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Abstract

This paper presents a framework for integrated plan recog-
nition and automated planning, to produce cooperative be-
haviour for one agent to help another agent. By observing an
“initiator” agent performing a task, the plan recogniser hy-
pothesises how a “supporter” agent could help the initiator
by proposing a set of subgoals to be achieved. A lightweight
negotiation process mediates between the two agents to pro-
duce a mutually agreeable set of goals for the supporter. The
goals are passed to a planner which builds an appropriate se-
quence of actions for satisfying these goals. The approach is
demonstrated in a series of experimental scenarios.

Introduction
The ability of an agent to help another agent is a desirable at-
tribute when designing artificial entities, such as robots, that
must operate together with humans in real-world environ-
ments. Indeed, the idea of building assistive agents that must
work alongside humans in a cooperative fashion has been
a long-standing goal of artificial intelligence and robotics
since its earliest days. However, the task of deciding when
and how to help another agent can be difficult. Effective
helping involves recognising the goals or intentions of other
agents, reasoning about opportunities to contribute to ex-
isting plans, generating appropriate actions, and potentially
communicating such information to the agents involved.

While the computational cost of reasoning about coopera-
tive action in its most general form may be entirely impracti-
cal, constrained forms of reasoning do exist that can be used
as the basis for helpful behaviour. For instance, consider the
task of two agents setting a table for dinner, where the first
agent sets the plates and glasses, and the second agent sets
the knives, forks, and spoons. The subgoals pursued by each
agent are disjoint but together they contribute to a shared
overall goal. Moreover, each action is performed by a sin-
gle agent, with no action requiring the joint coordination of
multiple agents (e.g., two agents lifting a table). Finally, the
order of subgoal achievement is independent of the actions
of the other agent (e.g., it makes no difference if the knives
are put onto the table before the forks or vice versa).

In this paper we consider scenarios of the above form,
where one agent, called the supporter, must decide how to
act to help a second agent, called the initiator, achieve its
goals. While the supporter is considered to be an artificial

agent, no assumption is made about the initiator which may
be a human or artificial agent. We consider goals which can
be decomposed as in the above example, and plans that can
be executed as independent sequences of actions for each
agent. While such conditions may appear to be restrictive,
they nevertheless characterise a useful collection of problem
scenarios whose solution is far from trivial: the goals of the
initiator must be identified and suitable subgoals must be
appropriately selected for the supporter to achieve.

Our approach combines plan recognition with automated
planning, together with a lightweight negotiation process for
ensuring that the supporter’s goals are acceptable to both
agents. As a result, we focus on the high-level (symbolic)
reasoning involved in this task. In particular, the supporter
tries to infer the high-level plans of the initiator and identify
possible subgoals that contribute to the initiator’s plan. Pairs
consisting of the initiator’s hypothesised high-level goal and
a candidate subgoal are then proposed to the initiator as
possible helpful subgoals that the supporter could accom-
plish. Once negotiation is complete, the agreed upon goals
are passed to a planner which constructs a sequence of ac-
tions for the supporter to execute to help the initiator.

Related Work
The idea of an agent helping another agent has sometimes
been viewed as a primary property of a plan, or as im-
plicit in multiagent actions. For example, (Pollack 1990;
Lochbaum, Grosz, and Sidner 1990) explicitly reason about
coordination and helping in the form of shared plans and
mutual beliefs. However, establishing agreement of plans
or beliefs has typically relied on shared knowledge which
has often been a difficulty in such theories. Similarly, repre-
sentations for multiagent joint actions (i.e., actions that re-
quire two or more agents for their execution) (Brafman and
Domshlak 2008; Boutilier and Brafman 2001) could be used
to model situations where one agent helps another agent, but
such representations do not typically address the case where
help is not a consequence of such joint actions.

There has also been significant work on multiagent plan-
ning (e.g., (Brafman and Domshlak 2008; Brenner 2003;
Crosby, Jonsson, and Rovatsos 2014)) and for the decen-
tralised solving of constraint optimisation problems (Modi
et al. 2003). However, such work has not directly addressed
the problem of when one agent can help another agent, rather
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Figure 1: Components and interactions in the framework.

than simply working on a separate goal or plan.
The role of natural language dialogue as an effective

means of coordinating actions between a robot and a hu-
man has also been studied (Fong, Thorpe, and Baur 2003).
Combining natural language with goal inference has also
been explored for the task of selecting individual actions to
contribute to an ongoing task, or for correcting the action
of a human already engaged in the task (Foster et al. 2008;
Giuliani et al. 2010). Other approaches have considered the
use of multiagent plan recognition (Sukthankar and Sycara
2008) and intention recognition (Han, Pereira, and Santos
2001; Han, Lenaerts, and Pereira 2015) in cooperative be-
haviour. Finally, the use of hybrid architectures has been a
common approach for integrating diverse components with
different representational requirements, particularly when a
robot must cooperate with a human partner (Hawes et al.
2007; Kennedy et al. 2007; Zender et al. 2007).

A Framework for Collaborative Behaviour
We now present our framework by describing the plan
recognition, negotiation, and planning components used in
our approach. The general framework is shown in Figure 1.

Plan Recognition with ELEXIR
Plan recognition attempts to identify the goal being pur-
sued by an agent, the subgoals of the plan being exe-
cuted, and those that are anticipated to still be part of the
plan. (This contrasts work in activity and goal recogni-
tion (Liao, Fox, and Kautz 2005; Hoogs and Perera 2008;
Blaylock and Allen 2003).) Plan recognition systems at-
tempt to produce some form of hierarchical structure that
captures the current state of subgoals the observed agent
is pursuing (Bui, Venkatesh, and West 2002; Avrahami-
Zilberbrand and Kaminka 2005). E.g., given observations of
an agent picking and placing forks followed by knives, these
systems could identify not only the goal as setting the table,
but also that the agent was in the process of setting knives.

For our work, we require a plan recognition algorithm
that is able to produce the complete unexecuted frontier of
the hierarchical plan being followed (Kautz 1991; Blaylock
and Allen 2006; Geib 2009). Such an algorithm not only
produces the subgoal stack of the observed plan but also
identifies future subgoals that are yet to be executed. E.g.,
given the observations of pick and place actions for forks
and knives, such a system would identify that the goal was
to set the table, the current subgoal was to set the knives, and
in the future, the agent would also set spoons and plates.

We use ELEXIR (Geib 2009) to perform the kind of plan

recognition described above. ELEXIR is a probabilistic plan
recogniser that views the problem as an instance of parsing
a probabilistic grammar. As such, ELEXIR takes as input a
formal probabilistic grammar that specifies the set of plans
to be recognised and a set of observed actions. It computes
a set of acceptable hierarchical plan structures representing
the plans hypothesised as being executed by the agent. It
then outputs each hypothesis as the ordered sets of subgoals
that must still be executed for the goal to be achieved, and a
probability measuring the likelihood of that hypothesis.

ELEXIR also supports the possibility that an agent can
be pursuing multiple plans at the same time as well, as the
partially ordered plans. Therefore, we will represent a hy-
pothesis produced by ELEXIR as a tuple of the form:

(P, [{Gi : {sg1, ..., sgn}∗}+]),
where P is the probability of the hypothesis, Gi represents
the goal of the hypothesised plan, and sgj the remaining sets
of possibly partially ordered subgoals that must be achieved
for Gi to be completed. The sgj within one set of braces are
treated as unordered with respect to each other, but all of the
sgj must be achieved before those in the next set.

E.g., we might capture three hypothesis from the table set-
ting example (after observing just the setting of forks) as:

(0.95,[{SetTable:{SetKnives, SetSpoons, SetPlates}}]),
(0.045,[{CleanForks:{WashForks}{PutAwayForks}}),
(0.005,[{CountingForks:{}}]).

The first tuple captures the hypothesis that with 95% prob-
ability the agent is following a plan to set the table and still
has the subgoals to set the knives, spoons, and plates. These
subgoals are unordered with respect to each other in the plan.
The second tuple captures the hypothesis that with 4.5%
probability the agent is cleaning the forks and still needs to
wash them and put them away, in that order. The third tuple
captures the hypothesis that with only 0.5% probability the
agent is simply counting the forks and is done with its plan.
Thus, each hypothesis provides us with the probability of the
plans being executed, the goals they are intended to achieve,
and the subgoals in the plan that have yet to be achieved.

Subgoal Identification and Negotiation
In order to negotiate collaboration, a supporter must first
confirm that it understands the goal of the initiator’s high-
level plan. Otherwise, the supporter might waste time sug-
gesting subgoals that do not contribute to the initiator’s goal.
In the case where a single plan is being pursued by the ini-
tiator, using the hypothesis structures built by ELEXIR pro-
vides a straightforward way to rank the goals of the plan be-
ing pursued. This makes it relatively easy for the supporter
to verify the initiator’s plan by a simple query to the initiator.

When the initiator’s goal is identified, the supporter can
then attempt to identify a subgoal that shares the identified
goal. For instance, when considering the hypotheses for the
setting of forks, the first hypothesis is the most likely:

(0.95, [{SetTable:{SetKnives, SetSpoons, SetPlates}}]).
If the initiator confirms that SetTable is in fact the goal of
its plan, the supporter could then suggest that it take on the



subgoals of SetKnives, SetSpoons, SetPlates, or some com-
bination thereof. As we will see below, a maximally helpful
agent could volunteer to do all three of these subgoals. How-
ever, the negotiation could also result in a number of other
outcomes whereby the supporter agrees to do some subset
of these subgoals, or none of them at all. In effect, the ne-
gotiation process is then a directed search: first to identify
the goal of the initiator’s plan, and then to find appropriate
subgoals from the set of known unaccomplished subgoals of
the plan the supporter has inferred for the goal.

Automated Planning with PKS
Once negotiation has produced a set of subgoals for help-
ing the initiator, the supporter must generate a plan to exe-
cute. To do so, we use PKS (Planning with Knowledge and
Sensing) (Petrick and Bacchus 2002; 2004), a knowledge-
level (Newell 1982) planner that builds plans using incom-
plete information and sensing (Petrick and Bacchus 2002;
2004). PKS operates by reasoning about how its knowledge
state changes due to action, based on a generalisation of
STRIPS (Fikes and Nilsson 1971). In PKS, the planner’s
knowledge state is represented by a set of databases, each of
which models a particular type of knowledge and has a for-
mal interpretation in a modal logic of knowledge. Actions
can modify the databases, which has the effect of updating
the planner’s knowledge. To ensure efficient inference, PKS
restricts the type of knowledge it can represent.

Like other planners, a PKS planning domain consists of
an initial state, a set of actions, and a set of goals. The initial
state is simply the initial knowledge state (databases). Goals
specify the knowledge conditions that the planner is trying
to achieve, formed from the supporter’s subgoals through
a syntactic compilation process which transforms them into
PKS goals. Actions in PKS are modelled by their knowledge
preconditions and effects on the planner’s databases. Plans
are constructed using a forward-chaining heuristic search.

Figure 2 shows two PKS actions taken from our exper-
imental domains (see below). A precondition K(φ) queries
PKS’s knowledge to determine if the planner knows φ,
while an effect that references Kf updates PKS’s database
of known world facts. Using these actions, a plan such as:

grasp(left,drawer,fork1),
putdown(left,table_pos1,fork1),
grasp(left,drawer,fork2),
putdown(left,table_pos2,fork2)

might be built in support of a goal to put forks on the table.

Integration and Operation
Both ELEXIR and PKS are implemented as C++ libraries
and expose user interfaces for integration through ZeroC’s
Internet Communication Engine (ICE), a modern distributed
computing platform (Henning 2004). Operation proceeds
with the supporter observing actions performed by the ini-
tiator. These observations are fed into ELEXIR, which pro-
duces a structure of hypotheses about the initiator’s high-
level plan, as goal/subgoal pairs. This structure is then used
in the negotiation process between the supporter and ini-
tiator. Negotiation applies directed search to the hypothe-

action grasp(?h : hand, ?l : loc, ?o : obj)
preconds: K(graspable(?o, ?h)) &

K(objectAt(?o, ?l)) &
K(holding(?h) = nil)

effects: add(Kf, holding(?h) = ?o),
del(Kf, objectAt(?o, ?l))

action putdown(?h : hand, ?l : loc, ?o : obj)
preconds: K(holding(?h) = ?o)
effects: add(Kf, objectAt(?o, ?l)),

add(Kf, holding(?h) = nil)

Figure 2: PKS actions from the experimental domain.

sis structure to produce a set of goal for the planner. Finally,
PKS uses these goals to attempt to build the supporter’s plan.

Experiments
We demonstrate our framework by considering three scenar-
ios that lead to different subgoals. The underlying domains
remain the same: an initiator has begun setting a table for a
dinner for two people. Each place is to be set with a knife,
fork, spoon, plate, and glass. The aim of the supporter is to
help the initiator complete its goal. The observations pro-
vided to ELEXIR are also the same: one by one the initiator
picks up two forks and two knives, and places them in their
appropriate positions on the table. However, the scenarios
differ in the way ELEXIR interprets these observations.

Correctness depends on two factors: first, whether the
plan recogniser interprets the observation correctly and, sec-
ond, whether the planner produces the correct plans. We note
that the computational requirements for these scenarios are
minimal: both plan recognition and planning take minimal
time, and the cost of the negotiation process, excluding the
time taken for the negotiation exchange, is negligible.

Scenario 1: In this scenario, the plan recogniser correctly
identifies the initiator’s goal, as well as the subgoals that the
supporter could fulfil. The first hypothesis is:
(0.8, [{SetTable:{SetPlates,SetSpoons,SetGlasses}}]).

In this scenario, there is no need for a directed search of the
hypothesis structure, and negotiation takes the form:
Supporter Initiator

-------------------------------------------------
1. Are you setting the table? Yes.
2. Do you want me to set the plates? Yes.
3. Do you want me to set the spoons? Yes.
4. Do you want me to set the glasses? Yes.

Once completed, the SetPlates, SetSpoons, and SetGlasses
subgoals are syntactically translated into PKS goals and a
plan is generated. E.g., the partial plan for SetPlates may be:

grasp(left,sidetable,plate1),
grasp(right,sidetable,plate2),
putdown(left,table_pos1,plate1),
putdown(right,table_pos2,plate2).

(The plans for the other two subgoals will be similar.)

Scenario 2: This scenario extends the first scenario, and is
designed to test the use of directed search to correctly iden-
tify the initiator’s goal from the hypothesis structure sup-
plied by ELEXIR. The search focuses on high-level goal



identification during negotiation, with the initiator rejecting
the hypothesis initially presented by the supporter.

In the first iteration of the negotiation process, the sup-
porter presents the initiator with the hypothesis:

(0.8, [{CleanForks:{WashForks}{PutAwayForks}}]).
This hypothesis incorrectly identifies the initiator’s goal to
be that of cleaning the forks. After the initiator rejects this
hypothesis, the supporter moves to the next most probable
hypothesis, thus iteratively negotiating until the correct goal
is found. (The number of negotiation iterations can be re-
duced by additional reasoning about the hypothesis.) For
brevity, we assume the next hypothesis correctly identifies
the initiator’s goal so further negotiation is unnecessary. The
correct hypothesis is then the same as in Scenario 1:
(0.8, [{SetTable:{SetPlates,SetSpoons,SetGlasses}}]).

Negotiation would then take the following form:
Supporter Initiator

-------------------------------------------------
1. Are you cleaning the forks? No.
2. Are you setting the table? Yes.
3. Do you want me to set the plates? Yes.
4. Do you want me to set the spoons? Yes.
5. Do you want me to set the glasses? Yes.

The remainder of the process then follows the one given in
Scenario 1: subgoals are translated for use by PKS; the plan-
ner builds a plan for setting the plates, spoons, and glasses;
and the supporter performs the plan. This scenario shows
that by considering all hypotheses, the framework can re-
cover from an incorrect identification of the goal through
negotiation and directed search of the hypothesis structure.

Scenario 3: The final scenario is designed to test the frame-
work when dealing with the situation in which the goal of
the plan pursued by the initiator is correctly identified, but
one (or more) of the hypothesised subgoals is not, and is
thus rejected by the initiator. If this happens, the supporter,
using directed search of the hypothesis structure, will itera-
tively negotiate with the initiator until it finds an acceptable
subgoal. If none of the remaining subgoals in the hypothesis
are acceptable to the initiator, it is possible for the supporter
to run out of subgoals. If this occurs, the supporter can then
revert back to the hypothesis structure to find another hy-
pothesis with the same goal, and continue negotiation to see
if its (other) subgoals are acceptable. This case is not exam-
ined here for space reasons; instead, this scenario considers
the same hypothesis as in the first scenario:
(0.8, [{SetTable:{SetPlates,SetSpoons,SetGlasses}}]).

In this case, negotiation takes the form:
Supporter Initiator

-------------------------------------------------
1. Are you setting the table? Yes.
2. Do you want me to set the plates? No.
3. Do you want me to set the spoons? Yes.
4. Do you want me to set the glasses? Yes.

The remainder of this process differs from the other scenar-
ios since the rejected subgoal is not passed to the planner. In-
stead, only a plan for setting the spoons and glasses is gener-
ated. Thus, by utilising the hypothesis structure, the initiator

is not limited to accepting all subgoals in a hypothesis: the
framework is flexible enough for the initiator to decide how,
and in which way, he wants to be helped, without elaborate
reasoning or goal decomposition on the part of the supporter.

Discussion
While the experimental scenarios demonstrate that our ap-
proach successfully generates cooperative plans, the frame-
work also relies on certain assumptions concerning the
knowledge of the initiator and supporter. For instance, the
plan inferred by the supporter is never shared with the ini-
tiator in this process, and this approach does not generate
plans with joint actions, where multiple agents must coordi-
nate to perform the same task (e.g., lifting a table). Instead,
we only generate independent action sequences for the sup-
porter once there is agreement as to the supporter’s subgoals.

Another representational issue to be addressed involves
aligning the domains used by the plan recogniser and the
planner, which may differ. However, since the plan recog-
niser and planner must exist within the same reasoning
framework, the onus is currently placed on the domain de-
signer to ensure that the domains interoperate correctly. One
area of future work is to explore common representations, or
to automatically induce one representation from the other.

Finally, in this early stage of our work we have focused
primarily on plan recognition, rather than planning. How-
ever, in future work we plan to extend our approach to more
complex domains, such as those involving incomplete infor-
mation and uncertainty, where we can use PKS’s ability to
use sensing actions, including communicative actions (Pet-
rick and Foster 2013), to gather information or take into ac-
count the involvement of other agents. For instance, if the
supporter agreed to place wine glasses on the table, it may
first need to query the initiator as to which people want wine
(and which type of wine) to ensure the table is properly
set. One way to do this is by constructing a contingent plan
with information-gathering communicative actions, in order
to obtain the necessary information from the initiator.

Conclusion
This paper presented a framework that combined plan recog-
nition and planning to produce cooperative behaviour be-
tween a pair of agents. Successful integration of the reason-
ing components centred around appropriate subgoal identi-
fication by the plan recogniser, combined with a lightweight
negotiation process which generated goals to be used by
the planner for constructing appropriate plans. A set of ex-
periments demonstrated the potential of our approach, and
helped motivate our ongoing and future work to extend these
techniques to more complex real-world situations.
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