguments. An example is in Figure 7.8, where

a mesh change is shown that violates Condition (7.4). Catching these mistakes requires

storing more information of the mesh, making change operations more expensive. For-

tunately, Conditions (7.1) to (7.5) can be checked automatically in a validation routine.

Such a validation routine is expensive, but it can help program debugging. Less ex-

pensive checks can also help catching errors. For example, some errors can be caught

by checking that no key occurs twice when forming newfaces in the replace-elements

algorithm.

The algorithms presented do not have optimal performance. For example, the

change-elements contains spurious updates of the boundary. Another source of over-

head are updates of mesh.elements in replace-elements. During invocations of this rou-

tine old Element objects are removed from the mesh, and new ones introduced. The

advantage is that it is easy to catch some programming errors: when an Element or Face

object is discarded, it may be flagged as “invalid”. Bugs caused by using invalid ob-

jects can thus be caught automatically. The disadvantage is that every replace-elements

call—even if it does not change the number of elements—changes mesh.elements, and

will cost O(log(n)) time, where n is the number of elements in the mesh. This overhead

could be eliminated by reusing old Element objects.

�
�

�

Figure 7.8: Not all invalid mesh changes can be caught. When peforming

replace-elements(∅, {abc}) on the mesh shown above, the d-simplex abc and its faces

will represented by two objects.

Only d- and (d − 1)-dimensional mesh features are identified with objects. This

limits its applicability; both for higher order FEM discretizations and for certain relax-

ation techniques it is necessary to also track edges, which are (d − 2)-dimensional for

d = 3, across mesh changes. In a higher order FEM discretization, nodes, i.e. inter-

polation conditions, are also located on edges of the elements. These nodes are shared

by all elements containing that edge, so each edge must be uniquely identified. For a

linear FEM interpolation, most off-diagonal entries of the stiffness matrix correspond

to force/displacement relations of two nodes connected by an edge. Certain relaxation

algorithms exploit matrix structure by traversing the matrix column by column or row

by row, for example the Gauss-Seidel iteration [47]. A matrix-free implementation of

this algorithm must maintain lists of edges incident to each node. It possible to tracking

these edges using a Mesh-topology-watcher instance.

