

FLG-09 FlightSim LAN Gardermoen 10 oktober 2009

domestic title page

En Simulator i fem hundre Kilobyte! (0,0005 GB)

Alt du alltid ønsket å vite om DC-10 og gamle datamaskiner, men var redd for å spørre

Geert Rolf

Huset for Pensjonerte og Gamle Datamaskiner, Privat museum, Winssen, Nederland

FLG-09 FlightSim LAN Gardermoen October 10, 2009

international title page

A Simulator in five hundred Kilobyte! (0.0005 GB)

Everything you always wanted to know about the DC-10 and its old computers, but were afraid to ask.

Geert Rolf

House for Old and Retired Computers, Private museum, Winssen, The Netherlands

This Talk

- Will give you an idea
 - how this Link Miles DC-10 Sim works
 - about |d|i|g|i|t|a|I| PDP-11 minicomputers
 - how our work evolved over the time
 - of some technical stuff, some human factors too

Who are we?

- <u>Geert Rolf</u>
 - HTS Software Engineering
 - First contact with a |d|i|g|i|t|a|| PDP-11 in 1977
 - Mainly focussed on Unix, C and IP networks
 - Never did a realtime application
- <u>Warner Krelekamp</u>
 - HTS Mechanical Engineering
 - Hooked on electronics
 - Worked 14 years for |d|i|g|i|t|a|l| at European Repair Center in Nijmegen

How it all started...

 Geert to Jan Fjeld, december 5, 2007: A little amazed I was after reading the story of the DC-10 simulator. I'm a flightsimmer, but also a computer collector and known to lot of details (both hardware and software) of various PDP-11 systems.

Need help, tips, hints or advice?? Be my guest.

• Geert to Warner, december 10, 2007: Zin om in Noorwegen PDPs te repareren??

(fancy repairing PDPs in Norway?)

What is a PDP-11?

- On the market since April 1970 (- early 90s)
- Air cooled, cheap: affordable for industry.
- Industrial automation: data acquisition and control systems.
- Time sharing (> 30 users) on later, bigger machines.
- 16 bit minicomputer:
 - 64 Kbyte is a hard limit for a single program
 - Users work on ASCII terminals no graphics!
- PDP-11 most popular computer of the '70s.

Three main architectures

- <u>Small</u> machine: upto 56KB memory
- Medium machine: upto 248 KB memory
 - 18 bit physical addresses.
 - Memory Management Unit (MMU):
 - maps 16 bit logical address to 18 bit physical address.
 - 64 KB program = 8 sections of 8KB each.
 - Provides protection: Kernel, Supervisor and User mode. (O.S. Controls MMU.)
- Large machine: upto 3840 KB memory
 - via dedicated memory bus: 22 bit physical addresses
 - All peripherals via 18 bit Unibus.

A small-size PDP-11

A medium-size PDP-11

A large-size PDP-11

You should know what DMA is!

- •O.S. commands controller
- Controller gets/puts data from/into memory
- •Reports ready to O.S. by interrupt

CPU-C

How does CPU-C look like?

CPU-B: PDP 11/45

- 184KB memory
- Plus 2 sets of 32KB
 Fastbus memory.
 - One shared with CPU-A
 - The other used to boost math routines
- 21/2 MB disk
- Three busses

The Fastbus Memory

- CPU-A: PDP 11/45
 - 160KB memory
 - Plus 32KB shared in CPU-B.
 - 2x disks of 21/2 MB
 - fast parallel I/F
 - slow parallel I/F
 - 2x VT30 graphical processors
 - Serial cards
 - Bus repeater

How does CPU-A look?

A and B share 32KByte of memory

- Memory in A has a "gap"
- Building blocks of 32 Kbyte (not possible in later PDP-11s)
- Address range of shared memory is at 200000 – 277777

Innovations done by Continental

- Replaced core memories (4 boards per 32KB) by single board MOS memories. Created gaps by removing rows of ICs.
- Phased out most RK05 disk drives as they require regular maintenance (replacing clean-air filters twice a year).
- Replaced by Wilson Labs RK05 emulation on ZIP cartridges (hardware compatible)
- (O.S., RT-11 v2, only supports old type diskdrives)

1st visit: January 2008

- A: only stable for a day or two.
- B: not working.
- C: stable, can boot and passed diagnostics.
- Some 60Hz to 50Hz issues solved.
- Scrapped the 4th machine for spare parts.
- Spare parts are insufficient to keep 3 machines alive.
- Doubts about disks (Wilson ZIP drives).

Trouble Shooting

- If it had worked yesterday, you may expect a single problem. Not in this case!
 - Pre-1980 hardware: simple TTL circuitry, but lot of boards in a backplane; no self-tests.
 - Power- and bus-cables are aging.
 - Backplane connection and contact problems.
- Strip the machine to bare CPU + Memory.
 - Or even without memory: run 000777 on switches
- Building up step by step.
 - On each step: run diagnostics or test by small programs.

Trouble getting home

Time for Homework

Plan "B" is required

Any old PDP-11 can replace CPU-C
No other can replace CPU-B: tied to 11/45 type. Shared memory is a unique feature!
Puzzle focusses on CPU-A

Original CPU-A is critical on bus length, timing issues all over!

A solution to CPU-A problems would be beneficial!

The UBI puzzle (1)

- End of February 2008: the 11/44 UniBus Interface (UBI) specification <u>suggests</u> we can "cut" a slice out of main memory by a special configuration on this board.
- Until mid of June our <u>proof of concept</u> fails as the above statement is not exactly true

The UBI puzzle (2)

- Normal function of UBI: enable DMA controllers to do I/O to main memory beyond 18 bit limit, by mapping to 22 bit addresses.
- The special config option inhibits this mapping for a range of addresses: DMA stays on the 18 bit Unibus and targets the shared memory in CPU-B.

The UBI puzzle (3)

- Shared memory in CPU-B starts at physical address 200000.
 Clue: physical address in the 11/44 is 17200000 (four extra bits)
- Cache memory luckily ignores this external memory.
- Software on CPU-A needs to be changed!!

Jan's trip to NL by car (July 2008)

- IN:
 - Two Wilson ZIP drives for testing + backup disks on ZIP.
 - All RK05 diskpacks with original software
- OUT:
 - Two Wilson ZIP drives, tested "OK".
 - Two PDP 11/44s (hard to find in this century)
 - Spare power supply for 11/44.
 - PC to connect consoles (=serial lines) to Internet.
 - Network card, 10Mbit ethernet stuff for A or C.
 - FTP stack for latest edition RT-11: can transfer files and diskimages.
 - Latest RT-11 can run in RAM disk.
 - connecting Island to Mainland.

Aug/Sept 2008: digging into software

- We now have the software:
 - 160 000 lines of PDP-11 assembler code.
 - Hard to read and get an overview.
- Link Miles has built multi-tasking capabilities on top of simple operating system.
 - CPULDR: loads modules into memory.
 - inits runtime MMU settings for each module.
 - LMEXEC: real time scheduler.
 - Modules are member of rating class: run a designated number of times per second.
 - Sets MMU when switching from one module to another.
- Changes focus on CPULDR

CPULDR

- Original: 3698 lines of code; *comments* are significant while reading.
- Changes:
 - Settings of MMU registers (PAR, Page Address Register)
 - pointing to Shared Memory
 - pointing to Device Area (top 8KB)
 - Enabling 22 bit mode (medium to large machine)
 - Loading of data into Shared Memory
 - Total of 15 (small) changes required
- Development done using SimH emulator running on Windows: a disk = a file.

Testing with SimH (1)

- Obviously, stops as soon as software touches hardware that is not present.
- SimH is much faster than any real PDP-11
- Three new loaders :
 - T44LDR relocating to area up in 1MB, for testing only.
 - A44LDR intended loader for CPU-A.
 - Cannot test without the hardware: adapted from T44LDR.
 - F44LDR: loads all modules A + B.
 - Full Function on a single machine.
 - Loads correctly. Never got alive, possibly caused by incomplete initialisations.
- "GO" for replacing CPU-A by 11/44

Testing with SimH (2)

?M-TRAP TO 4	022266		?M-TRAP TO 4 02	22310
1		A CONTRACT OF	Simulation stor	med PC: 116244 (1
Simulation st	copped, PC:	111750 (TST (R5)+)	$e_{im} > e_{200000}$	ppeus roo rrow rr
sim> e 200000)		200000 - 000000	
200000: 00176	6		ain > a 3200000	
sim> do kpars			2200000-	001766
17772340:	ANNAN		sim de kname	001.700
17772342:	000200		4 99999240	aaaaaa
17772344-	000400		47772370.	888388
17772311	000600		1772342-	000200
17772340.	001000		47779246.	000400
17776330.	001000		17772340.	884 888
17772352	001200		47772358.	001000
17772354:	002000		400000004-	001200
17772356	00.5200		1///2354:	
sim> do spars			17772356:	177600
17772240:	002200		sim> do spars	00000
17772242:	002024		17772240	032200
17772244:	003400		17772242:	002024
17772246:	003000		17772244:	883488
17772250:	003200		17772246:	003000
17772252:	001200		17772250:	003200
17772254	002000		17772252:	001200
17772231.	007600		17772254:	032000
	001000		17772256:	177600
sim/ au apars	000000		sim≻ do upars	
1777640;	002200		17777640:	032200
17777642:	000200		17777642:	000200
17777644:	002000		17777644:	032000
17777646:	000600		17777646:	000600
17777650:	001000		17777650:	001000
17777652:	001200		17777652:	001200
17777654:	002000		17777654:	032000
17777656:	001600		17777656:	001600
sim>	A DE LE COLORE		sim>	

2nd visit: October 2008

- Installed CPU-A NG: 11/44
 - All in a single box
 - No bus repeater required
 - Bus tested OK
- Installed CPU-C NG: 11/44
- Old CPU-C as new CPU-B
 - Installed MMU option: upgrade small to medium.
 - Fastbus Memory did not work!!
- Installed Unix PC and local network
- Taken all Fastbus memory home for testing.

What is Linkage?

- A modular set of hardware to interface <u>everything</u> in the cockpit to a fast I/O interface.
 - One mastercontroller connected to CPU-A
 - Own bus with three subcontrollers
 - A large set of various types of interfaces:
 - Low and High voltage in/out
 - Digital in/out
- Config depends on cockpit/aircraft type
- I/O is done 20 times per second

Where does Linkage I/O end?

What's in XTALK?

All global variables for all software modules.

- <u>Module "Engines" (EN)</u>: fuelflow triggered by throttles.
- <u>Module "Fuel" (SF)</u>: contents of tanks decreased by fuelflow. Outgoing data to fuel indicators.

Winter '08-'09

- Special setting UBI undone: using standard loader and F44LDR in single CPU mode
- No signs of life: still looking into darkness
- Jan c.s. found broken cables in Linkage
- April '09: Analogue-IN shows moving throttles and more of that kind.
- Fastbus Memories tested and bit errors repaired by replacing I.C.s.
- Test program made to read Linkage.
- Monitoring Linkage shows huge instability

3rd visit: June 2009

- Diagnosed ground-loop in Linkage system (repair done later)
- Old CPU-C has a backplane problem preventing Fastbus Memory to work.
- Old CPU-B with board-set of old spare machine works fine, including the Fastbus Memory (shared set only).
- Configuration complete ... but still not alive!

Digging very deeply

Final preflight...

- Accidently discovered CPU-C has to run.
- Ground loop fixed by Jan c.s.: Linkage tested and now stable.
- Runs for 30 seconds: ends in CPU LATE
- Suspected CPU-A but discussion with Derek pointed to CPU-B.
- August 3: tried to install second set Fastbus memory (booster for math routines)
- Did a software workaround on B.
- August 20: first "flight" of 35 minutes.

Special Thanks

Feedback is writing down your story and getting encouragement, a comment or a hint. (*not always answers on your questions*)

- Dan, Martin, Wilber former |d|i|g|i|t|a||
- Nick, Dag, at Continental Airlines
- Steve, Peter and last but not least Derek former Link Miles employees.

A thought at last...

If it works **Plug 'n Play** you don't learn anything.

We have learned a lot.

Pointers

- www.bejaardecomputers.nl
 - Geert.Rolf@xs4all.nl

- www.dc10.no
- www.link-miles.co.uk