
Chapter 5

A Delaunay approach to

interactive cutting in

triangulated surfaces

5.1 Introduction

Our approach to deformation is based on the Finite Element Method (FEM). In this

method, mesh size determines the computational requirements of a simulation. Larger

meshes result in more degrees of freedom in the discretized problem, so solutions take

more time to compute. This has motivated our work in Chapter 3, where we have

tried a technique for simulating cuts that does not increase mesh size like subdivision

techniques do. This technique creates flat elements in the mesh as artefacts, and we

have found that they cause a considerable slowdown of the Linear CG algorithm. In

Subsection 4.5.6 we have seen that element shape also affects the nonlinear CG and

dynamic relaxation algorithms. Hence, mesh change operations, such as simulated cuts

or cauterizations, should not only keep mesh size low; they should also keep elements

of the mesh well-shaped. In this chapter1 we address this problem for cutting in tri-

angulations, by presenting a method that keeps mesh size low and keeps mesh quality

high.

A FEM discretization is a form of interpolation: the continuous unknown in the

problem is interpolated, so that the differential equation is transformed into a set of

equations for a finite number of variables. The original problem is a differential equa-

tion, hence it is important that the derivative of the solution is approximated well by the

interpolation. When we look at the influence of element shape on the derivative, we see

that the large angles cause unbounded errors in the derivative. This is illustrated in 2D

in Figure 5.1, and a similar argument also holds in 3D. Therefore, large angles should

always be avoided. The convergence speed of iterative algorithms for linear problems

1This chapter was based on a paper published at the Fifth International Workshop on Algorithmic Foun-

dations of Robotics (WAFR 2002) [74].

85



86 Chapter 5. Delaunay cutting in triangulated surfaces

is related to the condition number of the stiffness matrix, as shown in Sections 4.1

and 2.4. The condition number is the ratio of largest and smallest eigenvalue of the

stiffness matrix, and these eigenvalues can be bounded by eigenvalues of separate ele-

ments: each element can also be seen as a separate elastic object, whose deformations

are also described by linear elasticity, and their elastic behavior can be condensed in a

small element stiffness matrix. Therefore, mesh quality can be optimized by optimizing

the shape of individual elements. In a second-order elliptic partial differential equation

(like linear elasticity), both very large and very small angles, and small elements cause

high condition numbers [87]. Therefore, a mesh with ‘round’ elements, i.e. no angles

close to π and 0, and uniform element sizes is a good general purpose mesh.

� �

�

�����
�

	




�

Figure 5.1: The derivative of a linear function with values f(a), f(b) and f(c) in triangle

abc in the plane has directional derivative ∂f/∂y =
f(c)−(f(a)+f(b)/2)

H
. When H → 0,

the derivative tends to infinity.

Simulation of cuts in surgery simulation is related to simulation of other destructive

surgical procedures. The first operation to have been simulated on volumetric meshes

is cauterization. This was done by removing elements in contact with a virtual cauteri-

zation tool [26]. A disadvantage of element removal is that it produces a jagged surface

on the virtual tissue.

For cutting, subdivision methods are the norm [11, 46, 66]: elements that are in

contact with the scalpel are marked active, and subdivided to produce a cut conforming

to the scalpel position. The subdivision moves along with the scalpel during its stay

in an active tetrahedron. When the scalpel leaves an active element, the subdivision

is entered in the mesh permanently. A 2D example of subdivision is in Figure 5.2.

Subdivision methods always increase the size of the mesh. Moreover, these methods

tend to produce degeneracies. This is caused by the use of an active region. Mesh

modification is done only within a fixed region of the mesh, and if the scalpel moves

close to the boundary of that region, poorly-shaped elements are inevitable. Ganovelli

and O’Sullivan [45] try to counter the degeneracies caused by subdivision cutting. They

deal with these degeneracies by collapsing short edges of the mesh. This approach does

improve the quality of the mesh, but this solution does not repair all inconsistencies: not

all edges may be contracted, and flat triangles and tetrahedrons, which do not contain

short edges but are still degenerate, are not dealt with.

In Chapter 3 we have tried an approach where scalpel nodes are snapped to the tra-

jectory swept by the scalpel. The advantage of this method is that the mesh size remains

small, and few short edges are created. However, there are a number of disadvantages:

since no new nodes are created, the resolution of the cut is bounded by the mesh res-

olution. The incision does not reach up to the position of the scalpel, but lags behind

it. A more serious problem is that snapping can result in degenerate elements in the



5.2 Cutting in 2D 87

Figure 5.2: A cut produced by a subdivision method. The cut produces many small

and flat triangles.

mesh. Such degeneracies are dealt with by subdividing flat elements, and collapsing the

resulting short edges, effectively removing the flat element. Unfortunately, not all edges

can be collapsed. Using existing mesh features as a basis for mesh modification is prob-

lematic: when the scalpel is not especially close to a mesh feature, it may not be possible

to match the mesh topology to the scalpel path without introducing degeneracies.

In summary, producing high quality cuts in tetrahedral meshes is a difficult problem.

For cutting in surfaces, there is an analogous problem, which has the same difficulties as

volumetric cutting approaches. Serby et al. [84] propose a method which also relies on

a form of node snapping: the scalpel is modeled as a line segment, and nodes from the

mesh are projected onto that segment. In a post-processing step, the edge lengths and

element volumes are optimized using a particle system. The result is a good looking

cut, without a decrease in mesh quality and size. However, in reality, the path of a

scalpel is not a large line segment, but a concatenation of several small ones, and their

approach does not seem to address this issue. Bruyns et al. [21] use surface cutting with

subdivision in large-scale simulations of various procedures.

In light of the complications of volumetric cutting, we will take a step back, and

analyze the cutting problem for surface meshes first. In this chapter we will present

a method that produces cuts in a triangulated surface which does not decrease the

mesh quality and keeps the mesh size low. We have analyzed this problem primarily

to gain insight into the cutting problem for 3D tetrahedral meshes. Nevertheless, this

technique could be applied in surgery simulation for membrane-like structures, such as

skin or intestine.

5.2 Cutting in 2D

We state the general mesh cutting problem as follows: given a starting mesh, and posi-

tions of a user-controlled scalpel, modify the mesh at every moment to show an incision

that represents the past trajectory of the scalpel, and ends exactly at the scalpel. The



88 Chapter 5. Delaunay cutting in triangulated surfaces

challenge in this problem is to produce a well-shaped mesh with few elements. The sim-

plest case is the two-dimensional form. Here the mesh is a triangulation in the plane,

and the virtual scalpel is a point. The challenge is to produce elements that have no

large angles and no short edges.

5.2.1 Delaunay triangulation

Since we are putting emphasis on the quality of the mesh, we briefly review the Delau-

nay Triangulation (DT), a popular technique for generating a well-shaped triangulation

of a given set of points. The DT of a set of points is defined as a triangulation where the

circumcircle of every triangle does not contain any other points from the set. This prop-

erty is also referred to as the empty-circle property. The empty-circle property can also

be defined for edges of the mesh: an edge is called legal or Delaunay when the circum-

circles of its incident triangles do not contain the opposite node of the other triangle.

An example of an illegal edge is in Figure 5.3. Delaunay triangulations and Delaunay

edges are intimately related: a Delaunay triangulation only has Delaunay edges.

Non-Delaunay or illegal edges of a triangulation can always be flipped: the two

triangles incident with the edge always form a convex quadrilateral, and the diagonal

may be switched. The flipped diagonal is always Delaunay, and the minimum angle of

the pair of triangles is always increased, thus improving mesh quality. Flipping illegal

edges only affects a single part of the mesh, so it can be seen as local improvement

strategy. The Delaunay triangulation can be constructed by starting with an arbitrary

triangulation and flipping illegal edges until none are left. The final result maximizes

the minimum element angle. This is called the maxmin-angle property.

There are various ways to measure element quality: for example, minimum angle,

circumradius to shortest edge ratio, circumradius to inscribed radius ratio, etc. In 2D all

these measures are equivalent up to constant factors [63], so the maxmin-angle property

of the DT means that it is a reasonable meshing technique for virtually all element

quality measures. When coupled with algorithms for point insertion it is a basis for

many refinement meshing techniques [10,25,82].

Figure 5.3: An illegal edge has a triangle whose circumcircle contains the opposite

vertex of a neighboring triangle (left). By reconnecting (‘flipping’) the edge, the new

circumcircles only contain the vertices it circumscribes (right).



5.2 Cutting in 2D 89

5.2.2 Cutting and Delaunay flips

Our problem, cutting in meshes, is different from the standard meshing problem. A

starting mesh is given, and the shape of our domain is variable: as the cut progresses,

the shape of the boundary is changed. The Delaunay Triangulation assumes a given

set of points, and it is always convex. Cuts result in non-convex boundaries, so the

standard DT is not directly usable. Nevertheless, we can retain the idea of using edge

flips to locally improve the mesh.

Our approach works as follows: when cutting, the scalpel is attached to a node, the

active node, so moving the scalpel moves the active node. The active node is always

part of the boundary, so it is incident to two boundary edges, the cut edges. During a

cut, these edges almost coincide geometrically, and form an incision. We call triangles

incident with the active node active triangles. The active node is moved, and after each

movement, local remeshing is applied to the active triangles. The remeshing process

consists of the following actions.

• Edges are flipped to improve the element angles.

• If an internal node is found close to the active node, it is removed.

• The incision is split, thus introducing new nodes to approximate the scalpel path.

The net effect of the last two actions is that nodes are removed in front of the scalpel,

and inserted behind the scalpel. The technique is demonstrated in Figure 5.4; a more

elaborate example is in Figure 5.8.

The Delaunay criterion tends to flip away triangles with angles approaching 180◦,

since these have large circumcircles. Nodes that are close together get connected. Such

triangles have a small angle opposite a short edge. These triangles are also undesirable,

so they are removed by by the second action.

When the scalpel enters the mesh, it is close to the boundary of the mesh, so a

realistic incision would contain very short edges. To prevent these short edges, creation

of incisions is postponed. When the scalpel enters the mesh close to an existing node,

the node is moved and labeled active. If it enters in somewhere else, a new node marked

active is inserted at the entry point. The active node moves along with the scalpel,

creating a temporary dent. When the active node is sufficiently far from the entry

point, it is “fixed up”: nodes are added at the entry point, creating an incision. The

procedure is shown in Figure 5.6. If the scalpel is retracting (moving away from the

object) before this fix-up happens, the dent is left in the mesh permanently.

After the entry fix-up, the cut edges are in almost in the same location. From a

geometric point of view, we can identify both cut edges into a single edge, and check

if this edge satisfies the empty-circle criterion. If it does not, new nodes are inserted,

where the line connecting nodes opposite the cut edges intersect the scalpel path. We

call this procedure a incision split, and it is demonstrated in Figure 5.5. When the

scalpel passed that point previously, close nodes were removed, so the split will not

lead to short edges. The newly inserted nodes are dilated slightly, to prevent numerical

problems when a path self-intersects. The new nodes always lie on a line that connects

two existing mesh nodes, hence the accuracy of the represented trajectory is bounded

by the resolution of the starting mesh.



90 Chapter 5. Delaunay cutting in triangulated surfaces

remove: flip: incision split:

Figure 5.4: The evolution of a simple 2D cut is depicted from left to right. The key

steps are to flip edges (center), to remove close nodes (left), and to insert nodes behind

the scalpel (right).

�

1

�

2 �

2

�

1

�

� ′

1

� ′

2

Figure 5.5: During an incision split, nodes are inserted in the cut edges. This happens

when ac, with c = (c1 + c2)/2, fails the empty-circle criterion as diagonal of aco1o2.

The newly inserted nodes c ′

1 and c ′

2 are inserted where o1o2 intersects the scalpel path.



5.3 Surface cuts in 3D 91

fixup

entry point

entry

scalpel movement

Figure 5.6: Incisions are postponed when the scalpel enters the mesh.

A similar situation arises when the scalpel exits. In this case, the scalpel comes

arbitrarily close to the boundary of the mesh. To prevent arbitrarily flat elements from

occuring, the exit point is predicted, and the cut is finished before the scalpel actually

hits the boundary. At every step, the movement of the scalpel is extrapolated. When

this extrapolation hits the boundary, and is close to the active node, the cut is finished:

a node is inserted at the extrapolation, and the cut is dissected. This exit procedure still

leaves relatively short edges permanently in the mesh. To rectify this, these edges are

contracted. The procedure is shown in Figure 5.7 The boundary edges that are created

with this exit operation are added to a list of forbidden edges. These edges are not

tested for collisions during ensuing movements. This prevents artifacts when the actual

scalpel movement differs from the predicted movement. If the scalpel is sufficiently far

from the exit point, they are eligible for collision checking again.

5.3 Surface cuts in 3D

Triangulated surfaces in 3D are a common tool in computer graphics. They have

also been used for surgery simulations [19, 22]. In these cases elastic behavior was

simulated with damped mass-spring systems instead of the FEM. Nevertheless, the

concerns for mesh quality continue to hold: flat elements are inverted more easily, and

small elements correspond to short springs with small masses. Their high vibration

frequencies translate into small time steps, which makes time integration expensive.

In the 2D scheme, the scalpel is a point, and it is attached to a single active node.

Triangles are remeshed in the vicinity of the active node. There are two generalizations

of the 2D scheme: first, the remeshing process around an active node can be done for

curved instead of flat surfaces, assuming a line-shaped scalpel. Second, a line-shaped

scalpel can intersect a curved 3D surface in multiple points, so a consistent model of

cutting allows multiple incisions, each with an active node. These active nodes can

interact: incisions may meet, leading to annihilations, or incisions may hit folds, leading

to branches.



92 Chapter 5. Delaunay cutting in triangulated surfaces

(a) (b)

(c) (d)

Figure 5.7: Exits are predicted: when the extrapolated scalpel movement hits a bound-

ary closeby (a), then a new node is inserted at that location (b). The new edge is

dissected (c) and contracted (d).

We assume that the surface is given as a triangle mesh with a boundary, and that no

further information on the surface shape is known. The virtual scalpel is a line segment,

and its movement is given by sampled positions of its endpoints. The endpoints are

assumed to move with constant velocity between the samples. During a cut, active

nodes are part of the boundary of the surface. The two boundary edges incident with

an active node again are called cut edges, and define an incision.

5.3.1 Single incision

A scalpel movement is handled as follows: the line segment representing the new scalpel

position is intersected with all active triangles. If a single intersection is found, then the

active node is moved to that point. The active triangles are subjected to flipping. The

2D criterion is used to determine whether an edge is flipped: an edge is considered

illegal when the two triangles incident to that edge would be illegal in a 2D triangulation.

Conceptually, we could say that the incident triangles are unfolded to be coplanar, and

then the two-dimensional criterion is used. It is not clear whether this flipping criterion

leads to a terminating algorithm when applied to the edges of an arbitary 3D surface

mesh. In this sense, this technique is now truly a heuristic.

Flipping on 3D surfaces is a delicate operation: some flips are topologically impossi-

ble (as demonstrated in Figure 5.9). This means that the all operations must be checked

for failure cases.

Incisions are split analogously to the 2D case: during a cut, the last path of the

scalpel is stored. When the cut edges violate the 3D empty-circle criterion, new nodes

are inserted where the path is closest to the line connecting the nodes opposite the cut

edges.



5.3 Surface cuts in 3D 93

Figure 5.8: Delaunay cutting on a triangle mesh. Both the mesh itself and the boundary

are shown. The scalpel trajectory is indicated with a dotted curve. Notice how strongly

curved path segments are cut short in the realized cut. The starting mesh was regular

and consisted of 722 triangles. The cut increased mesh size by only 57 triangles.



94 Chapter 5. Delaunay cutting in triangulated surfaces

Figure 5.9: Not all flips in 3D are topologically valid: when flipping the bold edge on

the left, the new edge pair (bold) occurs twice in the resulting complex. The triangles

are displayed in an exploded view for clarity.

Node removal is done in a heuristic manner. Suppose that we want to remove a

node v that is incident with n triangles. We say that two adjacent triangles incident with

v form an ear, if the sum of the angles opposite v is less than π. When removing v, all

ears are flipped until v is incident with only 3 triangles. Then v is removed, and the

involved edges are flipped back if they violate the empty-circle criterion. Ears always

exist: suppose that the triangles incident with v are numbered i = 1, . . . , n, and have

angles αi, βi, γi, where γi is the angle at v (See Figure 5.10). Then there must be an

α(i+1) mod n + βi < π, since nπ =
∑

i(αi + βi + γi) =
∑

i(α(i+1) mod n + βi) +
∑

i γi,

and
∑

i γi > 0.

γ1

α1

β1

γ2

α2

β2

v

w

Figure 5.10: When removing a node, ears are flipped until v is in only 3 triangles. An

ear has α(i+1) mod n + βi < π, so the triangles incident with vw form an ear.

When the scalpel is almost parallel to the surface, small movements of the scalpel

can result in large movements of an active node. For this reason it is necessary to

control large movements. Large movements are subdivided using a maximum distance.

This distance is computed as the minimum for all distances between the line spanned

by the scalpel and lines spanned by the edge opposite the active node, as indicated

in Figure 5.11. If the end-points of the scalpel segment cannot move further than

dmax as indicated in Figure 5.11, then the scalpel will not hit that edge. This can be

shown as follows: suppose that the scalpel position is given by the line segment ht for

some h, t ∈ R
3, and the points corresponding to h and t move by amounts p and

q ∈ R
3 respectively, with ‖p‖, ‖q‖ < dmax. If the movement puts the scalpel on the line

spanned by the edge, then λ(p + h) + (1 − λ)(q + t) is on the edge indicated for some

0 ≤ λ ≤ 1. By the definition of dmax we have

dmax ≤ ‖(λ(p + h) + (1 − λ)(q + t)) − (λh + (1 − λ))t‖



5.3 Surface cuts in 3D 95

On the other hand, the latter expression equals ‖(λp + (1 − λ)q‖, which is bounded by

λ‖p‖ + (1 − λ)‖q‖ < dmax. This is a contradiction, so the movement (p, q) can not hit

the edge.

dmax

active node

scalpel

Figure 5.11: The maximum movement dmax for a scalpel and a single triangle. The

total maximum distance is given by the minimum over all triangles incident with the

active node.

5.3.2 Multiple incisions

In 3D, the scalpel can interact with the entire surface, and the scalpel may enter the

mesh in any place. We can distinguish three cases, as demonstrated in Figure 5.12: the

scalpel hits a boundary edge of the mesh, the scalpel tip enters through the surface,

or the scalpel hits an internal edge of the mesh. The first case is handled completely

analogous to the 2D case. The rest of the cases do not occur in 2D.

Figure 5.12: There are three ways for the scalpel to enter: by hitting the boundary,

entering with the tip or hitting an exposed internal edge.

In the second case, a new active node is inserted in the incised triangle. When

the active node is far enough from the entry point, a node is inserted at the original

entry point. The result is an edge that connects the entry node with the active node.

This edge is changed into a real incision, when the split action (shown in Figure 5.5)

is executed. Until that time, the edge is constrained, so it cannot be flipped away. The

third case is when the scalpel hits an exposed edge of the mesh. Then a single active

node is inserted in the edge. During the next movement, the cut will branch into two

incisions.

The scalpel is represented by a line segment, and line segments can interact with

curved surfaces in many places: the scalpel may incise the surface in multiple locations,

and during a cut a single incision may branch into multiple incisions, as is shown in

Figure 5.14. We could apply the 3D remeshing process from Subsection 5.3.1 if we

could rule out any interactions between different incisions. Fortunately, this seems

possible: we can forbid interactions by ensuring that every triangle is incident with at



96 Chapter 5. Delaunay cutting in triangulated surfaces

most one active node. This is achieved by the following restrictions on the meshing

process.

• Incisions in edges or triangles that already active are rejected.

• Nodes that separate active nodes cannot be removed.

• Edges that separate two active nodes cannot be flipped.

When an active node moves towards a restricted node, an annihilation is performed: all

edges from the restricted node to an active node are dissected. This is demonstrated in

Figure 5.13. When an active node comes close to an edge separating active nodes, then

its movement is extrapolated, and a new node is inserted at the extrapolated point. The

annihilation now proceeds with the newly inserted node. A normal boundary exit is a

special case of an annihilation.

Forbidden to remove

Forbidden to flip

Scalpel

Figure 5.13: Edges that separate incisions may not be flipped, nodes separating inci-

sions may not be removed. Instead, when an active node comes too close to such a

forbidden node or edge, an annihilation is performed (right).

Unfold

Figure 5.14: Folded surfaces may lead to branching cuts (top). In such cases, a move-

ment will cause the scalpel to intersect multiple triangles (bottom; intersection points

are indicated by dots). When this happens, multiple incisions replace the old active

node.

When a scalpel movement is processed, the next position of the active node is de-

termined by intersecting all triangles incident with the new scalpel position. If multiple

active triangles are intersected, as demonstrated in Figure 5.14, then the cut will branch.

New incisions are inserted, the old incision is marked as no longer active, and the edges



5.3 Surface cuts in 3D 97

connecting old and new active nodes are dissected. During a branch, the new nodes are

close to the original incision. This leads to short edges and degenerate triangles. When

the scalpel progresses further, these short edges disappear.

�

� ′

�

� ′

�

�

�

�

�

�

�

Figure 5.15: Intersecting a line sweep with an edge.

Collisions are computed as scalpel/edge intersections. The procedure for computing

such intersections is as follows. We assume that the scalpel moves from ht to h ′t ′ for

some h, t, h ′, t ′ ∈ R
3, and that we want to compute intersections with the line segment

ab, for a, b ∈ R
3 (See Figure 5.15). In other words, we want to solve

p = γh + (1 − γ)h ′

q = γt + (1 − γ)t ′

λp + (1 − λ)q = µa + (1 − µ)b

λ, γ, µ ∈ [0, 1]

Substituting the first two equations in the last one yields the equation

λγ((h − t) − (h ′ − t ′)) + λ(h ′ − t ′) + µ(b − a) + γ(t − t ′) = b − t ′.

This is may be seen as a linear system in four variables. If we set x = (λγ, λ, γ, µ),

c = (h − t) − (h ′ − t ′) and write the 3 × 3 matrix A for (h ′ − t ′, t − t ′, b − a), then

we can rewrite the equation as

(c|A)x = b − t ′, (5.1)

where x ∈ R
4 is the unknown. When viewed as a linear system, a solution maybe given

as y + αk, where y ∈ R
4 is a particular solution of the system, and k ∈ R

4\{0} is in the

kernel of (c|A). We set k = (1, −A−1c) and y = (0, A−1(b − t ′)). Using these values,

we may derive a quadratic equation for α from Equation (5.1). We thus obtain triples

(λ, γ, µ) that define intersections.



98 Chapter 5. Delaunay cutting in triangulated surfaces

5.4 Results

The 2D version of this algorithm has been implemented in a small application written in

Python. The mouse controls a virtual scalpel that can perform cuts in uniform meshes

on a square grid. A sample is shown in Figures 5.8 and 5.16.

Fix-up, node removal and exits depend on points being close to or far from the

active node. These notions are expressed in global constant thresholds for the distance.

These thresholds are denoted by εedge for node removal, εentry for entry fixup, and εexit

for predicting exits. They were set to a fraction of the average global edge length h̄.

For Figure 5.8 we used εedge = h̄/3, and for Figure 5.16 we used h̄/3 and h̄/8. The

entry and exit tolerances were set to h̄/6. This choice is somewhat arbitrary, but if

εedge is set larger than h̄/2, mesh complexity will be reduced during a cut. Lower values

set a threshold for edge length. This does not directly control the accuracy of the cut

trajectory represented in the mesh: the example in Figure 5.16 shows that lowering the

threshold can decrease accuracy.

In Figure 5.16 the new cutting scheme for 2D is compared with a subdivision ap-

proach, where each sliced triangle is replaced by three triangles. Element shapes are

much worse in the subdivision mesh, as evidenced by the histograms of minimum and

maximum triangle angle in Figure 5.17. On the other hand, the subdivision cut follows

the scalpel path more closely.

The 3D version of this algorithm has been implemented in a small application writ-

ten in C++. It also uses the mouse to obtain scalpel movements. Samples are shown

in Figures 5.18 and 5.19. The 3D version assumes that all events are strictly ordered

in time, and does not take special precautions for degenerate cases. When the scalpel

enters or exit in a movement parallel to the surface, multiple events happen simultane-

ously, which leads to various failures.

Flips can be implemented in constant time and node removals can be accomplished

in O(d log d), where d is the degree of the node [34]. The expected value of d in surface

meshes is 6, so the total remeshing process for a single movement can be implemented

in constant time, which guarantees that the remeshing process itself is scalable to larger

meshes. However, in the 3D version the scalpel can interact with all parts of the mesh

at every step. In practice, efficient collision detection will be needed for a scalable im-

plementation. Also, the number of events caused by a single scalpel movement depends

on the angle between the surface and the scalpel. However, for small meshes (say,

1000 triangles) response of the 3D version is instantaneous when scalpel is more or less

perpendicular to the surface (on a P3/1Ghz).

5.5 Discussion

We have presented an approach to cutting in triangulations that produces measurably

smaller and better-shaped meshes than subdivision methods. The method is based on a

model of a point-shaped scalpel that moves an active node through a static mesh. Dur-

ing movements, the area around the active node is remeshed. The approach generalizes

curved surfaces in 3D, where the scalpel is line-shaped. The technique bears some re-

semblance to interactive mesh dragging, a technique proposed by Suzuki et al. [90] to



5.5 Discussion 99

Figure 5.16: The same cut performed with both subdivision (top) and Delaunay cutting

(center, εedge = h̄/3 and bottom, εedge = h̄/8). The starting mesh contains 50 triangles.

The subdivision cut increases size by 62 triangles, the Delaunay cut in the center by 10,

and at the bottom by 12 triangles. The scalpel trajectory is indicated with a dotted line.

Notice that the mesh in the center picture matches the trajectory better than the mesh

at the bottom, although εedge was smaller.



100 Chapter 5. Delaunay cutting in triangulated surfaces

< 0.11 < 0.34 < 0.57 < 0.79 < 1.02

Subdivision
h/3 Delaunay

minimum angle

0
10

20
30

40

< 0.31 < 0.94 < 1.57 < 2.20 < 2.82

Subdivision
h/3 Delaunay

maximum angle

0
10

20
30

40
50

60

Figure 5.17: Histogram of minimum (top) and maximum (bottom) element angle for

the subdivision and h̄/3 Delaunay cut from Figure 5.16. The peaks correspond to

the unaltered triangles (minimum angle π/4, maximum angle π/2). The Delaunay cut

(right bars) yield less extreme element angles than the subdivision cut.

allow dragging operations on triangle surfaces in interactive geometric modelers. It is

possible to generalize the single-incision 3D technique to multiple incisions consistently.

The technique that we have described is heuristic: it employs more or less arbitrary

constant tolerances εedge, εexit and εentry. This implies that it is only usable for meshes

with a uniform resolution, and that suitable values must be computed beforehand. In

retrospect, it might have been wiser to consider an edge too short when the opposite

angle in incident triangles is shorter than some threshold. This criterion is also local but

scale independent.

We have used a static model for mesh cutting. In the context of surgery simulation

and deformable models, this is not realistic. Surgical instruments always interact with

the deformed mesh, and exert force on the tissue that is cut. A full-fledged simulation

would be able to respond to movements with reaction forces, which could be relayed to

a force-feedback device. Deformation could be handled as follows: both the 2D and 3D

algorithm include a step where the new position of the scalpel is intersected with parts of



5.5 Discussion 101

Figure 5.18: In principle, our approach also works for a cut branching into three cuts.

The mesh has very sharp angles and a limited resolution, so edge flips produce an odd

end result.

the mesh. When deformation is present, these intersections are done with the deformed

mesh. The deformation of the triangles involved can be used to translate the point back

to the reference situation. Our technique can then proceed as described using reference

locations. However, this does not address a more fundamental limitation: our model

assumes that a more or less uniform mesh is desirable. It can be expected that more

accuracy for the deformations are required close to the scalpel, since this is where forces

are exerted on the material. When accurate deformations are needed, the mesh should

be adaptively refined close to the scalpel incision, and coarsened further away.

Entry and exit are also changed by the presence of deformation: surgical instru-

ments must overcome a threshold in force to puncture membranes covering organs [15,

36]. Cutting requires less force than puncture, so after the instrument enters the tissue,

it will make an incision immediately, ensuring that entry does not lead to arbitrarily

small incision depths. This is a physical variant of our entry-fixup, and it would make

our own entry-control superfluous. A similar observation might also hold for a scalpel

finishing a cut. Removing entry control is attractive, since our approach depends on a

heuristically chosen quantitity εentry, and it is possible to create a deadlock situation: if a

scalpel entry has to be fixed up, the active node is part of the boundary. It is not always

possible to preclude element inversion when moving boundary nodes, so the step-size

control for large movements may halt further movements in some cases.

During a cut, nodes are added and removed; the nodes are added on line segments

connecting existing nodes, which implies that the overall resolution of the mesh does

not increase. Some interactive simulations of deformable objects refine meshes on de-

mand to provide more accurate results in the region of interest [36,76,100]. Delaunay

refinement algorithms [25,82] seem to fit our framework of using Delaunay Triangula-

tions, however more research is needed before this can be used in practice. Refinement

algorithms need input geometries without small angles. Moreover, in 3D a surface tri-

angulation is an approximation of a smooth surface. It is necessary to know the original



102 Chapter 5. Delaunay cutting in triangulated surfaces

Figure 5.19: Screenshots from the 3D prototype, showing the cuts effected with mouse

movements. The mesh is a 392 triangle surface mesh of a Gaussian bell-curve. The

first 5 images show the evolution of two cut movements. The final image demonstrates

more self-intersecting paths.



5.5 Discussion 103

surface for determining where to insert new vertices; existing 3D surface meshing al-

gorithms, such as Chew’s guaranteed quality surface Delaunay refinement [25], also

assume that a such smooth description is available. Hence, a cutting algorithm us-

ing refinement should be redesigned with the assumption that a surface shape itself is

known.

We have demonstrated an extension of our single incision 3D approach to multiple

incisions. The extension is consistent with our model of the scalpel as a moving line

segment. It remains to be seen how branching cuts should be combined with deforma-

tions.

Unfortunately, both the rationale for using Delaunay triangulation and our heuris-

tics do not readily generalize to tetrahedral meshes. Delaunay tetrahedralizations of

well-spaced points admit slivers, tetrahedrons that have four nearly planar and nearly

cocircular vertices (see Figure 5.20). Slivers are flat tetrahedrons and therefore unde-

sirable. Moreover, the higher-dimensional equivalent of edge flipping (face flipping),

does not always work: there exist configurations of non-Delaunay faces which can not

be flipped. This implies that flipping as a local improvement strategy does not al-

ways work. If the tetrahedralization is already Delaunay, then flipping non-Delaunay

faces during insertion or removal of points in a mesh is always possible. Since cuts are

non-convex, this suggests that a tetrahedral generalization must build a constrained or

conforming Delaunay tetrahedralization with a moving boundary. A first step towards

enabling such cuts would be to extend the current 3D surface cutting approach to cuts

of closed surfaces: when cutting a closed surface, surface triangles are added to the

inside of the incision, so the surface remains closed during cuts. This surface could

then be used as a basis for making a tetrahedralization. An additional complication is

that a constrained Delaunay tetrahedralization only exists if edges have no non-incident

nodes close by (the surface should be ridge-protected) [86].

Figure 5.20: Slivers have an excellent circumcircle to shortest-edge ratio, so they can be

present in Delaunay tetrahedralizations of well-spaced point sets. They are degenerate

nevertheless.


