
Appendix A

Tensor calculus

A.1 Tensors

The basis for expressing elastic equations is Euclidian 3-dimensional space, i.e., R
3 with

the Euclidian inner product. Vectors from R
3 are denoted by bold lower case letters,

e.g. a, b, and are also known as first-order tensors, or 1-tensors. We assume that an

inner product on R
3 is given, and that it is denoted by a · b for a and b ∈ R

3.

If we have a basis {a1, a2, a3} for R
3, then we can determine the components of a

vector with regard to that basis using the dual basis. The dual of {a1, a2, a3} is denoted

{a1, a2, a3}. It is determined uniquely by

x =
∑

i

(ai · x)ai, x ∈ R
3

A basis is called orthonormal if it is equal to its own dual.

The set of linear mappings from R
3 to R

3 is a 9-dimensional space, denoted by

Lin(R3, R3), or Lin for short. The elements of Lin are also known as second order

tensors, and are printed in bold upper case, e.g. T and E. The identity tensor is denoted

by I.

When we evaluate a linear mapping A in a point x, we write A · x. The product

A · B of two 2-tensors A and B is the 2-tensor defined by

(A · B) · x = A · (B · x).

The transpose (or adjoint) A∗ of A is the unique tensor satisfying

u · (A · v) = (A∗ · u) · v. (A.1)

For notational convenience, we set v · A := A∗ · v. The transpose is a linear operation

on 2-tensors. A tensor is called symmetric if A∗ = A.

A function taking u to u · A · u is called a quadratic form. If u · A · u > 0 for all

u 6= 0, then the quadratic form is positive definite, and if u ·A ·u ≥ 0, then it is positive

semidefinite. Negative definite and negative semidefinite are defined similarly.
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156 Tensor calculus

If a and b are 1-tensors, then we can construct a linear mapping from a and b by

setting

(a ⊗ b)(x) = (b · x)a, a, b ∈ R
3. (A.2)

This mapping is called a dyadic product, dyad or tensor-product. To illustrate the

meaning, when {a1, a2, a3} and {b1, b2, b3} are orthonormal bases, then the dyad

(a2 ⊗ b1) applied to x takes the magnitude of the b1 component of x, and maps that

component to a2. If {a1, a2, a3} and {b1, b2, b3} are bases of R
3, then set of dyads

given by {ai ⊗ bj|i, j = 1, 2, 3} has nine elements, and it forms a basis of the linear

mappings of R
3. Since these dyads form a basis, we may also use Equation (A.2) as

a definition for function application. Higher order tensor products (3-tensors and 4-

tensors) may also defined, to represent mappings between R
3 and Lin and between Lin

and Lin.

We can also express matrix multiplication using dyads. Let A : a⊗b and B := c⊗d,

then we have

(A · B)(x) = (a ⊗ b)c(d · x) = (b · c)(a ⊗ d)(x).

Since the dyads form a base of Lin, we may also define linear operations in Lin in

terms of dyads. For instance, the transpose or adjoint can be defined as

(a ⊗ b)∗ = b ⊗ a.

The trace is a linear functional on Lin: it takes a linear mapping, and returns a

number. It can be defined in terms of dyads

trace(a ⊗ b) = a · b. (A.3)

With the help of the trace operator we can define an inner product on Lin. The inner

product between A and B is denoted by A : B, and is given by

A : B = trace(B∗ · A). (A.4)

We have trace(A) = A : I. When 2-tensors are represented by matrices, then the

trace corresponds to the sum of the diagonal elements. The inner product on Lin

corresponds to the Euclidian inner product on R
3×3.

By use of tensor products, we may extend these inner products to tensor products

between arbitrary dimensions. The inner product of a k and l-tensor product

(a1 ⊗ · · · ⊗ ak) · (b1 ⊗ · · · ⊗ bl) = (ak · b1)(a1 ⊗ · · · ⊗ ak−1) ⊗ (b2 ⊗ · · · ⊗ bl).

Similarly, we may extend the inner product for two tensors to arbitrary dimensions.

(a1⊗· · ·⊗ak) : (b1⊗· · ·⊗bl) = (ak−1 ·b1)(ak ·b2)(a1⊗· · ·⊗ak−2)⊗(b3⊗· · ·⊗bl).

The expression

a · (b × c)

measures the oriented volume of the parallelepiped spanned by a, b and c. It is called

the scalar triple-product of vectors a, b and c. The determinant of a mapping A from
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Lin measures how the volume of a parallelepiped changes when it transformed through

A. This definition is independent of the parallelepiped used. In other words, given an

arbitrary set of independent vectors a, b, c, then the determinant is uniquely defined

by

det A =
(Aa) · (Ab × (Ac))

a · (b × c)
. (A.5)

The determinant satisfies det(A ·B) = det A det B, and hence det(A−1) = 1/ det A,

if A−1 exists. It follows that det(XAX−1) = det(A): the determinant is invariant under

a change of basis.

A vector v is called an eigenvector of A if there is a number λ, the eigenvalue, such

that

Av = λc.

Eigenvalues are given by the roots of the characteristic polynomial. The characteristic

polynomial of a 2-tensor A is defined as det(A − λI). We can expand this expression

as a polynomial, thus obtaining

det(A − λI) = −λ3 + ι1λ2 − ι2λ + ι3.

The coefficients ι1, ι2 and ι3 in this expansion are called invariants of A. Since the

determinant is invariant under change of basis, the invariants also are. If λ1, λ2 and λ3

are the eigenvalues of A, then we have

ι1(A) = λ1 + λ2 + λ3,

ι2(A) = λ1λ2 + λ2λ3 + λ3λ1,

ι3(A) = λ1λ2λ3.

(A.6)

The invariants can also be determined directly from A. We have

ι1(A) = trace(A),

ι2(A) =
1

2
((trace A)2 − trace(A∗ · A)),

ι3(A) = det A.

A.2 Tensor calculus

A function f : R → R is differentiable in x ∈ R, when there is a number d(x) and a

function r(x, h), such that

f(x + h) = f(x) + d(x)h + r(x, h), r(x, h) = o(h) when h→ 0.

In other words, f is differentiable in x if it may be linearly approximated in a neighbor-

hood of x. The function d(x) is the derivative of f in x, also denoted by df
dx

.

This definition can be generalized to higher dimensions. Let V and W be finite-

dimensional vector spaces. A function F : V → W, is called Fréchet-differentiable in v

if there is a linear mapping L : V→W such that

F(v + h) = F(v) + L(h) + o(h), h ∈ V.
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Since L is a linear mapping, we may write it as some product of some D in the ten-

sor product space of V and W. This representant D of the mapping L is called the

derivative.

For example, if a function f maps vectors from R
3 to numbers, then it is differen-

tiable in x if there exists functions fx and r, such that

f(x + h) = f(x) + fx(x) · h + r(x, h),

and r(x, h) = o(‖h‖). The mapping h 7→ fx(x) · h is a linear mapping. The function

can be represented as an inner product of fx(x) and the argument. Hence, fx(x) is is

called the derivative or gradient of f. It is denoted as ∂f
∂x

. Other notations include grad f

or ∇f.

If f : Lin → R is a differentiable function taking linear mappings to scalars, then

there exists a function r and ∂f/∂A : Lin→ R , such that

f(A + H) = f(A) +
∂f

∂A
: H + r(A, H), A ∈ Lin,

where r(A, H)/‖H‖→ 0 when H→ 0. The derivative
∂f(A)

∂A
is also denoted by fA(A).

Some derivatives of standard functions are given here.

∂ trace(C)

∂C
= I,

∂ det(C)

∂C
= det CC−∗,

∂ι2(C)

∂C
= trace(C)I − C,

The inverse of a 2-tensor is another 2-tensor, so taking inverses is a function from

Lin to Lin. Its derivative is a linear function from Lin to Lin, which may be repre-

sented as a 4-tensor. To avoid the hassle of representing 4-tensors, we simply give the

derivative applied to some H ∈ Lin:

∂C−1

∂C
: H = −C−1 · H · C−1.

We mention one differential operator that we shall encounter further, the divergence.

The divergence of a vector field f : R
3 → R

3 is defined by

div f = trace(∂f/∂x).

The divergence of a tensor field T is defined by

div T = ∂T/∂x : I.

In one dimension, the value of an integral over an interval of a continuous function

is given by the values of its primitive at the boundaries of that interval. A similar the-

orem holds in higher dimensions. If Ψ is a tensor valued function, and continuously
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differentiable on its domain Ω, and continuous on the closure of Ω, then

∫

Ω

∂Ψ/∂x dv(x) =

∫

∂Ω

Ψ ⊗ n(x) da(x),

where n is the outward pointing normal on ∂Ω. This theorem can applied to tensors of

different order, e.g. the divergence theorem. One form that we employ is

∫

B

div T dv(x) =

∫

∂B

T · n dv(x). (A.7)


