Inferences from Dichotic Pitch for Binaural Modeling

Frans Bilsen Johan Raatgever

Definition of dichotic pitch (DP):

Psychophysical facts on dichotic pitch (DP):

1. Similarity of pitch and timbre (**parsimony**) for DP signals and natural (ecological) signals

2. Coupling of DP-value and -image position

3. DP-image position is **IID insensitive**

Cross Correlation (CC) hypothesis:

In the spirit (not the detail) of Jeffress' model and Licklider's triplex theory, Fourcin (1962, 1972) tried to explain his findings on Fourcin Pitch with the wide-band cross-correlation function.

Present extensions:

• Similarly, one might consider the possible virtues of a *"Summary Cross Correlo-Gram* (SCCG)", in analogy with the SACG (Meddis, Yost, Patterson).

• Alternatively, one might try narrow-band cross correlation

Central Activity Pattern (CAP):

Na

Central Spectrum (CS):

Selection from the CAP of a spectral pattern giving rise to the central sensation of pitch

Selection criteria:

- resemblance with monaural spectra (parsimony)
- common internal delay ("straightness")
- *infinite peak-to-valley ratio in the pattern selected*

Note. CAP-CS theory predicts pitch value on the basis of either
a) spectral pattern matching on a Central Spectrum selected, or
b) joint auto correlation applied on the time structure of resolved harmonics in a Central Spectrum (compare SACG)

Repetition Pitch (Low Pitch, Musical Pitch, Periodicity Pitch, Residue Pitch, Virtual Pitch) :

Equalization Cancellation (EC) model:

Equalization is performed on the left and right ear signals by adjustment of level and/or interaural delay. Then cancellation is performed by addition or subtraction (Durlach, 1972).

Present restrictions and extras:

• The *addition mode* is considered only, because the correct prediction of both pitch and lateralization always calls for addition instead of subtraction.

• It is assumed that the EC mechanism, in the absence of a signal, strives for maximum reduction of the noise.

• The equalization parameter might be considered a predictor of position (lateralization)

Modified Equalization Cancellation (mEC):

Equalization is performed by adjustment of level and/or interaural delay (up to $\pm 5 \text{ ms}$) *in each frequency channel (auditory filter) independently*. The residual energy in each filter after cancellation is plotted as a function of center frequency to generate a *"recovered spectrum"*, which thus reflects the degree of interaural de-correlation present in each frequency channel (Culling et al., 1998).

Note 1. Essentially no prediction of position (lateralization) Note 2. One unique solution for each signal configuration

CC:+, EC:±, mEC: – (vanishing peak), CAP:+

CC:-, EC:-, mEC:- (no recovered spectrum at all), CAP:+

Overall evaluation: (pitch, lateralization)

* Consistency in pitch and lateralization in addition mode only

Conclusions:

- The psychophysical DP data are predicted **consistently** by the CAP-CS theory only
- Pitch image position is predicted by the **internal delay** of the Central Spectrum selected, **not** by the **SCCG** (as in Licklider's triplex theory)
- Pitch value extraction seems to precede lateralization (compare Darwin c.s.)

INFERENCES FOR BINAURAL MODELING IN GENERAL:

- CC (or SCCG) is not a universal predictor of position
- ITDs and IIDs are processed separately in the "periphery"

Additional note:

Combination of the EI-cell-based cancellation theory of pitch (compare: **–SACG**) (de Cheveigné) and **EI-** (instead of EE-) cell based binaural interaction for lateralization and detection (Breebaart) seems a possible though not plausible alternative to fulfil monaural and binaural pitch similarity (parsimony)

Remaining questions:

- Relations between CS straightness, DP salience and DP-image compactness have to be measured yet
- A low-frequency paradox in binaural pitch (Hartmann)?
- Why exists prevalence for a centrally localized DRP (A separate mechanism)?

Some logic on the importance of DP phenomena:

- Parsimony implies **DP** signals to be processed by the same central pitch processor as ecological signals
- No separate pitch processor for non-ecological signals like DP signals (teleological argument)
- Thus: DP phenomena are natural byproducts of the mechanism of binaural hearing

200/220-Hz MPSP interval; listening (diotically) to hypothetical central spectra at different interaural delays: 0.8, 0.6, 0.4, 0.2, 0 ms

(Bilsen and Raatgever, JASA 2000)

 $(\Delta T = \left| T_1 \right| - \left| T_2 \right|)$

$CAP(f, \tau_i) = [H(f) + \exp j2\pi f\tau_i]^2$ $= 1 + \cos \{ \phi(f) + 2\pi f\tau_i \}$

 τ_i internal delayH(f)complex interaural transfer function $|H(f)|^2 = 1$ white noise input $\phi(f)$ interaural phase function

Note. After introduction of peripheral auditory properties similar pitch values are predicted (Culling et al., 1998)

Binaural Interaction:

Acron.	Interaural phase	Pitch	Lateralization	Central Spectrum	CC	EC	mEC
HP^+		f _c	0	1	+,+	+,+	+,-
HP^{\pm}	-π	f_c	$\pm \frac{1}{2f_c}$	0	+,+	+,+	+,-
MPSP ⁺	π f_{\circ} $2f_{\circ}$	f_0	0	1	+,-	+,+	+,
$MPSP^{\pm}$		f_0	±0.8		+,-	-,	+,-
aFP^{+}_{\pm}	π	$\frac{1}{T_1 - T_2}$	- <i>T</i> ₂		_,_	+,+	+,-
aFP^+_+	$-\pi \begin{bmatrix} 0 \\ T_1 \end{bmatrix}$	$\frac{1}{T_1 - T_2 \pm 0.8}$	$-T_2 \pm 0.8$	o <u>V</u> <u>V</u> <u>V</u> <u>-</u>	_,_	-,	+,-
DRP ⁺	π	$\frac{1}{T + \tau_i}$	$ au_i$		-,	-,-	_,
DRP^{\pm}		$\frac{1}{T + \tau_i \pm 0.8} $ *	* 7 i	o	_,_	-,	-,
sFP ⁺⁺		$\frac{2}{T_1 - T_2}$	$-\frac{T_1 + T_2}{2}$		-,	-,-	-,
sFP ^{+±}		$\frac{2}{T_1 - T_2 \pm 0.8 \pm 1.6}$	$-\frac{T_1 + T_2 \pm 0.8}{2}$	o	_,_	-,	-,
$\operatorname{BEP}_{+}^{\pm}$	π	$f_e \pm \Delta$	$0, \pm \frac{1}{2f_e} $ *	1	+,+	±,±	-,
BEP^+_\pm	$-\pi$	$f_e \mp \Delta$	$0, \pm \frac{1}{2f_e} $ *	0	+,+	±,±	_,_
BICEP	π f	$f_e - \Delta$	* 0	1	-,	+,+	+,-
BICEP ^{ic}	-π	$f_e + \Delta$	$\pm \frac{1}{2f_e} $ *	0	_,_	_,_	+,-

