
Chapter 4

Relaxation algorithms

This chapter is intended as an expansion of the work of Chapter 3, where we have de-

scribed our first steps into interactive deformation modeling. Our first approach is a

completely linear model with an iterative solution based on the Conjugate Gradient al-

gorithm. We have shown how mesh modification and deformation are easily combined

with this method. However, linear elasticity has its limits: it assumes that deformations

remain small. This assumption is questionable for soft material, such as soft tissue.

Other work in deformable objects primarily uses dynamic methods to compute de-

formations. Such methods compute the evolution of deformations over time as they

move to a steady state. They are perhaps easier to understand than iterative static

methods, since all intermediate results have a physical interpretation. Since they com-

pute more physically relevant information, one could also expect that they are more

expensive than a static method.

This chapter addresses both the extension to nonlinear material and convergence

speed in more detail. We will extend the deformation framework of the previous chap-

ter to include nonlinear deformations and a dynamic formulation. Using this frame-

work, we benchmark the convergence speed of a static algorithm by comparing it to a

dynamic method applied to the same problem. The rest of this chapter starts with de-

tailing theoretical convergence of a dynamic method, then it introduces the convergence

experiment, material models, and finally it shows and discusses the results.

4.1 Convergence of dynamic relaxation

The theoretical convergence speed of Conjugate Gradients (CG) has been analyzed

extensively in literature, and was discussed in Section 2.4. In this section, we briefly

analyze the convergence speed of dynamic relaxation in the case of linear elasticity. We

will show how quickly a dynamic method will settle into a steady state, and find that the

convergence speed of the dynamic problem is similar to that of CG.

We recall from (2.55) that the PDE for linear elasticity can be discretized into the

59

60 Relaxation algorithms

following n-dimensional differential equation for the function u(t) ∈ R
n

Mü + Cu̇ + Ku + fex = 0.

Here fex represents the external force, M ∈ R
n×n is the mass matrix, representing

the inertia of the object, and C ∈ R
n×n the damping matrix, and K ∈ R

n×n the

stiffness matrix. The integration methods in (2.60) and (2.62) require diagonal M and

C matrices for efficient time-stepping, so we use lumped masses. Since C must also

be diagonal, we take C = ηM for some constant η > 0. This is a form of Rayleigh

damping.

This dynamic solution has two parameters: η controls the amount of damping, and

∆t is the time step of the integration scheme. Both parameters influence the speed of

convergence towards the steady state. We want to determine how quickly this dynamic

method reaches the steady state, so that the parameters η and ∆t have to be chosen

optimally. We determine these optimal parameters by analyzing the evolution of the

solution error e over time. We define the error e in a solution u as being the difference

between u and a static solution ustatic. We have Kustatic = fex, so the error e = u−ustatic

satisfies the homogeneous differential equation

Më + ηMė + Ke = 0. (4.1)

Solutions of this equation are expressed in terms of generalized eigenvalues of M and

K, i.e. solutions to

Kw = λMw

Both K and M are symmetric and positive definite, so this generalized eigenvalue prob-

lem has M-orthogonal eigenvectors with positive eigenvalues. There are eigenpairs

(wi, λi) from R
n × R

+, such that Kwi = λiMwi for i = 1, . . . , n. Since K and M

are symmetric, the eigenvectors can be chosen to be M-orthogonal. In addition, the

eigenvectors wj can be normalized, so that we have

(wi, wj)M =

{
0 i 6= j,

1 i = j.

This expression uses the notation from Equation (2.44).

The vectors wi represent normalized undamped vibration modes of the body, and

form an M-orthonormal basis of R
n. Therefore, we can decompose e into the eigen-

vectors wi, writing

e(t) =
∑

j

yj(t)wj, yi(t) = (e(t), wi)M

Since K and M are positive definite, the eigenvalues are positive. We order the eigen-

values, so 0 < λ1 ≤ λ2 ≤ · · · ≤ λn.

Analogous to Subsection 2.4.1, we analyse the error in the energy norm, which is

given by ‖e‖K. Due to the M-orthogonality of the wj, we find

‖e‖K =

√∑

j

yj(t)2λj.

4.1 Convergence of dynamic relaxation 61

In other words, the solution error can be decomposed in its modal components. By

taking the M-inner product of (4.1) and a vibration mode wj, we get the following

differential equation for the component yj:

ÿj(t) + ηẏj(t) + λjyj(t) = 0. (4.2)

This is a differential equation with constant coefficients. There are three cases for

the general solution: the vibration is either underdamped, critically damped or over-

damped. Let

µ = −η/2,

ωj =
1

2

√

|4λj − η2|.

If η < 2
√

λj, then the system is underdamped, and solutions take the form of

yj(t) = c1je
µt sin(ωjt + ϕj), c1j, ϕj ∈ R.

If η = 2
√

λj, then the system is critically damped, and solutions take the form of

yj(t) = (c1j + c2jt)e
µt, c1j, c2j ∈ R.

If η > 2
√

λj, then the system is overdamped, and solutions take the form of

yj(t) = c1je
(µ+ωj)t + c2je

(µ−ωj)t, c1j, c2j ∈ R.

Graphs of these three cases are shown in Figure 4.1.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

critically damped
underdamped

overdamped

Figure 4.1: Three types of damping demonstrated for Equation (4.2), with critical

damping, and η = 1/2ηcrit and η = 2ηcrit. Begin values are λj = 4, yj(0) = 1, ẏj(0) = 0.

We see that all modal components of the error diminish over time by e−ηt/2 in

the underdamped and critically damped case. If η is larger than 2
√

λj for any j, then

62 Relaxation algorithms

that mode is overdamped, and the corresponding error component will diminish by

e−(η/2−ωj)t, which is slower than e−ηt/2. Therefore, the quickest convergence is

attained when η is as large as possible, but no mode is overdamped. This is when

η = 2
√

λ1.

In this case, we have

‖e‖K = e−ηt/2

√∑

j

λjỹ
2
j (t), ỹj(t) = eηt/2yj(t)

The contents of the square root are O(t), so the error is dominated by the exponential

term e−ηt/2. Hence, when the equation is integrated over a time span T , then the

magnitude all modal components decreases by e−ηT/2. For a reduction ε in error, we

have to integrate over a fixed time span

T =
−2 ln ε

η
=

− ln ε√
λ1

.

The stability condition of the SS22 and related explicit second order integration meth-

ods for (4.2) is given by Zienkiewicz [103]: the time step ∆t must satisfy

∆t2 ≤ 4

λj

, j = 1, . . . , n.

The highest frequency mode is given by the largest eigenvalue λn, and this mode must

also be stable, so we have

∆t ≤ 2√
λn

.

If a modal component yj is to decrease by a factor ε, then this takes at least N time

steps, where

N =
T

∆t

≥ − ln(ε)
√

λn

2
√

λ1

=
1

2
ln

(

1

ε

)√
κ, κ = λn/λ1 = cond2(M−1K)

Recalling Equation (2.47), we see that CG and dynamic relaxation offer similar

performance in the linear case: the condition number of K determines the convergence

speed. The effect of the mass matrix M is that of a preconditioner: if M were variable,

and could be selected to decrease cond2(M−1K), then larger time steps could be taken,

leading to more rapid convergence. This “preconditioning” has a physical interpreta-

tion: when a discretisation has both small and large elements, increasing nodal masses

of small elements decreases their vibration frequencies, thus it brings down λn. For a

system with lumped masses, M is diagonal, so if we view M as a preconditioner, then

increasing nodal masses is analogous to preconditioning with a diagonal matrix.

4.2 Experimental setup 63

parameter notation value

gravity g 9.8 m/s2

density ρ 1000 kg/m3

Young modulus E 1.0 · 104Pa

Poisson ratio ν 0.3

Material nonlinearity γ 8

Table 4.1: Material parameters and constants for the experiments.

4.2 Experimental setup

Subsection 2.4.1 and 4.1 show that on theoretical grounds CG and dynamic relaxation

have the same convergence speed. However, the estimate for CG is not tight. More-

over, the linear analysis does not necessarily extend to nonlinear problems. In order to

assess the speed of both algorithms in practice, their convergence in terms of computa-

tional cost has to be measured when applied in a practical situation. In this section we

will discuss the experimental setting and how convergence and computational cost are

measured.

The test object is a horizontal cylinder of very soft material, fixed on one end. At

the start of the experiment, the gravity force is applied, and the object moves to a new

equilibrium state. We measure how quickly it reaches that state. Material parameters

and constants are in Table 4.1. These parameters are in the same order of magnitude

as a very soft tissue [7, 57]. The undeformed configuration of the cylinder is shown in

Figure 4.2. Cantilever beams of soft material easily lead to large deformations, so they

test the performance on nonlinear problems. Moreover elongated structures are also

present in the human body, for example, in skeletal muscles and tendons.

The object is meshed using a Delaunay tetrahedrization [69] of cylindrical point

clouds. We use two meshes, a coarse mesh of 1230 elements and a more fine grained

mesh of 9300 elements. Properties of the meshes used are listed in Table 4.2. The

meshes are very well-shaped: they have no extreme element sizes, and no extreme

angles. It is unlikely that this quality can be maintained for unstructured meshes during

online changes. To assess the impact of mesh quality deterioration, we will examine the

influence of edge lengths on relaxation

The computational cost of the solution process iteration is measured in flops, float-

ing point operations. During the computation, a flop count is maintained. The flop

count per tetrahedron was manually determined for every material model. The result-

ing counts are shown in Table 4.2. During the computation, these numbers are added

in a global variable. This flop count is independent of machine, compiler and timer

resolution, and is not affected by any overhead of measuring the performance. Mul-

tiplications, divisions, sums and differences were counted as one flop, and 1 MFLOP

= 106 flop. Compared to these counts, the exponential function was measured to take

approximately 50 flops. Another instance of the program runs the same experiment

with statistics turned off and maximum optimization settings, to determine the speed

of the program in flops per second. By combining both numbers, the computional cost

64 Relaxation algorithms

Figure 4.2: The cantilever beam, in undeformed configuration

small mesh large mesh

Mesh type Delaunay idem

Rod length 0.1m idem

Rod radius 0.03m idem

Elements 1230 9300

Nodes 308 1911

Edge lengths 0.05 –0.013m 0.0067 – 0.0025m.

Dihedral angles 20◦ – 140◦ idem

Table 4.2: Geometry of the test input

4.3 Hyperelastic compressible materials 65

can be expressed in seconds of computation time.

The rate of convergence was determined by comparing the approximation with an

“exact” solution, a solution computed with a smaller error tolerance. This solution was

obtained in a two step process first, a nonlinear CG iteration was used to find an approx-

imate solution, such that the residual r satisfies ‖r‖2 ≤ 10−2‖fex‖2. Then a truncated

Newton-Raphson algorithm (discussed in Section 2.4.3) was used to obtain a solution

such that ‖r‖2 ≤ 10−8‖fex‖2 (except for the linear problem, where the tolerance was

set at 10−12).

Suppose that the exact solution of the problem is û ∈ R
n, and at some point, the

error is u − û = e ∈ R
n. Hyperelastic mechanical problems are energy minimization

problems, so we measure the error with the energy difference between the approxima-

tion and the ‘exact’ solution, i.e. the energy error Π(u) − Π(û). When e is small, then

we can rewrite this to

Π(u) − Π(û) = Π(û + e) − Π(û)

= ((∂Π/∂u)(û), e) + (K(û)e, e) + O(‖e‖3)

= (e, e)K(û) + O(‖e‖3).

The first term of the last expression is an approximation of the energy difference. Since

this expression is less susceptible to rounding errors, we will use it for measuring the

convergence.

4.3 Hyperelastic compressible materials

Previous work in soft tissue modeling and deformable object simulation shows a variety

of different models in use, both for off-line and on-line simulation. Therefore we use

a number of different material models, which are discussed in this section. All of these

are compressible, isotropic, hyperelastic models. We recall from Equation (2.12) and

the discussion surrounding it, that hyperelastic models are defined by an energy density

W, which depends on the three invariants ι1, ι2 and ι3 of the Green deformation tensor

C. Some forms of anisotropy can also be added to hyperelastic models, by introducing

other types of dependencies in W [51,78].

We recall from (2.15) that the second Piola-Kirchoff stress tensor S for hyperelastic

materials is given by

S = 2
∂W

∂C
,

and elastic forces for the nodes of a tetrahedron are given in (2.35): they are represented

in the 2-tensor

−T · Z−∗ = −F · S · Z−∗. (4.3)

In this expression Z is the tensor defined in (2.32). It represents the shape of the

tetrahedron.

For Newton-Raphson methods we will also need the derivative of the nodal forces,

relative to the tensor U representing node displacements. The derivative of the nodal

forces can be expressed as a 4-tensor, a linear map that takes 2-tensors to 2-tensors.

66 Relaxation algorithms

It can be computed from (4.3) by applying the product rule, leading to the following

derivative.

H 7→
(

H · Z−1 · S · +F ·
(

∂S

∂U
: H

))

· Z−∗, H ∈ Lin . (4.4)

The derivative of S is given by

∂S

∂U
=

∂S

∂C
:
∂C

∂U
,

and

∂C

∂U
: H = (H · Z−1)∗ · F + F∗ · (H · Z−1).

Equation (4.4) includes S, so when both the forces from (4.3) and their derivative

from (4.4) are required, the calculations can be combined. Calculating both is only

slightly more expensive than calculating the derivative only.

We assume that the reference configuration of the object is in a stress-free state, so

S = 0 when C = I. The function W represents potential energy, so we arbitrarily set

W = 0 for C = I. We introduce the following models.

• St. Venant-Kirchoff material

• St. Venant-Kirchoff material with the linear geometry approximation

• neo-Hookean material

• Veronda-Westmann

The cost of computing an elastic force from the deformation of a tetrahedron varies

across these models. The costs are listed in Table 4.3.

Model Force Derivative

Linear material/strain 129 129

St. Venant-Kirchoff 235 421

neo-Hookean 277 595

Veronda-Westmann 347 797

Table 4.3: Cost in flops of computing elastic forces and their derivatives in a single

tetrahedron, measured by counting operations in the formulas.

For small deformations, all these models reduce to the second model, which allows

the computations to be verified using the deformation test of Chapter 3. We express

the material parameters for all models using the Lamé constants λ and µ.

4.3 Hyperelastic compressible materials 67

4.3.1 St. Venant-Kirchoff elasticity

St. Venant-Kirchoff elasticity addresses the linear geometry approximation. It was used

by Zhuang and Canny [101] in a dynamic simulation with non-lumped damping, by

Picinbono et al. [78] in a dynamic simulation with lumped mass and damping, and by

Debunne et al. [32] in a dynamic simulation with adaptive mesh resolutions.

We recall Equation (2.17) for the St. Venant-Kirchoff model, discussed in Sec-

tion 2.1.

W(ι1, ι2) =
1

2

((

−µ −
3λ

2

)

ι1 +

(

λ

4
+

µ

2

)

ι21 − µι2

)

,

S = µ (C − I) +
λ

2
(ι1 − 3)I,

∂S/∂C : H =
λ

2
trace(H)I + µH.

(4.5)

The result of applying the St.Venant-Kirchoff model to our test object is shown in

Figure 4.3. The energy function does not have an energy term that prevents material

inversion. This is reflected in the result: elements are inverted near the attachment

point of the rod.

Figure 4.3: St. Venant-Kirchoff elasticity. Elements are inverted where the beam is

fixed at the left.

4.3.2 Linear geometry approximation

If this model is combined with the linear geometry approximation, then we obtain linear

elasticity, which was discussed earlier in Section 3.1. Linear elasticity was prevalent in

68 Relaxation algorithms

early work in surgery simulation [18,27,49]. It is also used when high update rates are

required. When using the Boundary Element Method [53] or static condensation [18,

36] it is possible to precompute all deformations of an object in advance. With this

technique, the high update rates required for haptic interaction can be achieved.

The linear geometry approximation is shown in Figure 4.4. Evidently, the assump-

tion of small deformations does not hold in this situation.

Figure 4.4: The result of applying the linear model to our standard test. The unde-

formed configuration is shown as a wire frame mesh.

4.3.3 Neo-Hookean elasticity

The compressible neo-Hookean elasticity model is a generalization of the St.Venant-

Kirchoff model, and it is used for describing rubbery materials. It has also been used as

a material model for interactive deformation by Székely et al. [92] and Wu et al. [100].

The energy density function that we use is given by [65,102].

W(ι1, ι3) =
1

2

(

µ (ι1 − 3) − µ ln(ι3) + λ(
√

ι3 − 1)2
)

. (4.6)

4.3 Hyperelastic compressible materials 69

The stress and its derivative are as follows:

S = (µI + (−µ + λ(
√

ι3 − 1)
√

ι3)C−1)

∂S/∂C : H = − (λ (
√

ι3 − 1)
√

ι3 − µ)C−1 · H

+
λ

2
(2
√

ι3 − 1)
√

ι3(C−1 : H)I · C−1

Compression makes ι3 tend to zero, so the logarithm tends to minus infinity: the

material resists inversion, which is visible in the result shown in Figure 4.5.

For small strains, we have C ≈ I, so C − I = O(ε) for some small ε > 0. In a linear

approximation, we have

√
ι3 = 1 + trace(C − I)/2 + O(ε2),

C−1 = I − (C − I) + O(ε2).

For small deformations, this reduces to the stress for linear elasticity in Equation (4.5).

Figure 4.5: Compressible neo-Hookean material.

4.3.4 Veronda-Westmann elasticity

Veronda and Westmann [98] have proposed a three-dimensional constitutive descrip-

tion of soft tissue based on measurements of cat skin. Their work was also discussed

in Section 2.6. This model has been used in offline simulations of soft tissue [51, 79].

Veronda and Westmann propose the following energy density:

W(ι1, ι2, ι3) = c1(eγ(ι1−3) − 1) + c2(ι2 − 3) + g(ι3).

70 Relaxation algorithms

The function g was not specified further. In the compressible case, we should have

g(ι3) → ∞ if ι3 → 0. For small deformations, we have ι1 ≈ 3, so the exponential term

can be linearized to c1γ(ι1 −3). The effect of the exponential term is to resist stretching

more when strains are large. This is consistent with the stress-strain relations for most

types of soft tissue. The parameter γ measures the amount of nonlinearity.

We assume that the reference state is stress free (S = 0 if C = I). To ensure

consistency with the linear model, we require that for γ → 0, the exponential term

reduces to 2µ(ι1 − 3). The following function fits this template:

W(ι1, ι2, ι3) =
1

2

(

2µ

γ

(

eγ(ι1−3) − 1
)

− µ(ι2 − 3) +
λ

2
(ι3 − 1 − ln(ι3))

)

.

This energy density leads to the following stress tensor

S =
(

2µeγ(ι1−3) − µι1

)

I + µC +
λ

2
(ι3 − 1)C−1. (4.7)

The stress derivative is given by

∂S/∂C : H = µ
(

2eγ(ι1−3)γ − 1
)

trace(H)I + µH

+
λ

2
(ι3(C−1 : H)I − (ι3 − 1)C−1 · H) · C−1.

(4.8)

When the nonlinearity γ tends to 0, and we assume small strains (C = I + O(ε)),

then (4.7) tends to

µ(2 − trace(C − I) − trace(I) + C) +
λ

2
trace(C − I)(I − (C − I)) + O(ε2)

= µ(C − I) + (µ +
λ

2
)(trace(C − I))I + O(ε2).

The trace(C − I) term, corresponding with volume preservation in the linear model, is

not consistent with the linear case. The result of applying Veronda-Westmann to the test

object is shown in Figure 4.6. Due to the exponential term, the object resists stretching

more, and bends less. This results in a smaller tip deflection than the neo-Hookean

material model.

4.4 Relaxation algorithms

The two relaxation algorithms tested are explicit SS22 time-integration with lumped

masses and lumped damping, and the nonlinear CG algorithm. In this section we

discuss how parameters for the dynamic algorithm were chosen, and how the line search

for the CG algorithm was implemented.

4.4.1 Dynamic parameters

The implementation of a dynamic relaxation is straightforward, but running requires

η and ∆t to be set. In the linear case, we can compute the optimal choice for both

parameters. In the nonlinear case, we must resort to a heuristic.

4.4 Relaxation algorithms 71

Figure 4.6: Veronda-Westmann material.

The critical time step can be computed exactly for linear elasticity. Nonlinear ma-

terial can react more strongly to a change in deformation, and requires shorter time

steps. Therefore, the critical time step is found by the following empirical procedure.

A time step is considered stable if an undamped simulation does not blow up within

50 MFLOPs. A simulation is considered blown up if ‖u‖ exceeds 1015. An initial

time step is estimated using the Courant-Friedrichs-Lewy criterion (2.54), and then it

is repeatedly lowered by 15 % until a stable time step is found.

The critical damping was also determined by trial and error. Damping higher than

ηcrit yields smooth and slower convergence, while lower damping yields slower, oscil-

latory convergence. By manually trying out different η values and selecting the value

yielding the fastest convergence, we can find the optimal η, listed in Table 4.4. To ver-

ify that ηcrit is close to optimal, all convergence graphs also show results for damping of

2/3ηcrit and 3/2ηcrit.

material ηcrit

linear 17

St. Venant-Kirchoff 20

neo-Hookean 21

Veronda Westmann 27

Table 4.4: Damping parameters for the experiments discussed

72 Relaxation algorithms

4.4.2 Line search

The nonlinear CG algorithm is a generalization of the linear CG method. It was dis-

cussed in Section 2.4.2. An implementation of the nonlinear CG algorithm requires a

line search strategy. Such a strategy improves the energy Π(x) of the current solution

x ∈ R
n by taking a step α > 0 in a given direction d ∈ R

n. The optimal step is given

by

min
α∈R+

Π(x + αd).

For a differentiable Π, the steplength follows from g(α) = 0, where

g(α) =

(

∂Π

∂x
(x + αd), d

)

.

This is a one-dimensional equation, which may be solved with a Newton iteration.

The Newton iteration was discussed in Section 2.4.3. In this case, the iteration can be

defined as follows.

α0 ← 0

αn+1 ← αn −

(

dg

dα
(αn)

)−1

g(αn), n ≥ 0

We have
dg

dα
(α) = (d, K(x + αd))

The line search algorithm stops when the if needs more than jmax iterations, or if the

update of α is small enough, as measured by a tolerance εnewton. This leads to the

following algorithm.

j← 0

α0 ← 0

while j < jmax:

rj ← −(∂Π/∂x)(x + αjd)

sj ← −K(x + αjd)d

δj ← (rj, d)/(sj, d)

if j > 0 and |δj| < εnewton|δ0|:

exit loop

αj+1 ← αj − δj

j← j + 1

The update δj is not added to αj if it is too small. Instead, the corresponding residual

rj is used to update the elastic force vectors in the main loop of the iteration.

In this Newton iteration, the result of the last calculation of K(x + αjd)d is never

used, which is wasteful. Therefore we propose a secant method [102]: the derivative g ′

in the Newton scheme is replaced by the finite difference approximation

dg(αn)

dα
≈ g(αn) − g(αn−1)

αn − αn−1

. (4.9)

4.5 Results 73

This leads to the following pseudo code:

j← 0

α0 ← 0

while j < jmax:

rj ← −(∂Π/∂x)(x + αjd)

γj ← (sj, d)

if j = 0:

sj ← −K(x + αjd)d

δj ← γj/(d, sj)

else δj ← γj(αj − αj−1)/(γj − γj−1)

if j > 0 and |δj| < εnewton|δ0|:

exit loop

αj+1 ← αj − δj

j← j + 1

Since no evaluations of ∂2Π/∂2u are left unused, we can expect that this method is

more efficient. We may further speed up this algorithm by replacing the evaluation of

K(x)d in the first step by the finite difference approximation from (4.9). This introduces

a scale-dependent parameter, since α−1 must be chosen for the problem at hand. We

will refer to this algorithm as the scale-dependent secant algorithm.

4.5 Results

The hyperelastic models discussed were implemented, along with iteration methods for

nonlinear CG and SS22 time-integration. This was done in the framework that we

wrote for the work in Chapter 3. In addition, a truncated Newton algorithm, as dis-

cussed in Subsection 2.4.3, was implemented to compute reference solutions at stricter

tolerances.

4.5.1 Tuning CG

The performance of the three line search algorithms (Newton, secant, scale-dependent

secant) from the previous section is plotted in Figure 4.7. The scale-dependent secant

algorithm is the fastest method. For our test cases, α−1 = −0.001 was sufficient to ob-

tain convergence. The line search algorithms all use a tolerance parameter ε. Figure 4.8

shows how different settings affect the convergence, and is representative of other mod-

els: The iteration converges within a few iterations, so the precise value of ε makes little

difference in the convergence behavior.

There are different strategies for determining β in the nonlinear Conjugate Gradient

algorithm. Both the Fletcher-Reeves strategy from Equations (2.48) and Polak-Ribière

from (2.49) were implemented, but for our test problem there was no difference in

performance. The rest of the experiments were conducted with normal secant line

search, Polak-Ribière β selection and a large tolerance (εnewton = 0.1) for the line search.

74 Relaxation algorithms

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

en
er

gy
 d

iff
er

en
ce

seconds

CG linesearch algorithm (VW material)

Newton
scale-free secant

full secant

Figure 4.7: The performance of different line searches for the Veronda-Westmann

problem.

4.5.2 Performance

By comparing FLOP count and processor time used, we can also estimate the MFLOP

per second rate, which indicates how efficiently the CPU is used during computations.

These numbers are given in Table 4.5. The baseline for the MFLOP/second rate was

a repeated double vector add, coded in C++. For repeated adds of a 1024-double

vector, the machine, a 1 Ghz Pentium 3, achieved 246 MFLOP/sec. The programs

were compiled with GNU C++ version 3.2, with maximum optimization switched on,

and visualization and convergence statistics turned off.

The dominating cost in computation were computations of the elastic forces, taking

up 99 to 99.5 % of the operations. The MFLOP rates range between 50 and 90 % of

the peak speed, indicating that the implementation performs in the order of magnitude

of the machine peak speed.

4.5.3 Influence of mesh size

In Chapter 3, we have demonstrated that large meshes are needed for accurate results.

Figure 4.9 compares the convergence of the large mesh and the small mesh from Ta-

ble 4.2. The larger mesh leads to slower convergence, but static and dynamic are slowed

down by the same amount, so all other experiments are performed on the small mesh.

4.5 Results 75

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

en
er

gy
 d

iff
er

en
ce

seconds

CG linesearch tolerance (VW material)

tol=1e-4, newton
tol=0.1 newton

Figure 4.8: Impact of the Newton tolerance in the line search. (Veronda-Westmann

problem, Newton line search). The performance is only slightly affected, but a looser

tolerance is quicker.

material relaxation line search % peak iter/sec MFLOP/iter

Linear elasticity dynamic 49 628 0.2

static 56 708 0.2

St Venant Kirchoff static Newton 48 71 1.7

static Secant 53 113 1.2

dynamic 62 426 0.4

neo-Hookean static Newton 85 109 1.9

static Secant 77 144 1.3

dynamic 54 356 0.4

Veronda-Westmann static Newton 90 91 2.4

static Secant 80 120 1.7

dynamic 61 327 0.5

neo-Hookean static Newton 73 12 14.2

(large mesh) static Secant 66 16 9.9

dynamic 49 41 2.9

Table 4.5: Machine dependent performance numbers for a PIII/1Ghz machine cap-

tured from the first 1.0 seconds that experiments ran. Timings per second are approxi-

mate numbers, and vary by a few percent across runs. The peak MFLOP rate is defined

to be 246 MFLOP/sec: the performance for repeated double vector add of size 1024.

76 Relaxation algorithms

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 0.5 1 1.5 2 2.5 3

en
er

gy
 d

iff
er

en
ce

seconds

Neo-Hookean material

static CG (secant)
dynamic (underdamped)

dynamic (critically damped)
dynamic (overdamped)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 5 10 15 20 25 30 35 40 45 50

en
er

gy
 d

iff
er

en
ce

seconds

Neo-Hookean material, large model

static CG (newton)
dynamic (underdamped)

dynamic (critically damped)
dynamic (overdamped)

Figure 4.9: Cantilever experiment with neo-Hookean elasticity for different mesh sizes.

The small model (top) and the large model (bottom) offer similar convergence.

4.5 Results 77

4.5.4 Linear elasticity

Figure 4.10 shows the convergence of the linear case. In this case, the CG iteration

outperforms dynamic relaxation, by approximately a factor 5 to 10. For example, an

energy error of less than 10−4 takes 0.10 seconds with linear CG, and 0.89 seconds

with dynamic relaxation.

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0 0.5 1 1.5 2 2.5 3

en
er

gy
 d

iff
er

en
ce

seconds

linear elasticity

static CG
dynamic (underdamped)

dynamic (critically damped)
dynamic (overdamped)

Figure 4.10: Convergence speed for the linear model, energy error

4.5.5 Nonlinear material models

For the nonlinear case, the CG iteration is as quick as a dynamic relaxation with optimal

parameters; this is independent of mesh size and material characteristics. This can be

seen in Figures 4.11 and 4.9. For St. Venant Kirchoff elasticity in Figure 4.12, dynamic

relaxation is at a slight advantage. This seems to be caused by the element inversion.

Stiffer material does not lead to element inversion. When the same experiment is re-

peated with E = 2 · 104, both algorithms again have roughly the same speed, shown in

Figure 4.13.

The lack of physical interpretation of the intermediate results of the CG iteration is

evident in Figure 4.14. The static solution itself has a minimal residual force, but during

the iteration the residual decreases erratically, and does not even descend monotonously.

On the other hand, residual forces decrease smoothly during dynamic relaxation.

78 Relaxation algorithms

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 2 4 6 8 10 12

en
er

gy
 d

iff
er

en
ce

seconds

Veronda-Westmann material

static CG (secant)
dynamic (underdamped)

dynamic (critically damped)
dynamic (overdamped)

Figure 4.11: Convergence speed for exponential Veronda-Westmann

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 1 2 3 4 5 6 7

en
er

gy
 d

iff
er

en
ce

seconds

St. Venant-Kirchoff material

static, CG (secant)
dynamic (underdamped)

dynamic (critically damped)
dynamic (overdamped)

Figure 4.12: Convergence speed for St. Venant-Kirchoff material

4.6 Discussion 79

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

en
er

gy
 d

iff
er

en
ce

seconds

Stiff St. Venant-Kirchoff

static, CG (secant)
dynamic (underdamped)

dynamic (critically damped)
dynamic (overdamped)

Figure 4.13: St. Venant-Kirchoff material with stiffer material (E = 2 · 104, η = 27s−1).

4.5.6 Influence of mesh quality

The influence of mesh quality is demonstrated in Figure 4.15. A single short edge was

introduced in the mesh, by inserting a node close to an existing node, using a Delau-

nay incremental flip algorithm [40]. The effect on linear CG is negligable. This can be

attributed to the observation in Subsection 2.4.1 that the magnitude of isolated eigenval-

ues does not affect the performance of linear CG. In a dynamic setting, the critical time

step is inversely proportional to the smallest edge length, hence element shape severely

influences the convergence. The influence on the nonlinear CG iteration is also notice-

able, but has a much smaller impact. In this experiment, the scale-dependent secant

method failed to converge, showing its limited usefulness in practice.

4.6 Discussion

We have compared dynamic relaxation and iterative optimization as methods for finding

the steady state of a solution. Dynamic relaxation has linear convergence for the linear

problem: the number of iterations is proportional to
√

cond2(M−1K), where M is

the lumped mass matrix. For static CG the number of iterations depends on the set of

eigenvalues, and in the worst case, it is bounded by
√

cond2 K. For uniform meshes and

constant mass density, M is almost a multiple of I which suggests that the performance

of both is similar.

There are more similarities: dynamic relaxation can be speeded up by increasing

80 Relaxation algorithms

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5 3

re
la

tiv
e

re
si

du
al

 (
eu

cl
id

ia
n

le
ng

th
)

seconds

Neo-Hookean material

static CG (secant)
dynamic (underdamped)

dynamic (critically damped)
dynamic (overdamped)

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0 0.5 1 1.5 2 2.5 3

er
ro

r
(m

ax
)

seconds

Neo-Hookean material

static CG (secant)
dynamic (underdamped)

dynamic (critically damped)
dynamic (overdamped)

Figure 4.14: Evolution of the relative residual force ‖r‖2/‖fex‖2 for neo-Hookean elas-

ticity (top). Dynamic relaxation shows a smoother decrease than CG.

4.6 Discussion 81

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

en
er

gy

seconds

effect of short edges, linear CG

0.54 avg
0.10 avg
0.11 avg
0.05 avg

-0.018

-0.016

-0.014

-0.012

-0.01

-0.008

-0.006

-0.004

-0.002

 0

 0.002

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

en
er

gy

seconds

effect of short edges, static

0.54 avg
0.19 avg
0.11 avg
0.05 avg

-0.018

-0.016

-0.014

-0.012

-0.01

-0.008

-0.006

-0.004

-0.002

 0

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

en
er

gy

seconds

Effect of short edges, dynamic

0.54 avg
0.19 avg
0.11 avg
0.05 avg

Figure 4.15: Energy decrease over time when a single short edge introduced in the

mesh, for the Neo-Hookean material model. Top linear CG. In center the CG based

static approach, and on the bottom the dynamic approach. The static approach is

hampered less by short edges.

82 Relaxation algorithms

nodal masses of small elements. Analogously, a Conjugate Gradient iteration could be

speeded up by using diagonal preconditioning. Parallels between time stepping algo-

rithms for differential equations and optimization based solutions have been pointed out

before [50]. In this case, considering the convergence analysis of CG, a direct parallel

does not hold.

In the test-case that we have presented, the difference in performance between static

CG and dynamic relaxation in the linear case is large: a factor 5 to 10. This could be

caused by the symmetry of the test object: this symmetry implies that the stiffness

matrix has duplicated eigenvalues. This favors static iteration, as clustered eigenvalues

accelerate the convergence of linear CG.

For nonlinear models, the experiments indicate that the performance is comparable.

There are qualitative differences between both methods: the physical underpinnings

of relaxation ensure a smooth decrease in residual force, and non-conservative forces,

such as friction to be added to the model. However, for fast convergence, both ∆t and η

must be selected experimentally for the situation at hand, and both parameters directly

influence convergence speed. Moreover, they also depend on mesh characteristics, and

in the nonlinear case the time step also depends on the magnitude of the forces applied.

If a simulation includes online mesh changes or nonlinear elasticity, both parameters

must be adjusted continuously.

Our test situation is inspired by a soft tissue simulation scenario. However, it has

limited use in predicting the applicability of an algorithm in practice. The reason is that

the experiment uses gravity, instantaneously switched on, as a test load. First, gravity is

a load that is distributed over the entire body, while loads in interactive simulations are

typically effected by simulated instruments, which act locally. Such localized loads have

more high-frequency components, and this leads to more high-frequency components

in the error. On the other hand, quick convergence requires choosing η low. In this

case, the high-frequency components of the error will be underdamped and will persist

for a long time. This will be noticeable as a “jelly like” vibrations. Secondly, the load is

switched on instantaneously while the object is far from its resting position. Interactive

simulations run at high update rates, and so loads change slowly between iteration steps.

In practice, a deformation computed in the previous iteration step will be a good starting

solution for the next step.

For the small mesh and the material parameters selected, the critical time-step is

approximately 1 ms and requires an update rate of 1000 Hz. Our machine runs the

dynamic simulation at 300 to 600 Hz, depending on the material model. This is close

to real-time. Yet, it is not clear whether meaningful simulations can be constructed

with meshes as small as these. Moreover, an accurate simulation should simulate me-

chanical properties of soft tissue, which are known to include viscoelastic effects and

incompressibility. Both lead to larger FEM problems. For viscoelasticity, the history of

deformation adds extra degrees of freedom. Incompressible problems introduce pres-

sure as an additional variable to the problem, and require more degrees of freedom for

the displacement functions to ensure existence of solutions.

In summary, the approach presented in this chapter already reaches the limits of

interactive computation, while the material models used do not reflect real tissue be-

havior. We must address these limits for better simulations. We can distinguish three

4.7 Conclusion 83

limits:

• the cost per iteration step,

• the condition number of the problem,

• the relaxation algorithms used.

A cost of a single iteration is determined by the number of elements and the per-

element cost of the force computations. This implies that mesh change routines should

keep the mesh size low, and only refine meshes where needed. Additional speedups

can be gained by using parallel processing, at the cost of synchronization overhead and

increased hardware costs.

Badly shaped elements increase the condition number of the problem slowing down

the convergence of iterative methods. Explicit dynamic methods are especially sus-

ceptible to instabilities caused by small elements, so small elements require the use of

small time-steps. A way to cope with such instabilities, is to use adaptive time steps

for parts of the mesh [11]: this addresses the problem of instabilities, but introduces

some overhead in keeping track of mesh parts that use different time steps. To a lesser

degree, badly shaped elements also slow down static techniques. Therefore, it seems

worthwhile to prevent such degenerate elements from occuring in the first place.

For FEM discretizations where element sizes are proportional to h, and volumes in-

versely proportional to the element count, the condition number of the stiffness matrix

satisfies cond2(K) ∼ 1
h2 [6]. A larger mesh, needed for a more accurate discretization,

not only has more expensive iteration steps, but also requires a larger number of them.

This is partly caused by the techniques that we have used: they are naive in the sense

that they only use localized displacement/force calculations: applying a force locally

to an object causes it to deform globally. For a global deformation, information must

travel from the location where force is applied through the entire mesh. Both CG and

dynamic relaxation update the location of a node using information from neighboring

elements. The convergence of such an iterative method is therefore bound by the di-

ameter of the mesh, since that determines the speed at which deformations propagate

across the mesh.

This suggests that more advanced techniques should be used for improving the per-

formance of relaxations. Preconditioning reduces the complexity of CG iterations, but

is usually implemented with explicitly stored stiffness matrices. Multigrid methods [14]

can solve FEM problems with n degrees of freedom in O(log(n)) iterations, by run-

ning iteration steps at multiple resolutions. The method requires that the problem is

simulated on meshes with lower resolutions as well. For general unstructured meshes,

computing such coarser grids is a complex task in itself [1], which suggests the use of

structured meshes.

4.7 Conclusion

We have compared nonlinear Conjugate Gradients and dynamic relaxations for a sce-

nario that is inspired by simulation of soft tissue, and found that nonlinear CG offers

84 Relaxation algorithms

similar convergence as dynamic relaxation with optimal parameters. Therefore, both

methods should be distinguished by their qualitative differences.

Dynamic relaxation offers a physical interpretation of the iteration results, but re-

quires manual selection of simulation parameters, and the process is vulnerable to in-

stabilities. Static iterative methods are more robust, but their intermediate results have

no physical interpretation and are produced at lower frequencies.

Both approaches are affected by mesh quality and mesh size. In other words, better

meshes promote faster convergence per iteration step, and smaller meshes offer cheaper

iteration steps. Therefore, mesh modification algorithms, such as cuts, should keep

mesh size down and mesh quality high. This observation is taken to its consequences

in Chapter 5.

It can be argued that the experiment is limited in its scope, and not directly relevant

to interactive surgery simulations. This suggests that more carefully setup experiments

would give a better appraisals of both techniques. However, given the size of the prob-

lem analyzed and the performance numbers in Table 4.5, it seems more worthwhile to

direct future research towards techniques to speed up either relaxation technique. Even

when using high-quality meshes, both unpreconditioned CG and dynamic relaxation

easily strain current computing hardware beyond its limits. It is therefore necessary to

use more advanced algorithmic techniques to speed up deformation calculations. This

observation will be taken to its consequences in Chapter 6.

