Oktoberzwermen onder de loupe met videowaarnemingen

Marc de Lignie¹ en Hans Betlem²

- 1 Prins Hendriklaan 42, 2264 SN Leidschendam
- 2 Lederkarper 4, 2318 NB Leiden

English summary

Double-station video observations in The Netherlands on October 21/22, 1995, resulted in 67 orbits among which 32 Orionids, 4 Southern Taurids and 3 Leo Minorids. For the Orionid radiant new values for the radiant motion are derived that are argued to be more plausible than the existing literature values. Little structure is present in the Orionid radiant although its width is shown to increase for small particles. As in other video samples around 20 October, the Epsilon Geminids are not present and it is concluded that the activity of this shower must be lower than currently believed from visual observations. On the other hand, the Leo Minorids were clearly present and new values for their radiant position and motion are presented.

Inleiding

Na de succesvolle videowaarnemingen van de Orioniden in 1993 [1], was DMS sterk gemotiveerd om verdere waarnemingen aan deze zwerm te verrichten. De volgende gelegenheid was de nacht van 21/22 oktober 1995, toen Klaas Jobse zijn video-apparatuur opstelde onder een heldere hemel in Oostkapelle (EL 3° 33', NB 51° 34', 0 m), Jaap van 't Leven in Bosschenhoofd (EL 4° 33', NB 51° 34', 4 m) en Hans Betlem in Ratum (EL 6° 48', NB 51° 58', 41 m). In 7 uur legden zij 67 meteoren voldoende nauwkeurig vast om de bepaling van baanelementen mogelijk te maken. Hieronder volgen de resultaten van deze waarnemingen met een analyse van de benodigde aanpassingen van de "general facts" van de Orioniden, Epsilon Geminiden en Leo Minoriden. Een analyse van de Tauriden wordt bewaard tot een later artikel.

Waarnemingen en datareductie

De drie gebruikte videocamera's bestaan uit een tweede generatie beeldversterker, een F/1.2 55 mm of 85 mm foto-objectief en een Hi-8 camcorder. Het beeldveld van deze camera's is ongeveer 25 graden en de grensmagnitude ligt rond de +8 voor sterren en rond de +6 voor simultane meteoren. De drie camera's werden gericht op een gemeenschappelijk punt in de atmosfeer dat ongeveer 100 km boven het aardoppervlak lag. Voor de datareductie werd het Astro Record meetprogramma en de software uit Ondrejov gebruikt. De exacte procedure staat in meer detail beschreven in [1] en [2]. De resulterende trajecten en baanelementen zijn te vinden in tabel 1 en tabel 2.

Tabel 3 geeft schattingen voor de video ZHR, volgens:

$$VZHR = \frac{N}{N_{spa}} \frac{3.4^{\Delta M}}{\sin(h_{rad})} HR$$
(1)

$$HR = 10 + 1.5 \cos(230 - \lambda_0)$$
 (2)

$$\Delta M = \left(1 - \frac{\log r}{\log 3.4}\right) \left(< M_{spo} > -3.24\right) \tag{3}$$

In deze vergelijkingen wordt aangenomen dat de visuele HR wordt weergegeven door vergelijking (2) en dat de sporadische achtergrond bij een grensmagnitude van +6.5 wordt gekarakteriseerd door een gemiddelde visuele magnitude van +3.24 en een populatie-index van 3.4. Vergelijking (3) corrigeert voor het effect dat voor een grensmagnitude hoger dan +6.5 het aantal sporadische meteoren sneller toeneemt dan het aantal zwermmeteoren.

Stream	Ori	S-Tau	N-Tau	ε-Gem	LMi
Ν	32	4	0	0	3
Video ZHR	16	2.0	0	0	1.1

Tabel 3 :Activiteit van de zwermen op basis van een vergelijking
tussen het aantal zwermleden en het aantal sporadische meteoren.

Tabel 1.	Baanelementen (J2000.0) van 32 Orioniden, 4 Zuidelijke Tauriden, 3 Leo Minoriden en 28 sporadische mete-
	oren. "Node" staat voor klimmende knoop en w voor de periheliumlengte.
	De gegevens zijn beschikbaar in elektronische vorm op http://home.wxs.nl/~dms-web.

code	day	str N	٩v	q	tol	а	1/a	tol	е	tol	i tol	w	tol	node	рі	tol
95352	21.9339	Ori	3	0.558	0.014	7.2	0.139	0.06	0.923	0.032	164.2 0.8	85.2	2.6	28.1	113.3	2.6
95354	21.9571	Ori	3	0.562	0.014	7.5	0.133	0.06	0.925	0.032	164.7 0.5	84.6	2.5	28.1	112.7	2.5
95355	21.9839	Ori	3	0.574	0.013	18.6	0.054	0.06	0.969	0.035	165.0 0.6	82.0	2.4	28.2	110.1	2.4
95356	21.9873	Ori	3	0.582	0.014	57.3	0.017	0.07	0.990	0.042	165.4 0.6	80.5	2.7	28.2	108.7	2.7
95358	21.9898	Ori	3	0.578	0.015	9.6	0.104	0.07	0.940	0.038	165.2 1.6	82.3	2.8	28.2	110.5	2.8
95361	22.0104	Ori	4	0.521	0.019	9.5	0.105	0.08	0.945	0.042	172.1 1.1	88.9	3.5	28.2	117.1	3.5
95363	22.0129	Ori	3	0.579	0.015	13.9	0.072	0.06	0.958	0.036	164.9 1.0	81.6	2.6	28.2	109.8	2.6
95389	22.0646	Ori	5	0.542	0.017	4.9	0.203	0.07	0.890	0.034	165.6 0.6	88.2	3.1	28.2	116.4	3.1
95393	22.0756	Ori	3	0.581	0.013	19.2	0.052	0.06	0.970	0.036	163.8 0.6	81.1	2.4	28.2	109.3	2.4
95397	22.0844	Ori	4	0.555	0.014	7.7	0.130	0.06	0.928	0.031	163.2 0.7	85.4	2.5	28.3	113.7	2.5
95399	22.0912	Ori	3	0.525	0.016	5.5	0.180	0.06	0.905	0.031	161.7 0.7	89.6	2.9	28.3	117.9	2.9
95404	22.0960	Ori	2	0.593	0.013	-82.2	-0.012	0.06	1.007	0.038	164.7 0.5	78.8	2.3	28.3	107.1	2.3
95406	22.0973	Ori	4	0.591	0.014	14.3	0.070	0.07	0.959	0.039	164.5 0.6	80.2	2.6	28.3	108.4	2.6
95407	22.0985	Ori	4	0.614	0.012	14.8	0.068	0.06	0.958	0.037	165.8 0.2	77.5	2.4	28.3	105.7	2.4
95410	22.1001	Ori	4	0.675	0.022	9.4	0.106	0.07	0.928	0.045	160.5 1.0	70.6	3.1	28.3	98.9	3.1
95413	22.1061	Ori	4	0.588	0.013	12.1	0.082	0.06	0.952	0.035	163.9 0.3	80.8	2.4	28.3	109.1	2.4
95419	22.1190	Ori	4	0.626	0.011	-7.7	-0.130	0.07	1.081	0.043	166.1 0.9	73.4	2.1	28.3	101.7	2.1
95426	22.1270	Ori	4	0.556	0.016	9.2	0.108	0.06	0.940	0.034	163.6 0.6	84.9	2.7	28.3	113.2	2.7
95434	22.1397	Ori	3	0.594	0.012	-35.9	-0.028	0.06	1.017	0.038	163.7 0.6	78.5	2.3	28.3	106.8	2.3
95435	22.1428	Ori	4	0.555	0.015	4.9	0.204	0.06	0.887	0.030	163.3 0.5	86.6	2.7	28.3	114.9	2.7
95441	22.1527	Ori	3	0.594	0.013	17.1	0.058	0.06	0.965	0.036	164.6 0.6	79.7	2.4	28.3	108.0	2.4
95444	22.1598	Ori	5	0.553	0.033	20.2	0.049	0.15	0.973	0.079	163.3 1.7	84.4	5.7	28.3	112.7	5.7
95445	22.1611	Ori	1	0.604	0.012	-13.8	-0.072	0.06	1.044	0.040	163.9 0.6	76.7	2.2	28.3	105.0	2.2
95446	22.1617	Ori	5	0.569	0.013	7.4	0.136	0.06	0.923	0.032	163.9 0.6	83.8	2.5	28.3	112.2	2.5
95448	22.1656	Ori	4	0.599	0.022	9.1	0.110	0.11	0.934	0.062	163.4 0.3	79.9	4.3	28.3	108.2	4.3
95452	22.1716	Ori	4	0.581	0.015	27.5	0.036	0.07	0.979	0.042	163.1 0.6	80.9	2.8	28.3	109.2	2.8
95455	22.1731	Ori	6	0.668	0.018	5.7	0.174	0.09	0.884	0.055	168.3 0.6	72.6	3.6	28.3	100.9	3.6
95459	22.1790	Ori	4	0.572	0.013	17.3	0.058	0.06	0.967	0.034	162.8 0.6	82.2	2.4	28.4	110.6	2.4
95461	22.1800	Ori	2	0.614	0.012	25.7	0.039	0.06	0.976	0.038	164.7 0.3	77.0	2.3	28.4	105.4	2.3
95464	22.1871	Ori	2	0.570	0.014	8.0	0.125	0.06	0.929	0.033	163.9 0.5	83.5	2.5	28.4	111.9	2.5
95467	22.1905	Ori	0	0.618	0.017	-25.5	-0.039	0.09	1.024	0.058	164.5 0.6	75.5	3.2	28.4	103.9	3.2
95478	22 2073	Ori	3	0.617	0.013	8.0	0 125	0.06	0.923	0.036	165.6 0.6	78.0	2.5	28.4	106.4	2.5
95370	22 0296	S-Tau	5	0 411	0.011	1.6	0.635	0.03	0 739	0.020	46 0.5	112.5	0.6	28.2	140 7	0.6
95381	22.0478	S-Tau	5	0.409	0.005	1.5	0.686	0.01	0.719	0.009	3.5 0.3	114.1	0.3	28.2	142.3	0.3
95385	22 0556	S-Tau	3	0.286	0.005	1.5	0.660	0.02	0.811	0.007	64 05	126.2	0.4	28.2	154.4	0.4
95411	22 1006	S-Tau	5	0.503	0.005	3.4	0.202	0.02	0.853	0.011	57 03	94.2	0.6	28.3	122.5	0.6
95414	22.1000	I Mi	5	0.621	0.000	-365.9	-0.003	0.02	1 002	0.035	1257 0.5	104.4	19	208.3	312.0	19
95465	22 1887	L Mi	0	0.586	0.017	219.0	0.005	0.00	0.997	0.000	126.1 0.9	104.4	2.6	208.4	308.5	2.6
95476	22.1007		5	0.500	0.017	213.0	0.000	0.00	0.337	0.034	126.0 1.5	102.8	2.0	200.4	311 1	2.0
95357	21 0880	Sno	1	0.014	0.020	20.1	0.000	0.00	0.303	0.004	1/27 20	65.3	11.6	200.4	03.5	11.6
95367	27.9000	Spo	4	0.741	0.049	2.5	0.290	0.23	0.701	0.174	67 05	220.8	0.7	20.2	78.0	0.7
95307	22.0219	Spo	4	0.000	0.004	2.5	0.400	0.02	0.001	0.020	113.0 1.1	229.0	30	200.2	64.4	3.0
05383	22.0525	Spo	4	0.917	0.012	5.0	0.333	0.10	0.093	0.030	171.0 0.3	174.3	0.5	200.2	22.6	0.5
90000	22.0317	Spo	2	0.993	0.000	0.5	0.104	0.07	0.647	0.000	79 9 0 0	100.5	1.2	200.2	47.7	1.2
95364	22.0047	Spo	2	0.974	0.002	2.0	0.394	0.05	0.010	0.055	125 05	199.0	1.2	200.2	47.7	1.2
95400	22.0919	Spo	5	0.049	0.000	2.0	0.352	0.02	0.771	0.014	12.5 0.5	200.4	0.9	200.3	F00.7	0.9
95401	22.0922	Spu	1	0.903	0.007	17.0	0.000	0.10	0.940	0.093	307.06	24.1 157.7	∠.4 1 /	20.3	52.3	2.4 1 /
95402	22.0925	Spo	4	0.903	0.004	4.3	0.231	0.03	1.004	0.033	30.7 0.6	107.7	1.4 E 0	200.3	5.9 100 7	1.4 E.O
95405	22.0904	Spo	4	0.389	0.033	-0.1	-0.104	0.17	0.004	0.073		200.0	5.9 0 4	200.3	120.1	0.9
95409	22.0995	Spo	4	0.901	0.002	5.2	0.191	0.02	0.828	0.019	1446 0.3	211.0	0.4	200.3	00.1	0.4 2.4
95412	22.1004	Spo	3	0.791	0.009	3.4	0.290	0.00	0.700	0.041	144.0 0.3	20.3	2.4	∠ŏ.3	0.00	2.4
95416	22.113/	Spo	4	0.901	0.010	2.9	0.348	0.09	0.687	0.081	148.0 0.9	39.9	3.5	∠ŏ.3	08.2	3.5 0.7
95420	22.1195	Spo	4	0.154	0.005	4.4	0.226	0.04	0.965	0.008	38.4 1.6	316.1	0.7	208.3	164.4	0.7
95422	22.1204	Spo	3	0.551	0.006	9.7	0.103	0.03	0.943	0.019	70.1 0.6	94.6	1.1	208.3	302.9	1.1
95424	22.1266	Spo	2	0.936	0.004	288.5	0.003	0.06	0.997	0.058	130.8 0.6	151.7	1.3	208.3	0.0	1.3
95425	22.1267	Spo	4	0.767	0.018	6.8	0.148	0.12	0.887	0.089	149.2 0.6	239.2	4.3	208.3	87.5	4.3
95428	22.1298	Spo	2	0.989	0.001	-85.7	-0.012	0.07	1.012	0.070	1/6.2 0.4	189.3	0.7	208.3	37.6	0.7
95429	22.1314	Spo	3	0.850	0.020	3.5	0.284	0.15	0.758	0.121	139.2 1.1	131.5	5.8	208.3	339.8	5.8
95430	22.1316	Spo	4	0.628	0.012	-20.1	-0.050	0.07	1.031	0.042	147.9 0.5	74.2	2.2	28.3	102.5	2.2
95438	22.1509	Spo	3	0.991	0.001	6.5	0.154	0.06	0.848	0.059	138.7 0.5	352.3	0.8	28.3	20.6	0.8
95450	22.1659	Spo	3	0.957	0.662	1.0	1.012	0.30	0.032	0.376	0.2 5.0	285.4	60.0	208.4	133.8	60.0
95457	22.1755	Spo	4	0.878	0.017	2.4	0.415	0.12	0.636	0.102	144.1 1.0	45.8	5.8	28.3	74.2	5.8
95466	22.1894	Spo -	-1	0.923	0.004	6.6	0.151	0.07	0.861	0.060	169.5 0.5	147.4	1.6	208.4	355.7	1.6
95472	22.1955	Spo	4	0.833	0.007	-243.9	-0.004	0.07	1.003	0.057	177.7 0.1	47.6	1.8	28.4	76.0	1.8
95473	22.1959	Spo	1	0.993	0.000	-23.9	-0.042	0.07	1.042	0.073	147.2 0.3	174.3	0.4	208.4	22.7	0.4
95475	22.1984	Spo	4	0.982	0.006	1.3	0.742	0.13	0.272	0.122	158.9 1.7	20.5	8.4	28.4	48.9	8.4
95477	22.2066	Spo	1	0.373	0.010	-110.3	-0.009	0.05	1.003	0.019	122.2 0.8	104.4	1.9	28.4	132.8	1.9
95479	22.2087	Spo	4	0.370	0.032	0.9	1.078	0.05	0.601	0.021	97.6 2.0	47.7	4.4	208.4	256.1	4.4

Tabel 2.Trajectgegevens (J2000.0) van 32 Orioniden, 4 Zuidelijke Tauriden, 3 Leo Minoriden en 28 sporadische me-
teoren. Nst is het aantal stations dat de meteoor vastlegde, Z de zenitsafstand van de radiant en Qmax de
grootste convergentiehoek tussen de meteoorsporen.

code	VG	VH	VINE	< V >	tol	Hb	Hmax	He	RA	tol	DE	tol	RAG	DEG	Nst	cos Z	Omax
05252	65.7	40.7	66.0	66.7	0.7	110 1	111.6	102.2	04.20	0.20	16.26	0.25	04.77	15.07	2	0.070	40
95352	65.7	40.7	66.9	00.7	0.7	119.1	111.0	103.2	94.39	0.28	10.30	0.35	94.77	15.97	2	0.278	12
95354	65.8	40.8	67.0	66.9	0.7	113.1	104.3	94.7	94.63	0.18	16.56	0.24	94.93	16.21	2	0.368	32
95355	66.7	41.7	67.8	67.7	0.7	118.5	104.1	94.0	94.58	0.13	16.56	0.27	94.79	16.26	2	0.459	40
95356	67.1	42.0	68.3	68.1	0.8	115.7	110.4	99.2	94.63	0.09	16.70	0.29	94.82	16.41	2	0.473	45
95358	66.3	41.1	67.5	67.3	0.8	116.1	112.4	105.3	95.12	0.11	16.65	0.77	95.32	16.35	2	0.475	13
95361	65.9	41.1	67.1	66.9	0.9	117.9	108.8	103.6	93.57	0.08	20.04	0.49	93.69	19.80	2	0.595	18
95363	66.6	41.5	67.7	67.6	0.7	114.5	106.0	95.6	95.01	0.40	16.47	0.48	95.14	16.20	3	0.550	46
95389	65.0	40.0	66 1	66.0	0.8	112 5	105.4	96.5	94 98	0.16	16 95	0.26	94 96	16 70	2	0 6 9 8	79
05303	66.7	10.0	67.8	67.6	0.7	120.1	105.5	01.0	95 10	0.10	15 90	0.27	95.05	15 66	3	0.000	50
35535	00.7	40.0	07.0	07.0	0.7	123.1	100.0	100.0	04.75	0.24	15.90	0.27	93.03	15.00	2	0.700	23
95397	65.7	40.8	66.7	00.0	0.7	114.0	106.0	100.8	94.75	0.14	15.81	0.33	94.67	15.56	2	0.726	32
95399	64.8	40.3	65.8	65.7	0.7	114.4	110.6	101.2	94.05	0.16	15.31	0.32	93.96	15.05	2	0.734	58
95404	67.4	42.3	68.5	68.3	0.7	116.0	99.7	94.4	95.18	0.18	16.23	0.25	95.07	16.00	2	0.750	87
95406	66.7	41.5	67.7	67.6	0.7	114.9	105.9	96.6	95.72	0.10	16.17	0.29	95.61	15.93	2	0.750	38
95407	67.1	41.5	68.1	67.9	0.7	115.5	106.0	99.0	96.60	0.06	16.63	0.07	96.50	16.40	3	0.750	70
95410	67.0	41.1	68.1	67.9	0.7	98.7	94.4	90.3	98.67	0.88	13.67	0.49	98.58	13.41	2	0.715	46
95413	66.5	41.3	67.5	67.4	0.7	115.9	105.3	99.2	95.67	0.10	15.92	0.13	95.54	15.68	3	0.757	69
95419	68.9	43.6	69.9	69.8	0.7	110.6	104.8	99.5	95.80	0.13	16.74	0.43	95.64	16.52	2	0.784	33
95426	65.0	11 1	66.0	66.7	0.7	116.0	108.5	08.6	0/ 81	0 / 1	15 96	0.24	04.63	15 71	2	0 7 0 0	56
05420	67.5	42.5	69.5	60.7	0.7	112.1	102.2	04.0	05 17	0.41	15.50	0.24	04.07	15.57	2	0.707	70
95454	07.5	42.0	00.5	00.3	0.7	112.1	103.2	94.9	95.17	0.11	15.70	0.20	94.97	15.52	2	0.191	79
95435	65.0	40.0	66.0	65.8	0.7	112.9	104.7	97.2	95.57	0.23	15.81	0.20	95.36	15.55	2	0.801	79
95441	66.8	41.6	67.8	67.6	0.7	115.1	103.9	93.6	95.91	0.14	16.20	0.27	95.68	15.95	2	0.809	85
95444	66.3	41.7	67.3	67.1	1.6	116.3	109.6	101.3	94.31	0.61	15.87	0.79	94.06	15.62	3	0.807	87
95445	68.0	43.0	69.0	68.8	0.7	123.0	100.5	96.6	95.32	0.09	15.80	0.29	95.08	15.56	2	0.805	34
95446	65.8	40.8	66.8	66.6	0.7	117.0	106.5	97.7	95.59	0.09	16.02	0.29	95.35	15.77	2	0.808	36
95448	66.4	41.0	67.3	67.1	1.2	118.8	112.8	95.4	96.42	0.01	15.59	0.02	96.17	15.33	3	0.804	85
95452	66.8	41.8	67.7	67.5	0.8	115.6	104.4	95.7	95.23	0.15	15.59	0.26	94.97	15.34	2	0.807	89
95455	66.0	40.4	67.8	67.6	1.0	118 1	111 0	00.0	00.20	0 1 1	17 55	0.28	00 50	17 32	2	0.824	13
95455	66 F	40.4	67.0	67.0	0.7	117.0	100.2	07.0	95.75	0.11	15 51	0.20	04 70	15.25	2	0.024	20
95459	00.5	41.0	07.4	07.2	0.7	117.0	109.3	97.0	95.07	0.10	10.01	0.20	94.79	15.25	2	0.003	39
95461	67.3	41.8	68.Z	08.0	0.7	110.3	105.1	94.5	96.57	0.11	10.13	0.12	96.30	15.88	3	0.812	15
95464	65.9	40.9	66.8	66.7	0.7	116.2	106.2	94.7	95.63	0.19	16.03	0.24	95.34	15.77	2	0.809	81
95467	68.0	42.6	68.8	68.7	1.0	121.4	101.2	93.1	96.17	0.23	16.00	0.30	95.88	15.75	3	0.804	84
95478	66.6	40.9	67.5	67.3	0.7	115.7	107.4	98.5	97.43	0.10	16.53	0.28	97.12	16.26	2	0.804	43
95370	24.1	34.9	26.5	26.2	0.7	97.2	94.0	90.7	39.51	0.20	12.13	0.48	38.65	10.13	2	0.766	44
95381	23.4	34.3	25.9	25.5	0.3	100.0	91.7	89.1	40.17	0.12	13.37	0.30	39.09	11.30	2	0.772	46
95385	28.0	34.6	30.1	29.8	0.3	101.7	93.1	85.3	45.77	0.10	13.37	0.43	44.98	11.88	2	0.774	38
95411	25.9	39.0	28.0	27 7	0.3	100.8	93.5	897	32 61	0.23	8 0 3	0.38	30.98	5.82	2	0 5 9 1	48
95414	62.2	42.2	63.4	63.2	0.6	118.0	108 1	98.8	158.83	0 1 0	36.93	0.20	159 27	36.73	3	0 5 0 4	Q
05465	62.0	42.2	62.2	62.0	0.0	120.0	115.2	00.0	150.00	0.10	25 54	0.20	160.127	25 11	2	0.004	20
95405	61.0	42.2	62.0	62.0	0.0	120.4	100.2	30.0 102 E	159.90	0.29	35.54	1 22	150.12	26.40	2	0.723	16
95476	01.0	41.7	62.9	02.0	0.0	121.7	109.3	102.5	158.88	0.23	30.57	1.23	159.00	36.49	2	0.764	10
95357	63.5	39.0	64.8	64.6	3.0	114.1	111.0	107.1	99.89	0.33	4.41	0.72	100.21	3.91	2	0.264	37
95367	13.8	37.7	17.5	17.1	0.3	86.3	82.9	80.2	0.74	0.38	22.57	1.18	356.38	17.71	2	0.730	34
95372	57.2	38.5	58.4	58.2	1.3	115.0	106.1	100.4	115.46	1.28	58.42	0.34	115.93	58.52	2	0.781	28
95383	70.3	40.6	71.4	71.3	0.7	120.4	107.8	99.9	123.17	0.10	24.86	0.18	123.38	24.66	3	0.515	29
95384	43.4	37.9	44.9	44.6	0.8	104.6	98.5	92.2	137.95	1.02	78.08	0.21	140.87	78.33	2	0.783	48
95400	21.7	38.3	24.2	23.8	0.3	97.3	87.0	82.5	17.59	0.51	28.84	0.64	15.03	26.64	3	0.730	90
95401	64.3	41.6	65.5	65.3	1.1	123.0	113.3	99.5	107.43	0.57	-6.98	0.84	107.48	-7.51	3	0.366	60
95402	21.6	39.7	24.2	23.9	0.3	101.8	96.8	95.0	251 29	1 5 8	51 92	1 1 8	252.00	46 58	3	0.236	81
95405	65.7	13 0	66.7	66.5	1 0	113.0	105 /	101 2	86.14	0.16	30.97	0.50	85.05	30.85	2	0.200	34
95405	17.6	43.9	20.6	20.0	1.9	07.9	02.5	00 5	242.64	0.10	30.97	0.50	229.70	30.05	2	0.900	10
95409	17.0	40.2	20.0	20.2	0.3	97.0	92.5	00.0	343.01	0.34	41.01	0.44	330.70	30.01	2	0.545	10
95412	64.2	39.0	65.3	65.2	0.7	100.6	95.1	89.6	102.49	0.04	4.66	0.06	102.43	4.28	3	0.592	76
95416	65.1	38.4	66.2	66.0	1.1	111.9	105.4	102.5	108.06	0.12	5.17	0.49	108.02	4.80	2	0.584	28
95420	40.9	39.8	42.2	41.9	0.6	91.3	89.5	83.8	47.95	0.26	33.22	0.58	47.14	32.72	2	0.883	76
95422	44.5	41.1	46.1	45.8	0.5	107.3	102.9	98.8	192.09	0.13	40.31	0.28	193.25	39.52	2	0.311	22
95424	65.5	42.2	66.6	66.4	0.7	115.8	101.6	92.3	141.43	0.28	44.92	0.36	141.61	44.92	3	0.763	45
95425	66.2	40.6	67.2	67.0	1.3	112.4	101.0	95.2	104.42	0.22	39.10	0.20	104.26	39.07	3	0.931	89
95428	72.2	42.3	73.2	73.0	0.7	114.8	99.2	93.0	118.42	0.17	23.28	0.25	118.37	23.14	2	0.761	63
95429	64 0	39 1	65.2	65 0	1.8	114 1	102 4	97 5	142 16	0.32	38 08	0.42	142 34	38.01	2	0.723	23
95430	66.4	42 7	67 4	67.2	0.7	117 /	98 6	97.2	9/ 67	0.21	7 00	0.22	9/ /0	7 67	2	0 702	81
05420	66 1	40.6	67 4	67 0	0.7	111.4	100 5	067	110 24	0.21	200	0.22	110 00	1.01	2	0.102	01
90430	00.1	40.0	11 0	10.0	0.7	75.0	100.5	30.7	67.74	0.19	-2.99	0.23	110.20	-3.43	2	0.494	0∠ 0 <i>Г</i>
95450	0.5	29.1	11.0	10.6	0.4	15.0	13.6	11.2	07.74	0.46	43.69	0.41	47.49	31.06	2	0.944	80
95457	63.6	37.6	64.6	64.4	1.5	97.4	94.0	90.5	107.10	0.22	3.47	0.45	106.90	3.09	2	0.655	70
95466	69.7	40.6	70.7	70.6	0.7	119.4	102.0	94.2	131.65	0.11	24.22	0.28	131.55	24.08	2	0.813	62
95472	70.6	42.3	71.4	71.3	0.7	118.8	100.5	89.2	106.12	0.04	21.57	0.04	105.87	21.39	3	0.864	71
95473	69.7	42.7	70.7	70.6	0.8	124.4	98.5	92.1	128.29	0.11	38.81	0.10	128.13	38.78	3	0.934	90
95475	62.3	33.5	63.4	63.2	1.7	110.4	107.9	100.8	116.53	0.16	10.26	0.88	116.33	9.93	2	0.733	31
95477	59.0	42.3	59.9	59.7	0.6	110.3	93.7	91.3	82.36	0.10	1.89	0.28	81.93	1.41	2	0.579	36
95479	43.8	28.7	45.4	45.1	1.1	105.6	101.9	98.0	162.15	0.32	41.82	0.94	162.50	41.68	2	0.802	20

Orioniden

Hoewel er in de literatuur een overvloed aan waarnemingen aan de Orionidenzwerm beschikbaar is, bestaan er een aantal controverses over de basale karakteristieken van de zwerm. Met betrekking tot het activiteitsprofiel claimt Jenniskens een enkelvoudige exponentiële distributie [3], terwijl het IMO visuele handboek het meer houdt op een activiteitsplateau als langjarig gemiddelde, hierbij enigszins ondersteund door het onderliggende profiel van de massa-index [4]. Verder is bekend van visuele en radarwaarnemingen dat soms activiteitsverhogingen in de zwerm van ongeveer een dag optreden.

Met betrekkingen tot de radiantpositie spreekt een aantal bronnen van een zwakkere secundaire radiant ongeveer 3 graden ten noorden van de Orionidenradiant [5]. De radiantdrift in de literatuur variëert heftig van 0.65 tot 1.23 graden per graad zonslengte in rechte klimming en van 0.06 tot 0.22 graden in declinatie [6], maar meestal wordt uitgegaan van $\Delta RA=0.65$ en $\Delta DE=0.11$ op basis van de IAU fotografische database.

De huidige waarnemingen kunnen weinig zeggen over het activiteitsprofiel maar kunnen wel licht werpen op de kennis van het radiantgebied en de radiantdrift. Dit geldt in het bijzonder als het huidige sample wordt gecombineerd met de Orionidenwaarnemingen van 1993 rond zonslengte 206 [1]. In tabel 4 staan de gemiddelde Orionidenbanen van 1993 en 1995 samen met de gemiddelde baan op basis van de fotografische database van de IAU. Hoewel de verschillen nauwelijks significant genoemd mogen worden, komt het 1995 sample iets beter overeen met de fotografische gegevens, waarschijnlijk omdat de gemiddelde knoopposities van deze samples toevalligerwijs beter overeenkomen.

Voor het berekenen van de geocentrische radiantdrift is naast de twee video samples ook het onafhankelijke sample van 12 Orioniden uit de DMS fotografische database gebruikt [7]. Laatstgenoemde gegevens hadden niet veel invloed op de resulterende radiantdrift maar verhoogden wel de nauwkeurigheid hiervan. In de regressieanalyse werden vier videometeoren verwijderd omdat hun radiantcoördinaten meer dan drie maal de standdaarddeviatie van het gemiddelde afweken. De resultaten voor equinox J2000.0 zijn:

$$\begin{split} RA_g &= 94^{\circ}.99 + (+0^{\circ}.90 \pm 0^{\circ}.07) \; x \; (\lambda \text{ - } 208^{\circ}.00) \\ DE_g &= 15^{\circ}.80 + (+0^{\circ}.10 \pm 0^{\circ}.04) \; x \; (\lambda \text{ - } 208^{\circ}.00) \end{split}$$

De opgegeven plus- en minwaarden volgen direct uit de regressie-analyse, waarbij een normale distributie van de radiantpunten is aangenomen. Bijvoorbeeld, in een groot aantal ensembles van waargenomen radiantpunten zou 68% van de bewegingen in rechte klimming vallen tussen 0.83 and 0.97 en 95% tussen 0.76 en 1.04.

Het is niet duidelijk waarom de gevonden waarde van de beweging in rechte kliming hoger is dan die op basis van de IAU database. We kunnen slechts opmerken dat het huidige sample twee keer zo groot is als het IAU sample en dat het homogener is in nauwkeurigheid. De nauwkeurigheid van de radiantpunten in het huidige sample is mooi te zien in tabel 2 voor de meteoren die vanuit 3 stations zijn waargenomen. Hiervoor zijn de fouten in de radiantcoördinaten erg zeker, omdat ze zijn afgeleid van de verschillen tussen de drie radiantpunten die worden berekend uit de drie mogelijke paren uit een set van drie meteoorsporen.

Naast de nauwkeurigheidsargumenten kunnen we ook zoeken naar theoretische argumenten waarom de gevonden radiantdrift aannemelijker is dan de standaard literatuurwaarde. De radiantdrift van een zwerm kan modelmatig worden geschat door aan te nemen dat tijdens de passage van de Aarde door de zwerm alle baanelementen van de zwerm gelijk blijven met uitzondering van de klimmende knoop. Je verwacht dat zo'n model correct is wanneer de zwerm gedurende de eeuwen sneller evolueert in de klimmende knoop dan in de andere baanelementen. Voor langperiodieke zwermen zoals de Perseiden (model geeft $\Delta RA=1.39$, $\Delta DE=0.27$) en de Eta Aquariden (model geeft $\Delta RA=0.93$, $\Delta DE=0.37$), de zusterzwerm van de Orioniden, werkt dit model wonderwel. Daarom zou je verwachten dat het model ook van toepassing is op de Orioniden, waar het een radiantbeweging geeft van +1.03graden per graad zonslengte in rechte klimming en -0.04 graden in declinatie. We zien dan dat de huidige gevonden waarden voor de radiantbeweging van de Orioniden dichter bij deze modelwaarden liggen dan de "oude" literatuurwaarden.

Als de radiantdrift eenmaal bekend is, kun je het radiantgebied tekenen door alle individuele radiantpunten te verschuiven naar een gemeenschappelijke zonslengte (zie figuur 1). Het radiantgebied van de Orioniden vertoont niet veel structuur. Het heeft een dichte ronde kern met een diameter van ongeveer één graad, met daaromheen een minder dicht gebied dat voornamelijk uit zwakke meteoren bestaat, vooral langs de rechte klimmingsas maar ook enigszins ten noorden van de kern. Dit blijkt ook uit tabel 5, waar de varianties van de distributies van radiantpunten staan weergegeven voor de drie verschillende samples van figuur 1. Realiseer dat de kleinere deeltjes echt een breder radiantgebied beslaan; hoewel de videowaarnemingen minder nauwkeurig zijn dan de fotografische, vormen ze geen beperking in de bepaling van de spreiding in de radiant. Bijvoorbeeld, in [8] werd op basis van videowaarnemingen een variantie van 0.27 graden gevonden in de radiantcoördinaten van de Alfa Monocerotiden tijdens de uitbarsting van 1995.

Het effect van een afnemende radiantbreedte als functie van een toenemende zonslengte - dit werd gevonden uit radarwaarnemingen [6] - wordt niet bevestigd door de huidige waarnemingen. Ook is er geen spoor van een secundaire radiant ten noorden van de hoofdradiant in het magnitude-interval dat door de videowaarnemingen wordt bestreken (+1 to +6).

Alleen meteoor 95361 zou tot zo'n radiant kunnen behoren.

Source	n	q	a	e	i	ω	Ω	Vg
video 1993 [1]	17	0.598	18.9	0.970	163.9	79.3	25.8	66.8
video 1995	32	0.585	13.0	0.956	164.5	81.1	28.3	66.6
video average	49	0.590	14.6	0.961	164.3	80.5	27.4	66.6
foto IAU [10]	27	0.575	11.5	0.951	164.3	82.7	28.9	66.3

Figuur 1. Eenenzestig Orioniden radiantpunten (J2000.0), verschoven naar zonslengte 208.00. De vierkantjes zijn de nieuwe punten, the ruitjes zijn de oude punten en the cirkeltjes komen uit de DMS fotografische database [7].

Tabel 5. Grootte van het radiantgebied uitgedrukt in varianties ($sqrt(<(x-<x>)^2>)$ in de drie verschillende samples van figuur 1.

Sample	<node></node>	Var RA	Var DE	Mv
Video 1995	28.28	1.16	0.95	+3.1
Video 1993	25.81	1.14	0.41	+3.4
DMS photo	27.02	0.31	0.21	-2.8

Epsilon Geminiden

Een opvallende afwezige in de lijst van waargenomen meteorenzwermen is de Epsilon Geminidenzwerm. Volgens [3] en [4] zou de visuele ZHR van deze zwerm 1.5 moeten zijn bij zonslengte 208. Gezien het feit dat voor de Epsilon Geminiden een zelfde r-waarde wordt gevonden als voor de Orioniden, dat de ZHR van de Orioniden gelijk is aan 16 bij de waargenomen zonslengte en dat de **Tabel 4.** Gemiddelde banen (J2000.0) van de 1993 en 1995 samples van DMS videobanen vergeleken met de baan afgeleid van fotografische waarnemingen

Epsilon Geminiden een wat hogere radianthoogte hebben dan de Orioniden, had je verwacht 3 of 4 Epsilon Geminiden waar te nemen. Vergelijkbare discrepanties, i.e. een te klein aantal waargenomen Epsilon Geminiden, traden op in de videowaarnemingen van [1] waar men 3 Epsilon Geminiden had verwacht bij zonslengte 205.8 en er slechts één zwermlid verscheen, en van [9] waar men 3 Epsilon Geminiden verwachtte nabij zonslengte 208.7 en er uiteindelijk maar één waarnam.

De discrepantie tussen aantallen waargenomen Epsilon Geminiden op basis van visuele en videowaarneming zou wat minder scherp zijn, als de r-waarde 2.0 zou zijn in plaats van 3.0. Dit verlaagt de relatieve zichtbaarheid van de zwerm bij hogere grensmagnitudes en verklaart ook waarom de zwerm werd ontdekt op basis van fotografische in plaats van visuele waarnemingen.

Alles bij elkaar suggereren de huidige waarnemingen dat de ZHR van de Epsilon Geminidenzwerm ten minste een factor twee lager is dan gesteld in [3] and [4] en dat de rwaarde wel eens flink wat lager zou kunnen zijn dan algemeen wordt aangenomen. Dit betekent dat de zwerm nauwelijk de visuele detectielimiet haalt, zelfs niet als er wordt geplot. De hoge aangenomen r-waarde en ZHRs zijn waarschijnlijk het gevolg van sporadische vervuiling; inderdaad bevat tabel 2 een flink aantal sporadische radianten ten oosten van de Orionidenradiant.

Leo Minoriden

Hoewel de Leo Minoriden als zwerm bekend staan in de literatuur [3][10], is het beschikbare waarnemingsmateriaal behoorlijk schaars en staan ze zelfs niet vermeld in de IMO zwermenkalender. Het was daarom een verrassing dat het huidige sample van 67 meteoroidenbanen maar liefst drie Leo Minoriden bevat. Van fotografische waarnemingen zijn maar vier *high precision* Leo Minoridenbanen bekend [7] [10], dus het huidige sample is een welkome aanvulling op dit aantal. In tabel 6 staan de gemiddelde banen uit de fotografische en de videowaarnemingen, samen met een overall gemiddelde. Ook [9] bevat nog twee video Leo Minoriden, maar deze banen werden niet gebruikt bij het bepalen van de gemiddelden.

Merk op dat de videoradianten een iets kleinere declinatie hebben dan de fotografische radianten, hetgeen natuurlijk ook doorwerkt in de gemiddelden voor q, i and ω (omega). Ook zijn de banen sterk geconcentreerd rond zonslengte 209, hetgeen suggereert dat de zwerm wel eens

Source	n	q	a	e	i	ω	Ω	Vg	RAg	DEg
foto DMS+IAU	4	0.641	33.6	0.985	124.5	106.3	209.9	61.8	160.7	37.2
video DMS	3	0.607	58.1	0.989	125.9	102.4	208.3	62.0	159.5	36.2
average	7	0.627	41.0	0.987	125.1	104.6	209.2	61.9	160.2	36.8

flink nauwer kan zijn dan algemeen wordt aangenomen

Tabel 6. Baanelementen en radianten (J2000.0) van de bekende *high precision* Leo Minoriden.

([3] vindt 6 dagen lang een ZHR boven ZHRmax/e). Ten slotte laat het complete Leo Minoriden sample voor het eerst een bepaling toe van de radiantbeweging en radiantspreiding.

Conclusie

Eens te meer geven videowaarnemingen een belangrijke aanvulling op bestaande visuele en fotografische waarnemingen. We zien dit bij zowel de grote zwermen (Orioniden) als de kleine zwermen (Epsilon Geminiden en Leo Minoriden).

Referenties

- Marc de Lignie en Klaas Jobse, Double-Station Video Observations of the 1993 Orionids, *Radiant* 17 (1995) 99-106
- Marc de Lignie en Klaas Jobse, Double-Station Video Observations of the 1995 Quadrantids, WGN 24 (1996) 20-26
- [3] Peter Jenniskens, Meteor Stream Activity I: The Annual Streams, *Astron. Astrophys.* **287** (1994) 990-1013
- [4] IMO Monograph No 2: Handbook for Visual Meteor Observers, Juergen Renstel, Rainer Arlt and Alastair McBeath Eds., 1995

De waarden zijn:

$$\begin{split} RA_g &= 159^\circ.95 + (+0^\circ.96 \pm 0^\circ.15) \; x \; (\lambda \text{ - } 209^\circ.00) \\ \text{and var RA=}0.5 \\ DE_g &= \;\; 36^\circ.78 + (+0^\circ.08 \pm 0^\circ.24) \; x \; (\lambda^\circ \text{ - } 209.00) \\ \text{and varDE=}0.7 \end{split}$$

- [5] G.W. Kronk, Meteor Showers: a Descriptive Catalogue, Enslow, Hillside, New Jersey 1988
- [6] J. Jones, Radar observations of the Orionid meteor shower, *Mon. Not. R. astr. Soc.* 204 (1983) 765-776
- [7] Hans Betlem, Summer and autumn 1995: a fine harvest of double station meteors, *Radiant* 18 (1996) 75-77
- P. Jenniskens, H. Betlem, M. de Lignie en M. Langbroek, The Detection of a Dust Trail in the Orbit of an Earth-Threatening Long-Period Comet, *Astrophys. J.* 479 (1997) 441-447
- Yoshihiko Shigeno, Hiroyuki Shioi en Shoichi Tanaka, Double-Station TV Meteor Observations, WGN 24 (1996) 37-42 + 161-170, 25 (1997) 161-165
- [10] B. Lindblad, Physics and Orbits of Meteoroids, in The Evolution of Small Bodies of the Solar System, Soc. Italiana di Fisica, Bologna, Italy, 1987