
b-- -.J

I

The Report on HYDRA

G.H. Rolf

Computer Science in Chemistry and Physics

W.J. Melssen

Computer Science in Chemistry /
Laboratory for Analytical Chemistry

ABSTRACT

The HYDRA package features the control and synchronisation of parallel ap-
plications in a network with workstations. By moving applications from slower
to faster hosts and automatically restarting an application when a host went
down, HYDRA provides the flexability and fault-tolerancy required for long
running calculations.

This document describes the break-down of conventional applications into
parallel applications to be managed by Hydra, the features and tunable para-
meters of Hydra and all the user shouid know before getting started.

RFC: request for comment / draft version of 7 mei 1993



tl
I

Introduction

One way of gaining computerpower is to bundle the power of a number of
relative small computers. It is found that a certain class of computational
applications can be split into identical parts that can be executed independently
on a number of workstations interconnected by a local area network sharing a
common filesystem.

This document describes the type and structure of scientiflc applications
that can be run on multiple workstations in parallel. The means of control is
provided by a software package called "HYDRA, which can start, move and
synchronise the parallel applications.

HYDRA is called afier a huge f,re breathing d,ragon in the Greek mythology.
Hydra is claimed, to haue nine heads, one of which is immortal. When one of
the other heads is chopped off, it's replaced by a neu one immediately...

Using HYDRA gives the programmer of an application the means to break
the total work down into small pieces. After designing the splitup in parallel
pieces, the programmer restricts the programming effort to just one piece. HY-
DRA provides the parallellism, synchronisation and continuation to run this
smal1 piece in parallel and in repetition to cover the required iterations of the
total work to be done.

HYDRA's features include: moving applications to faster machines when
performance has decreased, acting on hosts going down for any reason, sus-
pending execution when no hosts are available with a low load or automatic
suspension during office hours.

This document describes an application model that can be used for appli-
cations to run in pa,ra,llel, the functions of HYDRA, its para,meters and options
and its display and logging facilities.



2 Application model

Many scientific applications read parameter files in order to find out what the
user wants. Parameter files contain the values of certain constants, the range of
values to use for the iteration, names of datafiles and so on. After reading the
parameter file the application knows what to do and starts the calculations.

Long running applications need to be restartable. You may expect it to be
aborted by an operator or by any incident on the machine it's running on.

Applications can be made restartable by defining steps in the total work to
be done and to update files which contain intermediate results after each step
(checkpointing).

Figure 1: Long running applications can be split into steps

The applications which are to be controlled by HYDRA use a slight exten-
sion of the stepwise checkpointing as described above.

At the end of each step the application updates the datafiles containing
the intermediate results and it updates the parameter files to reflect the
parameters needed for the next step in the calculation.

At the beginning of each step the application reads the parameter file. In
other words: the contents of the parameter file determines the exact work
to do in the step.

This scheme, which has some impact on the overhead, allows HYDRA to
move applications to other hosts in the network. In fact the application that
has to be movedis stopped after completing the updates and a new instanceis
started at another machine.

HYDRA can control a single application as described above, but there are
applications that can be run in parallel. This means that iterations or sÍeps
can be calculated independent of others.



Figure 2: Independent steps can be run in parallel

There are several cases where independency can be achieved:

subset of input
Each parallel step can read part of the total input data that has to be
processed.

merge results afterwards
The intermediate results of each parallel step can be combined into an
intermediate result by merging the results of each step.

Each step reads data before and writes data afterwards

It's fairly obvious that lots of computational applications cannot be rede-
fined into this parallel application model. In fact the model is related to the
characteristics of loosely coupled processors in a network Close interaction, e.g.
in each loop of an iteration, is to be avoided as its costs in performance and
network traffic are too high. In other words: parallel applications should run
in parallel without interaction for a considerable amount of time.

/

//t
rCk--J

Figure 3:



2.L The basic cycle

In this chapter we'll discuss the basic cycle
Bach time an application performs a step olr
performed:

o read
The application reads its parameters from a diskfile. In some cases it also
reads the data it needs to perform the calculations.

calculate
The application performs calculations on input and produces output as

results. In some cases the input is read from disk and the output written
to disk immediately. Other applications keep the results in memory.

write
The output of the completed calculations is written to disk. This may
include a merge of the total results of all parallel steps done. The appli-
cation updates the parameter flle to reflect the parameters for the next
rltn.

We will call the distinct phases of the basic cycle read stage, calculate stage and
write stage.

Applications communicate with a central plocess that controls and directs
the activity of all parallel applications. In general, application processes receive
messages which direct them to perform one of the stages of the basic cycle,
described above. When a stage has been completed, the applications send a
message to the controlling process to confirm.

During the write stage, all applications get the write command one by
one, which provides the synchronisation of the upda,te of the global file. This
implies that after completing the updates of the global flle applications should
explicitly close the file. As a result local buffers will be flushed and the file will
be consistent and complete to other machines in the netrvork.

Optionally the write state may be 'simultaneous'. In that case you don't
need the synchronisation and all applications get tlte urite comrnand at once.
This allows each of the parallel applications to update individual datafiles in
simulta,neously.

Overvie\{r of HYDRA's functions

Before discussing the features and functions of HYDRA, we'll look closer at the
architecture of the HYDRA package. The controlling program, called mcp is
assisted by a process called rups, which collects the status of all hosts in the

that is defined for applications.
a machine the following cycle is



hostfile periodically.
parallel applications

Both mcp and
run on different

rups run on the same host, but all the
machines:

workstation

workstation workstation C

workstaJion D

network

Figure 4: Mcp/rups and applications run on different machines in a network

Communication between m,cp and the applications ('appl) is implemented
using TCP/IP interprocess communication soclcets,,which provide bidirectional
reliable bytestreams.

werkstation

Figure 5: TCP/IP sockets provide the communications between mcp and the
applications

We'll discuss the way applications are invoked remotely later in this paper.
For this moment it is important that the application itself does not need to do
anything to initiate the TCP/IP socket to mcp.



The functions and features of HYDRA are:

o The number of parallel instances is user defined and starts from 1. So

even a single application can be directed by HYDRA.

o Each instance of the application program is started in a unique directory
providing local files, pr,ivate to the instance. As all hosts share the same

filesystem, the parent directory may contain global files shared bv all
parallel instances.

o Applications may be run using a user defined niceleuel.

o There is a list of hosts available to mcp for this applica,tion.

o The rups process polls the hosts in the hostlist and obtains the loadfactor
of each host. This numberis the mean tumberof active, running processes

during the past period. When a round-trip of all hosts is done, rups sends

a single message to mcp containing all the loadfactors. Rups repeats this
cycle after waiting some time.

o On receiving the table with loadfactors: mcp rebuilds the list of not-used
hosts by order of load and relatiue performance. This will be discussed
in more detail later. The host that is expected to perform the fastest is

in the head of the list of free hosts. Hosts that did not respond to the
polling of rups are reported " possibly down" only when their loatlfactor
is missing for the second time. In ca,se such a host is being used, the
application is restarted at another host. In most cases this is appropriate
to recover from hosts that rvent down. During tbe write stage the whole
process is stopped and the user is informed to check the integrity of the
dataflles on disk.

o After all instances of the application have finished the write stage, the
elapsed times of ail hosts is checked. Those hosts performing L0% l worse
than the mean elapsed time are replaced by hosts that are expected to
perform at lea,st 10% better. On the other hand, if the host at the head of
the free list is expected to perform at least 10% better it will be replace
the slowest anyway.

o After the urite stage tlte optional "timesuspend" is in effect. If the
current time is within the period of time deflned as e.g. office hours, all
applications a,re stopped.

o On tlre other hand after completing the write stage the "loadsuspend"
option may be efective. Using this option, the user specifies a ma,ximum
loadfactor for not-used hosts. Say, one has specified 0.3 as maximum.
Mcp now checks the number of hosts that have exceeded a load of 1.3

during the past calculations. Just in case there a,re not enough hosts with
a load below 0.3, all applications are stopped and execution is suspended
until there is a valid number of hosts rvith a load below 0.3"

1In fact 10% is a tunable parameter called 'MARGE'



The loadsuspend and. tintesuspend options may be combined. Both privide ad-

equate means to limit the use of the available machines to quiet hours or even
quiet moments.

4 Options, parameters and interfacing

4.1 Application environrnent

The application environment can be def,ned as follows:

o The input channel (std,in) is used for comrnands only.

o The output channel (stdout) is used for replies to commands.

o The error message channel (stderr) is redirected to a file'.errors'. If this
file existed, output on stclerr is appended to the file.

o Each instance of the application is run in a unique directory. Directories
have a two digit name, e.g. "rundir/O3" for the third instance. The base

directory ("rundir" in this example) can be defined by the programmer
relative to the home directory. Global flles can be accessed via relative
paths: e.g. "../datafile.dat" is a global datafile.

o The HYDRA protocol consists of four letter messages with an end-of-
line character at the end. When a programmer wa,nts to test his/her
application, the protocol messages can be entered manually as they are
send and received via ordinary terminal equipment.

o To ease the use of the protocol, there is a hostla.nguage interface for both
C and Fortran.

The IINIX I/O channels stdin, stdoutand stderr ma,tch the Fortran channels 5,

6 and 0 respectively.

4.2 The parameter file

Typically the parameter file containing all information to determine what should
be done in the next cycle is local to the application, i.e. found in the current
directory.

In general it contains trvo numbers:

o The number for this parallel instance. This number is set when initialising
the directory structure and before starting the execution. It's a sta,tic
number.



o The second number is the cycle number. It is incremented during the
write phase. Initially it is set to 1.

Just is case you have local datafiles, which means that the work is split into
parallel pieces by splitting data into pieces, the parallel applications need not
know theii parallel sequencenumber. In that case the first number may be
omitted and the parameter file may be global to all applications.

4.3 HYDRA protocol

The table below gives an overview of the HYDRA protocol as used between the
HYDRA's controlling process (-"p) and an application ("ppl).

message symbol sender description
wait
read
rdon
exit
calc
cdon
writ
wdon
trap
stop

M_WAIT
M-READ
M-RDON
M-EXIT
M-CALC
M-CDON
M_WRIT
M-WDON
M-TRAP
M-STOP

appl
mcp
appl
appl
mcp
appl
mcp
appl
appl
mcp

appl. is started and ready
appl. can read parameters a/o data

appl. has completed the read
appl. is finished

appl. can start calculations
appl. has finished calculations

appl. can write data to disk
appl. has completed the write

appl. has found ar error
appl. should stop

Some messages need more explanation. The erit message is given by the
application when it has read the parameters and found that the next iteration
to be done is not required. The erit message is sent instea,d of the rdon.

The trap message can be send to HYDRA at anytime when there has an error
occurred. HYDRA in turn will restart the application at another host hoping
that the fatal error does not occur overthere 2. Fatal errors may include: cannot
read diskfile, found unexpected things in the diskfile, couldn't get the amount
of memory required. The progralnmer should write a clear error message to tlie
stderr flle for his/hers own beneflt.

The stop messsage can be received at any moment, but usually after the
wdon has been given. When HYDRA moves applications to other hosts the
application to be moved is stopped after the cycle is completed and a new

instance is invoked at a new host.
2There is an maximum number of retries on 'traps' defined. Currently: 10 times



4.4 Host language interfaces

For each host language there is one include file and two subroutines available.
The include file contains the definitions of the symbolic names for the messages.

A sample program in C looks like:

*include "ncpprotocol.h"

naino
{

int message;

sendm(H-tílIT);

message = receivemO;
srritch( message ) {
case M-READ:

break;

""":. ï-tott'

)

The equivalent code in Fortran looks like:

*include "mcpfprot.h"
integer mes

call fsendm( M-WAIT )
call frecvn( nes )
if( nes .eq. M-READ ) then

else if( mes .eq. M-CALC) then

The programmer needs to provide subroutines that perform the tasks as prescri-
bed by the basic cycle. In most cases the routines performing the calculations
can be taken from the original version with slight changes. Obviously, this
depends on whether or not the original application was parameter directed.

10



4.5 Tunable parameters

The current version of HYDRA supports a number of tunable parameters con-
tained in a parameter flle called "mcpconf'. Most of the parameters may be
changed in runtime. This rneans that one may change "mcpconf' using a fa-
vorite editor (e.g. 'uz) and mcp will read it when the next package with
systemloads is received from rups, or once a minute when rups is idle.

RUNDOMAIN needs only be defined wlien mcp/rups run in a different
network domain than the applications. IJsing this option, the hosts in the
hostflle ("mcphosts") can be named without full domainname.

RUPSINTERVAL ueeds not to exceed the value of 45 seconds. In order
to establish an accutate value of the mean load during the calculations rups
should provide the table of loadfactors to mcp at least four to five times during
the calculations.

Parameter sample
value

may
change

description

APPLPROG " . . /progr" no executable application
relative to current directorv

APPLDIR "tundit" 110 base directory relative to home
APPLNUMBER I no number of parallel applications
RUNDOMAIN "sci.kun.nl" no network domain of hosts
TIMESUSPBND
TIME-TO-STOP
TIME-TO-START

yes

" 08:30"
" 17:30t'

yes

yes

yes

'yes'when timesuspend is desired
time to start office hours

time to restart applications
LOADSIISPtrND
MAXLOAD

yes

0.2

yes

yes
'yes'u'hen loadsuspend is desired

max load on not-used hosts
RUPSINTtrRVAL 30 no number of seconds for rups to wait

before polling the hosts again
MARGE 10 yes % tolerance for not acting on

slower hosts a,nd ignoring
faster ones

SIMULTANEOUS yes Ito 'yes'for simultaneous
write stage is desired

NICELtrVBL 5 yes nicelevel for applications

11



4.6 Status display and error logging

HYDRA provides a display function to monitor the activity. The status display
features a list of all applications with their status and assigned hosts with their
load. In the lower part of the display, a list of free hosts is shown.

MCP v4 running 8 '../testapl-' cycle *4 MS-CALC I SZ:ZA )

* host load status remarks

01 groen
02 geel
03 indigo
04 oker
05 schwarz
06 bordeaux
07 cyaan
08 oranje

0.18 <

0.83 >>>>

0.59 <<<

0.e1 lllll
1 .08 >>>>>>

0.73 <<<<

0.59 <<<

0.92 >>>>>

AS-CALC

AS-CALC

AS-CDON

AS-CDON

AS-CALC

AS-CDON

AS-CALC

AS-CDON

01:10 elapsed
01:11 elapsed

0t:.72 elapsed

01:19 elapsed

blanc 0.09/88
gris 0.13/91

azuur
noir
gray

0.23/72
0 .05/e3
0.28/87

grij s

wit
black

0 .08/86
0. 16/88
0.36/91

The display above shows a few applications that have finished. HYDRA is
waiting for the others to flnish. When all applications got the c-done state, the
first gets the write command and then the second and soon. The display below
shows the write stage; we're about halveway. Obviously, this is the one-by-one
option of the write stage.

MCP v4 running I '../testapl' cycle #5 MS-WRIT | 52:37 )

# host load status remarks

01 groen
02 geel
03 indigo
04 oker
05 grijs
06 bordeaux
07 cyaan
08 oranje

0.35 <<

0.89 >>>>>

0.80 >>>>

0.92 >>>>>

0 .00
0.88 >>>>>

1 .38 >>>>>>>>

0.79 >>>>

gray
noir
wit

AS-I,IDON

AS-WDON

AS-WDON

AS-l,lRIT
AS-CDON

AS-CDON

AS-CDON

AS-CDON

01:09 elapsed
01:17 elapsed
Ot:.72 el-apsed
01:10 elapsed
01:32 elapsed
01:09 elapsed
01:09 elapsed
01:13 elapsed

blanc O.02/88
schwarz 0.34/74

azuur
black
gris

0.27/72
o.02/91
0.31/91

o.o2/87
0.02/93
o.49/88

12



The headline of the display shows a.o. the cycle number, the overall state
of mcp and the cummulative elapsed time. The histogram of the machineloads
shows increase of load, decrease and equal loads compared to the previous load
value. The list of free hosts shows their actual load and the erperience valre.

Mcp logs its events and errors to a flle "Log.mcp", which looks like:

t2/3 7L

L2/3 LL

t2/3 Lt
t2/3 t7
t2/3 77

L2/3 71

t2/3 7L

L2/3 7L

L2/3 7t
t2/3 7t
72/3 LL

t2/3 7t
72/3 7t
t2/3 7t
12/3 tL
72/3 Ll
t2/3 L7

L2/3 77

t2/3 77

t2/3 Lt
t2/3 7t
72/3 Lt
t2/3 lt

13:23 MCP started, pid=858.
13:23 load suspend enabled: maxload=O.50
t3:23 Rups started pid=859
73:23 MCP tcplip portnr=1882
15:04 Execution resumed
15:04 start cycle 1

16:38 end cycle 1, 01:33 elapsed

19:03 start cycle 2

20:36 end cycle 2, 07:33 elapsed
20:56 Moved *2 from violet to geel
27:04 Moved #7 from gris to cyaan
2t:O4 start cycle 3

22:38 end cycle 3, 01:33 elapsed
22:39 start cycle 4
24:09 end cycle 4, Ot:29 elapsed
24:32 Moved #5 from schwarz to grijs
24:33 start cycle 5

26:05 end cycle 5, 01:32 elapsed

40:59 start cycle 10

42:4L end cycle 10, 01:42 elapsed
42:48 Moved *8 from noir to azuur
42:49 MCP finished, pid=858
42:49 Total elapsed: 1:46:74

Applications a,re invoked by a program called "acp". On errors acp reports
in afile called "acp.errors", which may be found in the home directory in case

the working directory could not be reached.

The user's application report errors in a file ".errors" in their working di-
rectory. Each time error messages are appended to this file.

13



5 Irnplementation

5.1 MCP Internals

Mcp is an event driven application, that uses the select system call to find out
which files, TCP/IP sockets in fact, contain readable input. Internal bookkee-
ping provides the link between activity on a flle on one hand and status change
for an application process on the other hand.

Mcp has an inner loop that can be described as follows.

1. Eor each connection with an application and for the connection with rups,
a bit is set in a bitmask for select.

The select system call checks the flles marked in the bitmask for input.
When select returns at least one has input for mcp.

The bitmask returned by selectis checked to see what flles haveinput. Tlie
channel to rups is checked first. If rups has sent a package of loadfactors
the status of all hosts is updated and the freelist is reordered. Acting
on hosts that presumably went down is done here and now. After rups
has been handled all files associated rvith applications are handled if they
ha,ve input for mcp.

Each application that has input for mcp is handled: the message is read
and a status change is booked in tlie status table. trach application has a
previous and a current state and above all mcp has a general state.

Each status change results in a loop in the two-level stage machine. The
state machine consists of a state table deflning which routine to call in
a certa,in situa,tion. The sta,te table is searched by current mcp state,
current (new) application state and previous application state. Each entry
in the state table may define a routine to be called on the applications
state change and a routine to be called when all applications have reached
a certain state specifled in the entry. This last item is used to specify
actions to be done when all applications are in a equal state and work
may continue with another stage or cycle.

Subroutines called from the state machine implement detailed actions to
be taken in circumstances deflned in the state table.

When all active f,les are handled the loop returns to step 1.7.

A mayor design consideration is to minimize the need of timeouts. With
timeouts on all asynchronous actions the complexity would exceed the current
straight forward implementation.

2.

3.

4.

5.

6.

t4



This implies that when a user's application hangs in any stage the whole
thing will wait until user interaction takes place. The only important step that
is garded with a timeout is the remote startup of an application proces.

5.2 Load measuring and performance estimates

Standard Unix programs, such as uptime and. rup provide indications on the
load of a machine. The loadfacÍor, mentioned earlier, is defined as the mean
number of processes being served by the CPU in the past period of time. In
theory this means that when three processes obtain the CPU the loadfactor is

3.0. In practice the loadfactor may be less, partly caused by system overhead
and the interruptions of very small length: i.e. someone typing to an editor.

In HYDRA it's of importance to value available hosts not only by their
current load, but also by tlieir relative performance. Hosts with a lower load
may perform worse than a more powerful host with a bit higher load.

When a host in the hostlist has been used at least one time. there is a so

called erperience value def,ned:

Erperience ={
W tÍToal*rc> t

elapsed-time otherwise

(1)

For

(2)

The order of hosts in the free list is according to expected performance.
hosts that have a defined erperience the expected performance is:

erpected,:perf ormance - (loado"rror * 1.0) . Erperie-nce,

Hosts that have not been used yet, have an undefined erperience value and
are sorted by their actual load and come preceding hosts that have been used
before.

Both the calculations ot erperience vahe and the ordering by erpected per-

formance assume the load caused by the user's application is 1.0.

This assumption only yields when the computing process does not read
data from disk and is computing all the time on a machine with low system
overhead. System overhead increases dramatically rvhen more processes are
active or the network is used heavily. On the other hand the assumption is
applied to load factors measured by rups. Rups only collects the load every
now and then, asynchronous to the status of the application. During calculate
stage the first measure of load is dropped and only the rest of the measures is
used for calculating the average load during calculate sta,ge.

15



This way of dealing with the ordering in the free list of hosts and the cal-
culations for erperience ar.d erpected performance privides a suitable way to
distinguish machines of different power.

5.3 Starting scenario

The startup scenario for a new application on a remote machine is synchronous
and blocks all activity until completed. There is a single timeout on starting
a new application. To start an application on a remote machine the following
scenario is used.

o Mcp starts acp oL the remote machine using rsà. It provides the name
of the working directory, the nice level and the pathname of the user's
application as parameters to ocp.

Figure 6: acp started remotely by rsh

Acp forks itself into a second instance. The first instance quits, which
implies that tlie cornmunication channels built by rsà are relnoved. As a
result we have ocp running on the remote machine with no connection at
all to mcp.

Figure 7: acp forking itself

Acp (the second instance) moves to the desired working directory, initi-
ates a TCPfiP socket connection to mcp, sets the desired nice level and
redirects stderr to append to the file ".errors".

16



B

Figure 8: TCP/IP sockets built between acp and mcp

Acp execs the application. The application enherits all the environment
and open files (including the TCP/IP socket).

Figure 9: acp replaced by application

As a result the application runs on the remote machine with a communication
channel to mcp. This channel is being used by the application as if it were the
terminal display and keyboard 3.

Conclusions and remarks

The HYDRA package provides a flexible means to control long running appli-
cations in a networked environment. Using the parallelism is restricted to a

certain class of applications. The contraints for the parallellism effect indepen-
dency and similarity of the sÍeps of a total application.

HYDRA has first been used to run a Neural Network application during
six weeks on 12 machines in parallel. The total time on one single machine is
estimated over 450 days.

3This is the main reason why applications can
commands use sÍdin and, stdout.

B

L7

be tested without using HYDRA: their


