VRIJE UNIVERSITEIT

Solving
Constraint Satisfaction Problems
with
Evolutionary Algorithms

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus
prof.dr. T. Sminia,
in het openbaar te verdedigen
ten overstaan van de promotiecommissie
van de faculteit der Exacte Wetenschappen
op donderdag 24 november 2005 om 13.45 uur
in de aula van de universiteit,
De Boelelaan 1105

door
Bartolomeus Gerardus Wilhelmus Craenen

geboren te Den Helder

promotor: prof.dr. A.E. Eiben

To family, friends, and books ...

Samenvatting

Het oplossen van Constraint Satisfaction problemen door elutionaire algorit-
men.

Constraint Satisfactioproblemen worden gedeféerd door variabelen, domeinwaar-
den die aan deze variabelen toegekend kunnen worden erkivggger Constraint$
die bepalen welke domeinwaarden aan welke variabelen keegemogen worden.
Een oplossing voor egbonstraint Satisfactioprobleem bestaat uit de toekenning van
domeinwaarden aan alle variabelen op zodanige wijze dat gae de beperkingen
geschonden wordt.

Evolutionaire algoritmen zijn modellen die, met behulp énrekenkracht van een
computer, problemen oplossen aan de hand van de Darwdhistevolutieleer. Evolu-
tionaire algoritmen behoren tot de klasse van non-detéstigsohe algoritmen en on-
twikkelen een oplossing van een probleem uit een willekebepaalde iniéle popu-
latie van partle oplossingen, gebruikmakende van natuurlijke selectieansbepaal-
de reproductie en mutatie. Het is onze stelling dat evahati@ algoritmen voor alle
probleemtypen een alternatieve oplossingsmethode zigor ¥en aantal probleem-
typen is dit al aangetoond. In dit proefschrift wordt gespef dat ook vooConstraint
Satisfactiorproblemen het geval is. We doen dit door een evolutionaorélge te on-
twerpen dat in effectiviteit en effiéntie superieur is aan alle tot dusver gepubliceerde
evolutionaire algoritmen. De effectiviteit is gedeéinrd als het oplossend vermogen
van het algoritme terwijl de effiéntie de benodigde hoeveelheid werk tot het vin-
den van een oplossing tot uitdrukking brengt. Door de dffeeit en de efficéntie te
vergelijken met alternatieve oplossingsmethoden kan stetling gestaafd worden.

Uit onze bevindingen blijkt dat qua effectiviteit ons eviabmaire algoritme vergelijk-
baar is met alternatieve oplossingsmethoden, maar hefffigi&tie minder goede re-
sultaten laat zien. Gezien deze resultaten luidt de eiradgsie van het proefschrift dan
ook dat wanneer alleen de effectiviteit van evolutionaigeatmen van belang is, evo-
lutionaire algoritmen een vergelijkbare alternatieveospingsmethode kunnen zijn.
Als echter ook de effiéintie van evolutionaire algoritmen in ogenschouw genomen
wordt, is dit in mindere mate het geval. Behalve pure prestamnen echter ook an-
dere eigenschappen bij de beoordeling een rol spelen. Zewijutionaire algoritmen
eenvoudig te ontwerpen en kunnen ze met weinig aanpassoajeop andere prob-
leemtypen toegepast worden. Daar staat tegenover dattievaliie algoritmen, als
onderdeel van de klasse van non-deterministische algemitmiet compleet zijn en als

zodanig het vinden van een oplossing niet kunnen garanderen

In dit proefschrift wordt een aantal bijdragen gepreseutelée de directe toepassing
binnen dit onderzoek ontstijgen en de wetenschap in hetredge en het experimenteel
onderzoek naar evolutionaire algoritmen in het bijzongr,goede komen. Dit zijn:

e een methodologie voor het construeren van een test-s€lastraint Satisfac-
tion problemen, specifiek voor het experimenteel onderling elgkgn van de
prestaties van non-deterministische algoritmen in hetralgen en evolutionaire
algoritmen in het bijzonder;

e een overzicht van acht eerder gepubliceerde algoritmen weiboplossen van
Constraint Satisfactioproblemen, inclusief volledige beschrijving van de ge-
bruikte technieken alsmede experimentele resulaten vebbépalen van hun
relatieve prestaties;

e een methodologie voor het vergelijken en rangordenen vpnedtaties van evo-
lutionaire algoritmen, gebruikmakende van eerder gedsfide meetmethoden,
relatieve vergelijkingen in het effectiviteit-effémtie vlak en statistische analyse;

e de notie van hememetic overkiteffect, en een methodologie voor het vast-
stellen varmemetic overkilln evolutionary algoritmen door de-evolutie van het
algoritme;

e een software platform voor experimenteel onderzoek naaugwnaire algorit-
men waarin de algoritmen uit het overzicht op een uniformeieraijn gémple-
menteerd.

e de vaststelling van het best presterende evolutionareitagovoor het oplossen
van Constraint Satisfactioproblemen.

Table of Contents

Samenvatting

1 Introduction
1.1 Constraint Satisfaction Problems
1.2 Evolutionary Algorithms
1.3 Motivationand MainGoal
1.4 Technical Objectives of the Thesis
1.5 OverviewoftheThesis

2 The Theory of CSPs
2.1 ADefinitionoftheCSP
22 BinaryCSPs
2.3 RepresentingCSPs

2.3.1 Matrix Representation

2.3.2 Graph Representations
24 CSPComplexity e
2.5 Generating Random Binary Constraint Satisfactionlérob

3 Classical Algorithms
3.1 TheChronological Backtracking Algorithm.
3.2 TheForward Checking with Conflict-Directed Backjumping Alom
3.3 Performance Measures for Classical Algorithms

4 Generating the Test-set
4.1 Test-setParameters
4.2 Constructing a Test-setin4dsteps

3

5

42.1
4.2.2
4.2.3
4.2.4

ILS and EAs

Step 1. Parameter Adjustment
Step2: Sample Sizing L.
Step 3: Formula Correction
Step 4: CSP Instance Selection

5.1 theRSAandtheHCAWR

51.1
51.2

TheRandom Search Algorithm.
TheHill Climber with Restart Algorithm

5.2 Evolutionary Algorithms o

521

Thelntuitive Evolutionary Algorithm

Performance Measures and Experimentation

6.1 Performance Measures i

6.1.1
6.1.2
6.1.3
6.1.4
6.1.5

6.2 Experimentation

6.2.1
6.2.2
6.2.3

6.3 Comparison

SuccessRate
Average Number of Evaluations to Solution
ConflictChecks
Unique Individuals Checked

Mean Best Fitness and Mean Champion Error

Results of thRandom Search Algorithm.
Results of thelill Climber with Restart Algorithm.
Results of thintuitive Evolutionary Algorithm.

EAs for Solving the CSP
7.1 Heuristic Evolutionary Algorithm

7.1.1 HeuristicEACharacteristics and Parameter Setup

7.1.2 HeuristicEAExperimental Results

7.2 Arc Evolutionary Algorithm
7.2.1 ArcEACharacteristics and Parameter Setup
7.2.2 ArcEAExperimentalResults

7.3 Co-evolutionary Algorithm.
7.3.1 CoeEACharacteristics and Parameter Setup

7.3.2 CoeEAExperimentalResults

4

7.4 Eliminate-Split-Propagate Evolutionary Algorithm
7.4.1 ESPEACharacteristics and Parameter Setup
7.4.2 ESPEAExperimental Results

7.5 Host-Parasite Evolutionary Algorithm
7.5.1 HPEACharacteristics and Parameter Setup
7.5.2 HPEAExperimentalResults

7.6 Local Search Evolutionary Algorithm.

7.7 Micro-genetic Iterative Descent Evolutionary Algorithm

7.7.2 MIDEAExperimental Results
7.8 Stepwise Adaptation of Weights Evolutionary Algorithm.
7.8.1 SAWEACharacteristics and Parameter Setup
7.8.2 SAWEAExperimental Results

8 Comparison of the EAs in the Inventory
8.1 Comparison on Effectivity and Efficiency Measures
8.2 Comparison on the Effectivity-Efficiency Plane
8.3 Ranking of the EAsinthelnventory
8.4 Preliminary Conclusion L

9 De-Evolutionarising EAs, Memetic Overkill, and the Superor EA
9.1 De-evolutionarisingEAs
9.2 MemeticOverkill
9.3 Adjustments to make the SuperiorEA

10 Conclusions
10.1 Evolutionary and Classical Algorithms
10.2 Main Contributions of the Thesis
10.3 FutureResearch L o

Bibliography

Index

List of Figures

11

2.1
2.2
2.3

4.1

4.2
4.3

51

6.1
6.2
6.3
6.4
6.5
6.6

7.1
7.2
7.3
7.4
7.5
7.6

A solution of the8-queens problem. 3
Construction of the,,—4 ., constraint. 13

The constraint graph of tlequeens problem. 18
The conflict graph of thé-queens problem. 18

Transition lines for combinations efandm found using Smith’s for-
mula. 34

Overview of the parameter setup of the test-set with 10 andm = 10. 35

Scatter plot of/, andz, excluding(p;,pz) = (0.1,0.9). 41

Biased ranking multiplier plotted againstndomvalues forbias €

{1.0(linear), 1.2,1.5,1.7,2}. 55
UIC of theRandom Search Algorithm 64
MBF andMCE of theRandom Search Algorithm. 64
UIC of theHill Climber with Restart Algorithm. 67
MBF andMCE of the Hill Climber with Restart Algorithm. 67
UIC of thelntuitive Evolutionary Algorithm. 70
MBF andMCE of theIntuitive Evolutionary Algorithm. 70
UICoftheHEAL e 81
MBF andMCE of theHEAL 81
UIC oftheHEA2 e 83
MBF andMCEoftheHEA2 83
UICoftheHEA3 85
MBF andMCEoftheHEAS. 85

7.7 UICoftheArcEAL 93

7.8 MBFandMCEoftheArcEAL 93
7.9 UICoftheArcEA2 95
7.10 MBF andMCE of theArcEA2 95
7.11 UIC of theArcEA3 e 97
7.12 MBF andMCE of theArcEA3 97
7.13 UIC oftheCoeEA 102
7.14 MBF andMCE of theCoeEA 102
7.15 UIC of theESPEA 108
7.16 MBF andMCE of theESPEA 108
7.17 UIC of theHPEA 114
7.18 MBF andMCE oftheHPEA 114
7.19 UICoftheLSEA 120
7.20 MBF andMCE of theLSEA 120
7.21 UIC of theMIDEA. 126
7.22 MBF andMCE of theMIDEA. 126
7.23 UICOf theSAWEA 132
7.24 MBF andMCE of theSAWEA 132
8.1 Algorithm distribution on th&RAESplane. 138
8.2 Algorithm distribution on th&RCCplane. 138

List of Tables

1.1 Problems having an objective function, constraintbath. 1
2.1 Constraint matrix of thé-queens problem. 16
2.2 Conflict matrix of constraint,, ,, of the4-queens problem. 16
2.3 BCSPgeneratormodels. 21
4.1 2/ calculated using the actual densipf)values. 39
4.2 Statistical analysis af andz/, for the samples 0f000 CSP instances

inthe mushyregion. 40
4.3 Statistical analysis af andz” for the samples in the mushy region. . 42

4.4 Mean and standard deviation of the sub-samples in thaymegion. 43

5.1 Characteristics of tHatuitive Evolutionary Algorithm 56
6.1 Parametersof tiRSA 61
6.2 SRoftheRandom Search Algorithm 63
6.3 AESoftheRandom Search Algorithm 63
6.4 CCoftheRandom Search Algorithm. 63
6.5 Parametersof tHdCAWR 65
6.6 SRof theHill Climber with Restart Algorithm. 66
6.7 AESof theHill Climber with Restart Algorithm. 66
6.8 CC of theHill Climber with Restart Algorithm 66
6.9 ParametersofthEA. 68
6.10 SRof thelntuitive Evolutionary Algorithm 69
6.11 AESof thelntuitive Evolutionary Algorithm. 69
6.12 CC of thelntuitive Evolutionary Algorithm 69

6.13 Comparison of thRSA theHCAWRand thelEA in the mushy region. 72

9

6.14 Two sample-Tests of thtHCAWRand thelEA. 73

7.1 Characteristics of thHdEAL 78
7.2 ParametersofthdEAL L. 78
7.3 Characteristicsof thdEA2 78
7.4 ParametersofthdEA2 L. 78
7.5 Characteristics of thHdEA3 L. 79
7.6 ParametersofthdEA3 o 79
7.7 SRoftheHEAL o 80
7.8 AESoftheHEAL 80
7.9 CCoftheHEAL 80
7.10 SRoftheHEAZ2 82
7.11 AESoftheHEA2 82
7.12 CCoftheHEA2 82
7.13 SRoftheHEA3 e 84
7.14 AESoftheHEA3 84
7.15 CCoftheHEA3 84
7.16 Characteristicsof thercEAL, 88
7.17 Parametersof tlrcEALo 88
7.18 Characteristics of thercEA2 oL 89
7.19 Parametersof tlecEA2 L o 89
7.20 Characteristicsof thercEA3 90
7.21 Parametersof tlrcEA3o 90
7.22 SRofthe ArcEAL 92
7.23 AESoftheArcEAL 92
7.24 CCoftheArcEAL e 92
7.25 SRofthe ArcEA2 94
7.26 AESofthe ArcEA2 94
7.27 CCoftheArcEA2 94
7.28 SRofthe ArcEA3 e 96
7.29 AESofthe ArcEA3 96
7.30 CCofthe ArcEA3 96
7.31 Characteristicsoftht@oeEA 99
7.32 Parametersof tt@oeEA 99

7.33 SRoftheCoeEA 101

7.34 AESoftheCoeEA 101
7.35 CCoftheCoeEA 101
7.36 Characteristics of tHeSSPEA. 105
7.37 Parameters of ttESPEA.o 105
7.38 SRoftheESPEA 107
7.39 AESoftheESPEA 107
7.40 CCoftheESPEA. e 107
7.41 Characteristics of tHédPEA L. 111
7.42 Parametersof théPEA 111
7.43 SRoftheHPEA 113
7.44 AESoftheHPEA e 113
7.45 CCoftheHPEA e 113
7.46 Characteristics of tHeSEA 117
7.47 Parametersof thHeSEA 117
7.48 SRoftheLSEA 119
7.49 AESoftheLSEA e 119
750 CCoftheLSEA e 119
7.51 Characteristics of ttdIDEA., 123
7.52 Parameters of tRdIDEA. 123
7.53 SRof theMIDEA. e 125
7.54 AESoftheMIDEA. 125
7.55 CCoftheMIDEA. 125
7.56 Characteristics of tHeAWEA 129
7.57 Parameters of tfRAWEA o 129
7.58 SRof theSAWEA e 131
7.59 AESoftheSAWEA 131
7.60 CCoftheSAWEA 131
8.1 Comparisontabl8R 134
8.2 Comparisontabl&ES L 135
8.3 Comparisontabl€C.. 136
8.4 o-values for the algorithms on tt&®RAESplane. 140
8.5 o-values for the algorithms on tl®RCCplane. 140

11

8.6 Order of the algorithms on tIl®RAESplane. 141

8.7 Order of the algorithms on tt8®RCCplace. 141
8.8 t-testresults for the ranking of the EAs in the inventory. 144
9.1 Comparison of theSEA LSEAsel, and_.SEAsel-pop. 151
9.2 Comparison of thelEA3 HEA3-sel, andHEA3sel-pop. 152
9.3 Comparison of thESPEAESPEAsel, andESPEAsel-pop. 153
9.4 Comparison of th8 AWEASAWEAsel, andSAWEAsel-pop. 153
9.5 Performance of algorithms that incorporate weak, gtronno heuris-
ticsandevolution. L 156

9.6 Comparison of thEAWEA r1 SAWEA risel, andSAWEA risel-pop. 158
9.7 Comparison of th8AWEA r2 SAWEA r2sel, andSAWEA r2sel-pop. 159
9.8 Comparison of thEAWEA r3SAWEA r3sel, andSAWEA r3sel-pop. 159
9.9 Comparison of thEAWEA r4 SAWEA rdsel, andSAWEA r4sel-pop. 159
9.10 t-test results for the rankinGAWEA r1 SAWEA r2 SAWEA r3 and

SAWEATDONSR 160
9.11 t-test results for the rankinGAWEA r1 SAWEA r2 SAWEA r3 and

SAWEATrONAES e 161
9.12 t-test results for the rankinAWEA r1 SAWEA r2 SAWEA r3 and

SAWEATDONCC. oo e 162

9.13 Comparison of thE8Rof the LSEA ESPEAHEA3 and theSAWEA r2 163

10.1 Comparison of thEAWEA r2theHCAWR the CBA, and the=CCDBA 167

12

List of Algorithms

Algorithm 2.1: The modeF random binary CSP generator 22
Algorithm 3.1: TheChronological Backtracking Algorithm 26
Algorithm 3.2: TheForward Checking with Conflict-Directed Backjumping
Algorithm 28

Algorithm 5.1: Thelterated Local Search Algorithm. 45
Algorithm 5.2: TheRandom Search Algorithm. 48
Algorithm 5.3: TheHill Climber with Restart Algorithm 50
Algorithm 5.4: Thelntuitive Evolutionary Algorithm 52

13

14

Chapter 1

Introduction

Every day life is filled with limitations; constraints. A dayill has only24 hours and
it is impossible to be in more than one place at the same tirapin@ with constraints
is therefore something that is inherent to coping with ligelf. As a result, it should
come as no surprise that solving constrained problems irsbage or another is also
an inherent part of science. Whatever the origin of the camgs, be it physical, social
or or otherwise, a constrained problem is only solved if afistraints are satisfied.

Constrained problems can be divided into two classes: @nst Optimising Prob-
lems (COPs) and constraint satisfaction problems (CSFP$) The difference between
these classes is that in the first an optimal solution théfee all constraints should
be found, while in the second class any solution will do.

These two classes are closely related. The difference batite two is that, in ad-
dition to constraints, constrained optimisation problesis define an optimisation
function, often expressing the cost of getting to a solutidrhen all solutions of the
constraint satisfaction problem can be found, they can tered using this function.
By selecting the optimal solution, the constrained optingproblem is also solved. It
is for this reason that the constraint satisfaction prolikoften seen as a sub-class of
the constrained optimising problem.

In Table 1.1, the relationship between problems having gactilee function, con-
straints or both is shown ([32]). FOP stands for Functioni®@isation Problem. Prob-
lems without an objective function and constraints remaidefined in this context.

Constraints
Yes No

Objective Yes COP FOP
Function No CSP undefined

Table 1.1: Problems having an objective function, constsaior both.

In Evolutionary Computation, constrained problems weudigd right from the begin-
ning. This came about by the realisation that evolution hasva itself to be a robust
optimiser in constrained environments. If evolution in toenplex environment of na-
ture can find an optimal solution, surely an evolutionaryp&atgm should be able to do
the same in a computational environment of lesser compladitfortunately, the early
results were disappointing. The operators used at thatwiere blind to constraints
and overall efficiency was low. This sparked an interest sigleéng specific genetic
operators, representations and fithess functions thatarasfidnconstrained problems.

1.1 Constraint Satisfaction Problems

A commonly used example of a constraint satisfaction probethe N-queens prob-
lem. TheN-queens problem features a chess-boa¥ of N squares usingy queens
as pieces. As in chess, queens threaten other pieces hatigovertically and diago-
nally. The objective of the game is to plaak queens on the board so that they do not
threaten each other. Figure 1.1 shows a solution o8iheeens problem.

The N-queens problem is a constraint satisfaction problem ksec#urestricts the
placement of the queens to non-threatened squares anduibss of the problem
are equally valid. The constraints defined by fiequeens problem are:

1. No two queens may be placed in the same row;
2. No two queens may be placed in the same column;

3. No two queens may be placed diagonally from each other.

Some definitions of thé/-queens problem include a fourth constraint that two queens
may not occupy the same square on the game-board even thosighimplied by the
constraints given above.

Many constraint satisfaction problems have been identifrethct the number of dif-
ferent constraint satisfaction problems that can be stlidianfinite. A general mathe-
matical description will be formulated to describe all coait satisfaction problems.
A study of all possible constraint satisfaction problem®ugside the scope of this
thesis however. We restrict the current investigation devis:

1. Only binary constraint satisfaction problems are studied in this e bi-
nary constraint satisfaction problem defines constramsralationship between
only two entities. TheV-queens problem is an example of a binary constraint
satisfaction problem. All constraints define a relatiopdietween two queens.
Theoretically, all non-binary constraint satisfactionlpliems can be transformed
into a binary constraint satisfaction problem [83].

2. Only constraint satisfaction problems with equal doredor each variable are
studied in this thesis. Again, th€-queens problem is a good example of such a

2

Figure 1.1: A solution of th&-queens problem.

problem. The game-board of thé-queens problem is a square. All queens have
the same number of locations they can be placed at. Thedosatiemselves are
also discrete: there are only a finite number of possilsliti& constraint satis-
faction problem with both restrictions is called a consttaiatisfaction problem
with discrete uniform domain sizesAny constraint satisfaction problem with
non-uniform domain sizes can be transformed to a uniformalorsize con-
straint satisfaction problem and a continuous constraitfaction problem can
be approximated by a discrete constraint satisfactionlpnoftheoretically with
infinite accuracy.

3. Onlyrandomly generatedonstraint satisfaction problems will be studied in this
thesis. We only use randomly generated constraint sdiisfgaroblems because
of two reasons:

(a) Athorough investigation on the constraint satisfacfitoblem necessitates
the use of a large number of problem instances with varyirigspacific
complexity parameters. The best way to obtain these prolistances is
to use a constraint satisfaction problem generator.

(b) An accurate investigation on the constraint satisfecproblem necessi-
tates the use of problem instances with the least amounasfdsiunknown
properties or irregularities. The best way to obtain thesblpm instances
is to generate them randomly.

Alternatives to using constraint satisfaction problemtanses generated ran-

domly by a problem generator is using problem instancestamied by hand
or problem instances derived from constraint satisfagti@iblems occurring in

3

the real world. Both alternatives however are either notabép of providing
enough problem instances or are not able to provide prohbistarices without
bias, irregularities or unknown properties.

1.2 Evolutionary Algorithms

Evolutionary algorithms are the subject of a research fialted Evolutionary Com-
putation. Although the term was invented as recently as 18®0field has a history
that spans over four decades [38]. In the 1950s and '60s, nima@pendent efforts
were devoted to simulate evolution on a computer but only émenues of investiga-
tion have survived as main disciplines in the field: evoludity strategies, evolutionary
programming, genetic algorithms, and genetic programniiihg differences between
these four disciplines are characterised by the typicdiegifon areas, data represen-
tations, the methods for producing random variance in thpufadion, and the method
employed for selecting parents and offspring.

Evolutionary algorithms incorporate the metaphor of Dafam evolution. In "The
Origin of Species by Means of Natural Selection or the Prediem of Favoured Races
in the Struggle for Life” [21], C. Darwin described evoluti@s a two-step process of
random variation and selection. A population of individui exposed to an environ-
ment and responds with a collection of behaviours. Somesskthhehaviours are better
suited to meet the demands of the environment than othéestisa then tends to elim-
inate those individuals that demonstrate inappropriat@ieurs. The survivors then
reproduce and their traits are passed on to their offspReglication of the individuals
is never without error, nor can the individual’s traits remizee of random mutations.
Introduction of random variation in turn leads to noveltsaiOver successive genera-
tions, increasingly more appropriate behaviours accutawiéhin evolving ancestral
families [62, 5].

Evolutionary algorithms capture evolution by modellinglgorithmically and simulat-
ing it on a computer. The most elementary of models takes alatpn of individuals
and randomly varies all individuals according to rules esged in what are called vari-
ation operators. Then, based on an objective function, is@dhdual in the population
is assigned a value expressing how close it is to some solafithe problem that is
investigated. This value is called the fithess of the indigid Based on these fitness
values a selection of individuals is used in the next iteratif the problem.

Evolutionary algorithms offer a powerful alternative to & variety of traditional
problem-solving techniques. Because the relationshiwdsst the algorithm and the
problem is captured in the objective (fitness) functionythsually do not require any
in-depth mathematical understanding of the problem itsEkfolutionary algorithms
are also capable of efficiently handling problems with maayiables or that have
frequently and unpredictably moving objectives. Evoln&oy algorithms, because of
their stochasticity, are very robust and can cope well witisy inaccurate and incom-
plete data. Furthermore, they are relatively easy to higeidith other techniques and
adapt well to changing priorities in the problem by simplyarging the weights in

4

the objective function. Because evolutionary algorithmesraodular, the evolutionary
mechanism is separate from the problem representationctrebe transferred from
problem to problem and are therefore relatively cheap anckdo implement. The

open design of an evolutionary algorithm allows for the ipawation of arbitrary con-

straints, simultaneous multiple objectives and the mixahgontinuous and discrete
parameters.

1.3 Motivation and Main Goal

The main motivation for writing this thesis is that we bebebhat for many problems,
evolutionary computation can provide a viable alternativether algorithms. Other
studies have already shown that this is true for a numberaifiems. In this thesis we
investigate if this is the case for the constraint satigfagbroblems.

We intend to test the viability of using evolutionary comgidn to solve the constraint
satisfaction problem by constructing the best possibléutiemary algorithm for solv-
ing this problem and comparing its performance to alteveatchniques. This then is
the main goal of the thesis.

We choose the constraint satisfaction problem becausmgdhese kinds of problems
is especially challenging for evolutionary algorithms €ldonstraint satisfaction prob-
lem is hard to solve for evolutionary algorithms becauséefabsence of an objective
function to optimise. Moreover, some very effective andcédfit classical algorithms
have been found for solving them, so there is strong conietit

In the last two decades much effort was put in solving coigtsatisfaction problems
with evolutionary algorithms. This resulted in a large n@mbf evolutionary algo-
rithms, some of which are closely related to each other. \témihto base the design of
the superior evolutionary algorithm on these earlier idticed algorithms, by includ-
ing an inventory of these algorithms and the techniques tiseyand comparing and
analysing their performance.

Unfortunately, the evolutionary algorithms were run orfatiént constraint satisfac-
tion problem test-sets, making comparison between theficutf Moreover, some of
these test-sets were found to be deficient in some way. Gamsgatisfaction prob-
lem research also made important progress during thisghexgpecially in generating
random constraint satisfaction problem test-sets andnmptexity measures. A thor-
ough investigation into the viability of evolutionary algthms for solving constraint
satisfaction problems has to take this into account as well.

1.4 Technical Objectives of the Thesis

From the main goal the following technical objectives fag thesis can be derived:

1. Construct and analyse a test-set of constraint safisfeptoblem instances for
evolutionary algorithms to solve. The test-set, the geoemmodels and the

5

classical algorithms used to generate the test-set willddenavailable for other
researchers.

2. Provide a comprehensive inventory of evolutionary atgors for solving con-
straint satisfaction problems. To reduce the influence fiérdint programming
languages and programming styles, all algorithms in theritary will be re-
implemented in a single library. This library will also be desavailable.

3. Compare the performance of the evolutionary algorithmike inventory to each
other. The comparison will be based on a number of both teadit and new
measures.

4. ldentify which algorithms have the best performance alhtify which tech-
nigues in these algorithms cause better performance. igterthe balance be-
tween the techniques used and the evolutionary compongititsse algorithms.

5. Increase the performance of an existing evolutionargrétlyn by designing a
variant which uses the lessons learned and compare themperfoe of this al-
gorithm with the performance of classical algorithms. Thdant is included in
the library as well.

The most important contribution to the scientific commumitgde by this thesis will
be the superior evolutionary algorithm for solving the deaist satisfaction problem.
The superior performance of this algorithm is based on al goétification using a
comprehensive experimental methodology that is also efevad the community. This
methodology spans the whole experimental track; using dynemmstructed test-set of
constraint satisfaction problem instances, traditiomal aew performance measures
that are explicitly defined, an inventory identifying effiee algorithms over less ef-
fective ones, and different methods for comparing the perémce of evolutionary
algorithms. Some parts of the methodology are specific #rctnstraint satisfaction
problem but with some alteration can be generalised for uge nelated problems
like the satisfiability problem or graph colouring. Othertsahowever, are useful for
the scientific community in general; especially the new@anance measures and the
methodology for analysing the performance of the algorghm

1.5 Overview of the Thesis

The thesis in structured in the following way.

In the next chapter, the constraint satisfaction probletefsied. These definitions will
be used throughout the rest of the thesis. Using this defimi number of complex-
ity measures are defined. The chapter is concluded with aiptsn of six random
constraint satisfaction problem instance generators.

In Chapter 3 two classical algorithms for solving the coaistr satisfaction problem
will be described. These algorithms will be used to caleuthe complexity of gener-
ated constraint satisfaction problem instances. Theyalgt be used for a comparison
of the performance of the evolutionary algorithms laterrothie thesis.

6

In Chapter 4 the constraint satisfaction problem testssgénerated. The method used
for generating the test-set is described in detail. Thedesis used throughout the rest
of the thesis.

Chapter 5 introduces evolutionary algorithms as a parteitdrated local-search class
of algorithms. Two other iterated local-search algorittaresalso introduced: the Ran-
dom Search algorithm and the Hill Climber algorithm. A caicahevolutionary algo-
rithm for solving the constraint satisfaction problem is@duced as well: thintuitive
Evolutionary Algorithm

Chapter 6 introduces the performance measures used to oothpaalgorithms in the
thesis. The measures are then used to compare the perf@iofahe three algorithms
introduced in Chapter 5. The comparison is based on expetimssing the test-set
generated in Chapter 4.

An inventory of eight evolutionary algorithms for solvinget constraint satisfaction
problem is presented in Chapter 7. Each section of the invgmtescribes a single
algorithm and includes parameter and characteristicedaiolr easy reference. The
results of experiments are shown and discussed as well. Xgegiments use the test-
set generated in Chapter 4.

Chapter 8 contains a comparison of the results of the expatsnfrom Chapter 7.
The results are compared separately for each performanasumg relative in the
effectivity-efficiency plane, and ranked by statisticabbsis. The comparison and
ranking are used as a basis for drawing some preliminarylgsions.

Chapter 9 discusses the relative importance of the evolatjocomponents of natural
selection and population of the four best performing athons selected through com-
parison in Chapter 8. Three of the four algorithms are founguffer from memetic
overkill. The remaining algorithm is adjusted to createghperior evolutionary algo-
rithm. It too is checked to see if it suffers from memetic duier

The conclusion chapter of the thesis summarises the work bfotie thesis and iden-
tifies the main contributions it makes to the scientific comitys The performance of
the superior evolutionary algorithm is compared to theqrenince of the alternative
techniques introduced in Chapters 3 and 5. This rounds effrthin goal of the thesis
and checks whether our belief in evolutionary algorithmdesribed in the motivation
for writing the thesis is correct.

Chapter 2

The Theory of Constraint
Satisfaction Problems

In this chapter a formal definition of the constraint satitifan problem is given. This
definition is used throughout the rest of the thesis. Alsooifiiced are complexity
measures of the constraint satisfaction problem as wellas wf representing the
constraint satisfaction problem in both matrices and gsapimally, different methods
for generating binary constraint satisfaction problentanses randomly are described.
Throughout the chapter, thé-queens problem is used as an example.

2.1 A Definition of the Constraint Satisfaction Problem

The introduction chapter of this thesis introduced the traigt satisfaction problem in-

formally as a set of variables and a set of constraints betwesse variables. Variables
are only assigned values from their respective domains aotbigion of the constraint

satisfaction problem was defined as the assignment of a t@lalk variables in such

a way that no constraint would be violated. This sectionatestthis definition more

formally, based for a large part on the definition given in Bafig's standard work:

“Foundations of Constraint Satisfaction”[83].

Each variable in a constraint satisfaction problem has aailoof possible values, and
can only be assigned a value from that domain.

Definition 2.1 (Domain of a variable)

The domain of a variable is a set of all possible values that can be assigned to that

variable. Ifx is a variable, the,, is used to denote its domain.

Assigning a value to a variable is called labelling a vagafllhe number of variables
and the size of the domains of these variables are paranoétides constraint satisfac-
tion problem.

Definition 2.2 (Label)
Given a variable: with domainD,.. A label(x, v) is then a variable-value pair repre-
senting the assignment ofc D, tox.

Labelling a number of variables with values simultaneouslgone by a compound
label.

Definition 2.3 (Compound label)

Given variablesr; with domainsD,,,, withi = 1,...,n, a compound label L =
({(x1,v1) ... (zn,vy)) s then the simultaneous assignment of values D, to a
(possibly empty) finite set of variables. A compound labstniets labelling of a vari-
able to only a single valu€x;,v;) € L A (x;,v;) € L = vj = v;.

The parenthesis notation for compound labels is used tmdissh them from a set of
labels, note also that the labels in a compound label arespairated by commas.

To denote how many variables are labelled by a compound Vabéhtroduce thek-
compound label.

Definition 2.4 (k-compound label)
A k-compound labelis a compound label which assigns values: teariables simul-
taneouslyk is called thearity of the compound label.

Definition 2.5 (Variable set of a compound label)
The variable set of a compound labelis the set of all variables that appear in the
compound label.

S((.’I,‘l,’l)1><.’E2,'l)2>...<fﬁk71)k>) = {l.lvxZa s 7xk}

A compound label with smaller arity can be projected on a coumpl label with larger
arity if all labels in the smaller compound label are partraf larger compound label.

Definition 2.6 (Projection of a compound label)
Given compound labdl and variable se$, theprojection of L to S is L | S where
(z,v) € L'| Sifandonly ifz € S and{x,v) € L.

Constraints define relationships between sets of variabl@<SP.

Definition 2.7 (Constraint, variable set of a constraint)
Given compound label& andL’, a constraint is a set of compound labels where
VL,L' €c:S, =S,VLec:S, CS,VL €c:S, CSandvL €c:S.=Sy.

The size of the variable set over which a constraint is defisexlled thearity of a
constraint.

Definition 2.8 (Arity of a constraint)
Given a constraint, with variable setS, the arity of ¢ is equal to the size of:
arity(c) = |S.|.

10

If avariable is in the variable set of a constraint, it is daibe relevant to the constraint.

Definition 2.9 (Relevant variable to a constraint)
Given a constraint, defined over variable s&t, then variablev is relevant to c if
x € S..

A constraint is either violated or satisfied by a compounellatfiolating a constraint
is the opposite ofatisfyinga constraint. Although it is unnecessary to defifeates

explicitly, the term is commonly used in literature and ttedinition is added for con-
venience.

Definition 2.10 (Satisfies)
Given constraint, defined over variable sétand compound labdl with variable set
Sp. If S. = Sy, thenL satisfiesc if and only if L is an element of:

satisfie§L,c) < L € ¢

If S. G Sy, thenL satisfiesc if and only if the projection ol to S.. is an element o:

satisfie§L,c) < L | S. € C

Definition 2.11 (Violates)
A compound labeL violates constraint: when it does not satisfy it:

violateg L, ¢) < satisfie$L, c)

A compound label that violates a constraint is calleaflict

The maximum number of compound labels that a constrad@n hold is the product
of the domain sizes of all variablesc S.., wheresS.. is the variable set of.

If a constraint contains the maximum number of compoundlsalbas called non-
restrictive as all possible compound labels satisfy the constraint.olstraint that
does not contain the maximum number of compound labels isezprently called a
restrictiveconstraint.

Using the definitions above the constraint satisfactiotlem can be defined.

Definition 2.12 (Constraint Satisfaction Problem (CSP))
A constraint satisfaction problem is a triple: (X, D, C'), where:

X = afinite set olvariables {z1,x, ..., 7 x|},

11

D = a function which maps every variable ¥ to a finite set of objects of arbitrary
type:

D : X — finite set of objects (of any type)

Take D,, as the set of object mapped framby D. These objects are called
possiblevaluesof x and the seD,, thedomain of x;

C = a finite (possible empty) set of restrictigenstraints on an arbitrary subset of
variables inX . In other words(' is a set of sets of compound labels.

We will use CSP to abbreviate constraint satisfaction gnabl

We assume that two constraints in a CSP can not share the samble set: if
(X,D,C)isaCSPtheNci,co € C: S, # Se,.

The arity of a constraint satisfaction problem is the maxmarity of its constraints.

Definition 2.13 (Arity of a CSP)
Given constraint satisfaction problef, D, C), thearity of that constraint satisfac-
tion problem is defined as:

arity((X, D, C)) = maxX arity(c)|c € C}

A solution of a constraint satisfaction problem is-@ompound label, where = | X,
that satisfies all constraints of the constraint satiséagpiroblem.

Definition 2.14 (Solution of a CSP)
Given a constraint satisfaction probléd, D, C') and a compound labél with S, C
X thenL is asolution of (X, D, C'y whenVc € C : satisfie§L, c).

To illustrate the definitions above, we return to tigueens example from the intro-
duction chapter. The set of variables of #igueens problem is the set of the queens:
X = {x1,x9,...,28}. As there can not be more than one queen per column on the
chessboard, each of the eight variables can take one ofghtreivs as its value. Like

in chess, the rows are labelled from 1 to 8. The domains ofaalhbles are then de-
finedas:D,, = D,, =...= D,, ={1,2,3,4,5,6,7,8}. The8-queens problem has
then two overall restrictions:

r1: No two queens may be placed in the same rofi;j : i # j = x; # x; with
1<4,j <8 and

r2: No two queens may be placed diagonally from each othey: : i # j = |i—j| #
|z; — ;| again withl <4, j < 8.

12

Figure 2.1: Construction of thg,,—, ., constraint.

It is possible to combine these two restrictions into a @mginstraint. This constraint
has the same variable set as thgueens problem itself. However, constructing this
constraint would involve solving th&queens problem, as by definition it would con-
tain all solutions of the problem. Instead we construct tanss per variable-pair,
e.g., variables, andzs. We denote this constraint as, ... We start the construction

by placing a queen on row. Figure 2.1 shows this board. The black queens show the
possible positions that quees may be placed on.

We define constraint,,—4 ., as:

Coy=d,25 = {(<$4,4><$5, 1>)’ (<x4,4><x5, 2>),
(<$L'4,4><335,6>), (<$4’4><$57 7>)7 (<LL‘474><$5,8>)}.

The remaining combinations of the, .. constraint can be constructed by placing the
(white) queen at the othé&rpositions and merging the resultant compound label sets
with the set already given. Repeating this for&l(8 — 1) = 56 variable combinations

of the8-queens CSP fully defines the problem without actually sgjvi.

2.2 Binary Constraint Satisfaction Problems

Although the variable se$. of constraintc can hold an arbitrary large number of
variables, research in the constraint satisfaction prohlsually limits the number of
variables inS, to two. A constraint with a variable set of only two variabiegalled a
binary constraint.

13

Definition 2.15 (Binary Constraint)
A constraintc is a binary constraint if and only if the set of variables df ttonstraint
S only contains two variable$S.| = 2.

A constraint satisfaction problem made up entirely out ofiby constraints has an arity
of two and is called a binary constraint satisfaction proble

Definition 2.16 (Binary CSP)
A binary constraint satisfaction problem is a CSP with only binary constraints.

We will use BCSP to abbreviate binary constraint satisfectiroblem.

Although the restriction to binary constraints appearsd@lserious limitation to the
constraint satisfaction problem, E. Tsang showed thatye@&P can be transformed
to an equivalent BCSP [83]. Two methods of translating aaust satisfaction prob-
lems of arbitrary arity to binary constraints satisfactmoblems have been proposed:
the dual graph translation by R. Dechter and J. Pearl ([23}) the hidden variable
translation by R. Dechter([22]).

In the dual graph translation, the constraints of the oagpmoblem become variables
in the new representation. These variables represent tigtramts and are referred
to asc-variables The domain of each c-variable is the set of compound lalfettseo
original constraint. There is a binary constraint betweem ¢-variables if and only if
the original constraints share some variables. The binamgtcaints prohibit pairs of
tuples in which shared variables receive different values.

In the hidden variable translation, the set of variabletuthes all of the variables of
the original problem (their domains remain unchanged) plagw set of “hidden” or
h-variables For each constraint in the original problem we add an hatdei The
domains of these variables consists of a unique identifieevyery tuple in the con-
straint they represent. The new representation contailysbamary constraints. They
are constructed as follows. For every h-variable we impdsaary constraint between
it and each of the variables in the set of variables of themaigonstraint. Say thaty,
(the hidden variable) and; (the original variable) are thus constrained. Every value
of z;, corresponds to a tuple of values for the variables in the fSeamables of the
original constraint and thus defines a unique valuerforHence the binary constraint
betweenr;, andz; consists of a unique value far for every value ofz;,. Note that the
constraint is not functional in the other direction as a edlor 2; may be compatible
with many values ifz;.

F. Bacchus and P. van Beek discussed both methods in [6]eThey posed the hy-
pothesis that the choice of the transformation method hasgga impact on the perfor-
mance of the algorithm used to solve the resulting BCSPsalg&cwe can translate
the CSP into the BCSP, from now on we will continue the disicusgiith BCSPs,
although most of the discussion can also be generalisedRs.CS

14

2.3 Representing Constraint Satisfaction Problems

Sometimes it is useful to represent the constraint satisfaproblem in a way other
than through the mathematical definitions above. Therevamentays of doing this.
The first uses matrices, the second graphs. Both ways ofsemiirg the constraint
satisfaction problem have their advantages and disadyesita

2.3.1 Matrix Representation

The matrix representation of a constraint satisfactiomlgm uses two types of matri-
ces to define the problem. The first is called the constraimtixend it is used to show
which variables are in the variable set of each constraint.

Definition 2.17 (Constraint Matrix)
A constraint matrix R of a binary constraint satisfaction problénd, D, C)) is a|C'| x
| X | matrix, such that:

1 ifzels,,
R(c,x) = :
(e,) {0 otherwise

withc € C andxz € X.

The second matrix type required by the matrix represemtégicalled the conflict ma-
trix. Each constraint in the constraint satisfaction peabhas its own conflict matrix.
The conflict matrix shows the compound labels in the consttiay a zero in the ma-
trix. The compound labels not in the constraint are showi &ibne in the matrix.
As a matrix is a two dimensional representation, it is onlgcduor binary constraints,
although ternary constraints can be depicted using a cube.

Definition 2.18 (Conflict Matrix)

Given a binary constraint satisfaction probléh, D, C'). A conflict matrix MZ>Y of
a constraint € C for variablesr € X andy € X is then 4 D,| x |D,| matrix, such
that:

0 if satisfieg({(z,dp), (y,dq)),),
1 otherwise.

MZY(p,q) = {

withz € Sc,y € Se,c€ C,1 <p<|D,|,1<q<|Dy|,d, € Dy, andd, € D, and
the domains numbered.

For an illustration of both matrices we turn again to fiequeens problem. In Table
2.1 the constraint matrix for thé-queens problem is represented, in 2.2 the conflict
matrix for constraint,,, .., is shown.

15

C\X X1 X2 X3 X4

c1 1 1 0 0
Ca 1 0 1 0
C3 1 0 0 1
Cyq 0 1 1 0
cs 0 1 0 1
Ce 0 0 1 1

Table 2.1: Constraint matrix of thequeens problem.

%
9

A WNBE

COoORR|ER
ORRPE|IN
PR PRO| W
PR OoOO| N

Table 2.2: Conflict matrix of constraint, ., of the4-queens problem.

The combination of the constraint matrix for a constraitis$éaction problem and the
conflict matrices for the constraints in the constraint imdtily defines the constraint
satisfaction problem. However, this representation caleigthy for large number of
constraints. Because of its close relationship with armay®mputer languages how-
ever, it is commonly used in computer implementations ofdbiestraint satisfaction
problem.

2.3.2 Graph Representations

Two graph representations exist for CSPs . The first grapteseptation is called the
constraint graph. It is used primarily to show which coristsaare relevant to the
variables of the CSP. In the graph, conflict matrices are tsstiow more restricted
constraints from lesser ones. Because conflict matricedefieed for binary CSPs
only, the constraint graph including the conflict matricas only be used for binary
CSP as well. Without the conflict matrices, the constraiapgrcan be defined for CSP
with arbitrary arity by redefining the edges of the graph.

Definition 2.19 (Constraint Graph)

A constraint Graph of a binary constraint satisfaction problétd, D, C') is a graph

G x,p,cy = (V, E) whereV is a set of vertices antl is a set of edges that are defined
as follows: Every variable € X is mapped to a vertex, € V and each constraint
c € C forwhichz € S.,y € S., andz,y € X is mapped to an edge such that
(vz,vy) € Eifand only if ((z,d), (y,d')) > ¢ for somed € D, andd’ € D,.. Every
edge is assigned its constraint’s conflict matvl¥-¥.

16

The second graph representation of a BCSP is called thecayriph. 1t is commonly

used to show which variables are more restrictive than stheach variable is repre-
sented as a set of vertices, one for each domain value of tleblea A vertex of one

variable is connected by an edge to a vertex of another \lariahen the compound
label representing these labels is not in the constraievaal to the two variables.
Because of the large number of vertices in the graph, theicogfaph is less informa-
tive about which constraints are relevant to which varialthe BCSP. Usually, the
constraint graph and the conflict graph are used in conjometith each other.

Definition 2.20 (Conflict Graph)

A conflict graph of a binary constraint satisfaction probléd, D, C') is a hypergraph
[Lix.p.cy = (V. E) whereV is a set of vertices anHi is a set of edges that are defined
as follows: Every valud; € D, from every variable’sa € X) domain is mapped to
a vertexv; € V and each compound label that occurs in a constraintC' is mapped
to an edge such théb,,v,) € E withz,y € X only if bothz € S, andy € S. and

(<$,’Ux>, <yvvy>> S cC.

For an illustration of the constraint graph and the conflietpdy we return to thed-
queens problem. Figure 2.2 shows the constraint graph of-theeens problem and
Figure 2.3 the conflict graph.

2.4 Constraint Satisfaction Problem Complexity

The difficulty of solving a problem class is expressed by th@glexity of the best al-
gorithm that was found for solving the problem-class. Thepglexity of an algorithm
is the cost of using the algorithm to solve one of the problei® cost is measured
as the time units (computational complexity), the storggges (space complexity), or
whatever units are relevant, needed by the algorithm toesible problem. The study
of the amount of computational effort that is needed in otdgyerform certain kinds
of computation is the study of computational complexityeTdomplexity of an algo-
rithm is measured by expressing the running time of an algoras a function of some
measure of the amount of data that is needed to describedhkpr to the algorithm.

The general rule is that if the running time of an algorithnaismost a polynomial
function of the amount of data then the problenedsy otherwise it ishard. Showing
that a problem is easy is done by providing an algorithm tbkees it in at most poly-
nomial time. Showing that a problem is hard is not as easy laasito be proved that
no algorithm can be found that will solve it in polynomial #mThe fact that a com-
putational problem is hard does not mean that every instahitee problem has to be
hard. The problem is hard because no algorithm can be defdsadhich a guarantee
can be given that it will solvall instances in polynomial time.

A problem can be phrased to bedacision problenor anoptimisation problem A
decision problem only provides a yes or no answer to a prolbite a optimisation
problem provides the optimal answer to a problem. Any og#tion problem can be

17

1100
|\/|X1X2— 1110 1010
T 0111 MX2X4_ 0101
_ N =
AN 0011 - 1010
N //
AN
\

/
/
/
X, X, — 0101
M™% = 1010 4 . 3

7

7/

/

I
1100
Mx31x4: 1110
0111
0011

Figure 2.2: The constraint graph of theqjueens problem.

—Z 7 NN s

2 =S N\NN
G
7 —— ~\\

Figure 2.3: The conflict graph of thiequeens problem.

18

solved by repeatedly solving a decision problem. We carktbina decision prob-
lem as asking if a given word (the input string) does or dodsbetong to a certain
language The language constitutes all words for which the decisiablem would
give a positive answer. A decision problem belongs to thesdtawhen there is an
algorithm A such that for every instandeof the problem, algorithnd will produce a
solution in polynomial time as a function of the size of imste/. A decision problem
Q belongs to NP if there is an algorithrh that: associates with each word of the lan-
guage of a certificateB(I) such that when the paid, B(I)) are input to algorithm
A, it recognises thaf belongs toQ); if I does not belong t6) then there is nd3(7)
that will causeA to recognisd as a member of); operates in polynomial time. More
briefly, P is the class of problems were it is easy to find a solution wiKieis the
class of problems for which it is easy to check the correctioés solution. Note that
P c NP and that if decision probler® € P, membership in the languaggcan be
verified with an empty certificate. The question of whethenatrP? = N P is perhaps
the most important open question in the study of computatioomplexity.

Given decision problem& and@’, @’ is quickly reducible ta if whenever we are
given an instancd’ of ' it can be converted to an instanéeof Q) in polynomial
time, in such a way that bothand I’ have the same answer. A decision problem is
NP-completef it belongs to NP and every problem in NP is quickly redueiltd it.
In 1971, S. Cook described NP-complete using the theofudhg Machineg16]. A
full description of the proof and of a Turing Machine is begidhe scope of this thesis.
It suffices to say that the Turing Machine is used ahackingor verifying machine
and that a Turing Machine used as such is callesba-deterministianachine. The
name NP is derived from that name, standing rion-deterministic polynomialln
1990, F. Rosset al., proved that the constraint satisfaction problem is in N tuat
all NP-complete problems are quickly reducible to it [77].

As explained above, the complexity of a CSP is directly propoal to the size of the

problem. The number of variables and the size of the domditihese variables define
the size of the CSP and can be seen as complexity measuremstance of the CSP.
Two other complexity measures of a CSP instance can be definedeing an average
over yet another measure.

The first of these other complexity measures is called thsitjeof a CSP.

Definition 2.21 (Density)
The density of a binary constraint satisfaction problem is the ratiorsen the maxi-

mum number of constrain(é’; ‘) and the actual number of constraifity:

(2.1)

The second complexity measure is the average of one minuatibeof the maximum

number of compound labels to actual compound labels of aktraints in the BCSP.
The parameter is called ttaverage tightnessf the BCSPtightnessitself is defined

for a single constraint.

19

Definition 2.22 (Tightness)

The tightness of a constraint: over variables:,y € X of a binary constraint sat-
isfaction problem X, D, C') is one minus the ratio between the maximum number of
compound labels possiblEY,, x D,|) and the actual number of compound lab&lg{

]

= 1 _—_——
p2(c) 1D, x D,|

Definition 2.23 (Average tightness)
Theaverage tightnes®f a constraint satisfaction proble{i, D, C') is the sum of the
tightness over all constraints divided by the number of trangs:

]TQ _ ZCGC p2(C>
|

Unlike the number of variables and the domain sizes, theityeanrsd average tightness
measures do not relate to the input size of the CSP. Theyili@stplexity measures

though as CSPs with more constraints (higher density) srdespound labels in their
constraints (higher average tightness) are still hardsolee.

The four measures of the CSP allow for the definition of theapeater vector of a
CSP, which is used as a short-hand description of a CSP. Wstngarameter vector
of a CSP assumes that the domain sizes of the variables asartiee A CSP with these
domain sizes is said to have uniform domain sizes, or isctalleniform CSP.

Definition 2.24 (Parameter Vector of a BCSP)

The parameter vector of a BCSP (X, D, C) is a quadruplén, m,py,pz) of four
parameters: the number of variabtes= | X|, the domain size of each variable =
|Dy,| = |Dy,| =+ = |Dy, |, the density, and the average tightness.

2.5 Generating Random Binary Constraint
Satisfaction Problems

Finding more efficient algorithms to solve CSPs has been g@oitant driving force
behind the study of CSPs. The lack of a good set of problenarniesss to study was
soon identified as a major obstacle in the research of CSRaslialso soon realised
that an algorithm that solved particular problem instarefésiently may have disap-
pointing performance on other problem instances. This éd<d research on how
to produce sets of randomly created CSPs that qualify assemalle representation
of the whole class. These sets can then be used to empiriealyarch CSP solving
algorithms.

Several models for randomly creating CSPs have been dekigitge last two decades
[69, 2, 56]. These models all use a similar parameter veig®the parameter vector of

20

Model Constraints Conflicts

Model A probability model probability model

Model B ratio model ratio model
Model C probability model ratio model
Model D ratio model probability model

Table 2.3: BCSP generator models.

a BCSP to control the size and complexity of the problems gfemerate. By analysing
the performance of the algorithms on instances created diffiérent parameter set-
tings, the behaviour of the algorithms throughout the patamspace can be studied.
A set of CSP instances for empirically testing the perforoeawf an algorithm is called
atest-set

Generating CSP instances involves choosing which consirgd remove compound
labels from and which compound labels to remove from thesstcaints. There are
two methods for making these choices: th#o method and th@robability method.

In the ratio methogb, - (%;) constraints are uniform randomly chosen and p; - m?
compound labels are added to them. The ratio method is soieettalled theini-
form method, as constraints and compound labels are chosenmaniémdomly. The
probability method considers every constraint and remaeespound labels from it
with probabilityp,. The compound labels that are removed are chosen with pitebab
ity 1 — ps. Both methods share a method for choosing constraints anettzooh for
removing compound labels from the chosen constraints. Mhlses for a total of four
combinations of methods. In [69] and [56] these four comtiims are designated as
modelsA, B, C, and D. How the different methods combine into these models is
shown in Table 2.3.

In[2], D. Achlioptaset al. showed that when the number of variable}df a randomly
generated CSP is large, almost all instances created bylsnédB, C, andD become
unsolvable. The reason for this are the existendawfed variablesA flawed variable
is a variable for which all values in its domain violate a valiet constraint.

Definition 2.25 (Flawed variable)
Given a binary constraint satisfaction probléX, D, C), a variabler € X is flawed
if and only if:

Jee C:3z,y€ S.:Vd e D, : §d' € D, : satisfie§((x,d){y,d')), c)

As the number of variables in CSP instances generated bylmdd® D increases
and the complexity parameters remain the same, the prdajgaiiintroducing a flawed
variable increases, thereby also increasing the probabifligenerating an unsolvable
CSP instances. This as a result of this model’s two step apprfor choosing con-
straints and compound labels. To overcome this unwantedvimir, D. Achlioptas

21

et al. introduced a new model, called modg| for generating CSPs. Modél gen-
erates CSP instances by choosing both constraints and compabels at the same
time.

Definition 2.26 (Model E)

The graphCty is a randomm-partite graph withn nodes in each part. It is constructed
by uniformly, independently and with repetitions selegtib— p.) () m?* edges out of
the (;)m? possible ones.

Instead of using two complexity parameters; density) @nd average tightnesgs,
model £/ uses a single complexity parametey. The parameter vector of modél

is therefore defined a&, m,p.). Although parametep. could be said to control
the average tightness of the generated CSP instances, at Bgnal to the average
tightness parameter of modelsto D (pz) as the compound labels are added with
repetition. There is a chance that some compound labeldgvdidded more than once.
The actual average tightness of a modlejenerated CSP instance will therefore be
lower or at most equal tp,.

An effect of generating CSP instances using a mddejenerator is that even with
small values op. (e.g.p. < 0.05), all possible constraints will be restrictive. E. Mac-
Intyre et al. proposed a correction on modglin [56] by generating CSP instances in
two phases: first generate a CSP instance using a niodeherator and then choose
1—(p1 (g)) constraints uniform randomly and make them non-resteciigain. This
method of generating CSP instances has become known as & mgeéeaerator. The
parameter vector of a modglgenerator ign, m, p1, p.). Note that the measured aver-
age tightness of a CSP instance generator by a miodehnerator is still lower than the
p. value used to generate the instance, as not only are compaioeld chosen with
repetition but some are added again when some constramtsi@le non-restrictive
again in the second phase of the generation process. Toagere€CSP instance by a
model F’ generator with a specific average tightness value theraefressitates exper-
imental tweaking of the. parameter.

The pseudo-code for a modEICSP generator is given in algorithm 2.1. The operator
round in lines 22 and 34 is used to indicate that the result of thegoiis rounded to
the next natural number. The operatandom is used to indicate that a uniform ran-
dom choice was made from the elements of a setriac@.dom € X (line 24 'selects’

a variable from the set of variables uniform randomly.

Algorithm 2.1: The model F' random binary CSP generator
1 funct model F'(n, m,p1,pe) =

2 X:=0; D:=0; C:=0;
3 forz:1<z<ndo

4 X =XU{z}

5 D, = 0;

6 ford,:1<d, <mdo
7 D, :=D,U{d,};
8 od

9 D:=DU{D,};

22

10 od
117 forz:1<z<ndo

12 fory:z<y<ndo

13 Copy =0

14 ford,:1<d, <mdo

15 ford,:1<d, <mdo

16 Cay = Cayy U {((.%‘, dér>7 <y7dy>)};
17 od

18 od

19 C:=CU{cay};

20 od

21 od

22 gnflicts :=round(py -pe-n-(n—1)-0.5-m-m);
23 while conflicts > 0 do

24 x :=random € X; y := random € X;

25 while x = y do

26 y = random € X;

27 od

28 ifz>y

29 thentmp := x; z:=y; y:=tmp; fi

30 dy := random € Dy; dy = random € Dy;
31 C = Cn{((z,da), (y,dy)) };

32 conflicts — —;

33 od

34 constraints := |C| — round(py -n - (n—1)-0.5);
35 while constraints > 0 do

36 x :=random € X; y := random € X;
37 while |¢; | = m - m do

38 x :=random € X; y := random € X;
39 od

40 ford, :1<d, <mdo

41 for d,:1<d, <mdo

42 Coy = Cay U{((2,da), (Y, dy)) };
43 od

44 od

45 constraints — —;

46 od

47 exit(BCSP(X,D,C))

48 end

23

24

Chapter 3

Classical Algorithms

In this chapter, two classical algorithms will be introddcéhe Chronological Back-
tracking Algorithmand theForward Checking with Conflict-Directed Backjumping Al-
gorithm

In the previous chapter, a solution of a constraint satigfa@roblem was defined as a
compound label over all variables of the problem such tHatoaistraints are satisfied.
However, finding such a solution is only one of four variamtsdolving a CSP:

1. finding a solution;
2. finding all solutions:
3. proving there is no solution;

4. find a compound label with the maximum number of variables.

All four variants are proven to be NP-complete, and are ostrae order of difficulty.
The first and second variants assume that the CSP is solVdi#ehird assumes that it
is unsolvable and the fourth variant can be used for bothabtdvand unsolvable CSPs
but reverts to the first variant if it is actually solvable.

An algorithm issoundwhen if it claims to have found a solution, that compound lsibe
is in fact a solution to the problem. An algorithmdsmpletewvhen, if the problem has

a solution, the algorithm will be able to find it. For an aldgbm to be both sound and
complete it has to systematically check or discard all gpdssolutions of a problem.

All considered classical algorithms are both sound and detep

A sound and complete algorithm that can find a single solytiariant 1) can be used
to solve a CSP according to the three remaining variants:

1. finding all solutions (variant 2) can be done by using tlgoadhm to find the
first solution, removing it from the search space and itegathe process until
no more solution can be found;

25

2. proving that no solution exists (variant 3) is done whes dlgorithm can not
find a single solution;

3. finding the maximum compound label (variant 4) can be dgnadjusting the
algorithm so that it will always remember the maximum comublabel found
during the search. If a solution is found it will return thdwtmn, and if no
solution is found, it will return the stored maximum compduabel.

Most research on the CSP focusses on algorithms that findjke Salution.

3.1 TheChronological Backtracking Algorithm

The first sound and complete algorithm to find a solution of & @f&s proposed in
1965 by S. Golomb and L. Baumert [41], and is called @eronological Backtracking
Algorithm (CBA). TheCBAuses the backtracking search method to find a single solu-
tion to the CSP. Based on this search method, a number of rffariere sound and
complete algorithms have been developed. In [55], G. Kdndrad P. van Beek have
placed these algorithms in a hierarchy based on the numbésitéd nodes and the
number of consistency checks.

The basic backtracking search method is in effect a depthdfgarch of the problem
search space. For the CSP, backtracking divides the proipienthe sub-problem
of labelling a single variable with a value that is consist®ith earlier labellings. A

label is consistent with earlier labellings when it satsfal relevant constraints to
earlier labelled variables. The backtracking search ntethothe CSP tries to label
the variables in order. For each variable, all labels aegltrilf no more labels can
be tried for a variable, backtracking goes back (backtiatksthe previous variable.
Backtracking terminates when a solution is found or when woenfabels for the first
variable can be tried.

The pseudo-code for thehronological Backtracking Algorithris given in algorithm
3.1.

Algorithm 3.1: The Chronological Backtracking Algorithm
1 CSP(X,D,C)
2 funct backtrack(({(z1,v1), ..., (7| x],v|x])), 1) =
3 ifi>|X|thenexit(TRUE) fi

4 for Vd € D, do

5 v; = d,;

6 if consistent(((x1,v1),...,(7|x],v/x])), 1)

7 then

8 if backtrack(({(z1,v1),..., (x| x,vx])),i+ 1)
o then exit(T RUE) fi

10 fi

11 od

12 @(FALSE)

26

13 end
14

15 funct consistent(((x1,v1),. .., (T|x],v|x])), 1) =
16 forvVj:1<j<iAj<|X|do

17 conflict_checks + +;

18 if violates(((xi,vi), (x},v5)), Cz;.2;)

19 then exit(FALSE) fi '

20 od

21 exit(TRUE)

22 end

3.2 TheForward Checking with Conflict-Directed Back-
jumping Algorithm

TheForward Checking with Conflict-Directed Backjumping Alglom (abbreviated by
FCCDBA) extends theCBAwith two adaptations of the backtracking search method:
forward checkind46], andconflict-directed backjumpinfy3]. Both extensions try to
reduce the number of compound labels checked based on ifiormalready found
during the search.

The CBA uses backtracking to check consistency from the currewthgicered label
backto earlier labels. Forward checking in tReCCDBA reverses the process by a
technique callegdhrinking domainsFor each variable in the CSP, the domain is stored
as a set of values, called tdemain set Like backtracking, forward checking tries to
label the variables in order. The values used for labelliregvariables are taken from
their respective domain set. When forward checking labelargble, it removes all
values from the domain sets of the unlabelled variables/ibktte a relevant constraint
with the current label. When the last value from a domain setrisoved, the current
label can never be part of a solution. The domain sets of thabahed variables
are then restored and another value from the domain set ofithent variable is tried.
When no last variable from the domain set is removed, the ragidhle is labelled, and
so on. When all values from the current domain set have besth forward checking
backtracks to a previous variable. Forward checking tesie® when a solution is
found or when all values from the domain set of the first vdedilas been tried. In the
latter case, the problem has no solutions.

The conflict-directed backjumping extension in F@CDBAchanges the way in which
the algorithm backtracks to previous variables. Instedshoktracking to the previous
variable, theeCCDBAuses information about which constraint was violated tedet
mine which earlier variable to backtrack to. Each variahléhe CSP is assigned a set
of conflicting variables in th&CCDBA called theconflict set of a variableBecause
forward checking is used, this set contains a set of as yabeiied variables that have
failed a consistency check during forward checking. Whenrallies from the domain
set of the current variable have been tried, the algorithoktibacks to the earliest vari-
able found in the conflict set. All conflict sets are then resddo the situation where

27

the algorithm left off with that variable.

Both forward checking and conflict-directed backjumping ssts of either values or
variables to reduce the number of compound labels that reebd thecked for con-
sistency. Forward checking uses domain sets for each lafiateduce the number
of future labels that need to be checked. Conflict-direcsekjumping uses conflict
sets for each variable to backtrack to earlier variablethéurup the search tree. Both
essentially increase space complexity for a decrease ipetational complexity (see
section 2.4 for description of space and computational dexitg). The increase of
space complexity is the product of the number of variable$ the domain size of
these variables for the forward checking extension. Theease of space complexity
is cubic to the number of variables for the conflict-direcbetkjumping extension.
For both extensions there is also a small increase of the gt@atipnal complexity be-
cause these sets need to be maintained. The decrease intatiomal complexity is
related to the complexity of the problem to solve. Constraatisfaction problems
with few constraints, or less restrictive constraints, dftless from both extensions
as the effect of domain shrinking is less and there is lessaghaf backjumping to an
early variable. It is possible that ti&BA outperforms thé&CCDBAoN easy constraint
satisfaction problem.

The pseudo-code fétorward Checking with Conflict-Directed Backjumping Algom
is shown in Algorithm 3.2.

Algorithm 3.2: The Forward Checking with Conflict-Directed Backjumping Algo-
rithm

1 CSP(X,D,C)

2 conflictset[| X||[| X]|] := —1;

3 checking[| X||[| X|] := FALSE;
4 domains[| X||[| D] := —1;

5 funct FC-CBJ(((x1,v1), ..., {(7|x],v|x])), 1) =
if i > |X|thenexit(TRUE) fi

6

7 forVvd e D; do

8 if domains[i][d] = —1

9 thenwv; :=d; end := FALSFE;

10 forvVj:i<j<|X|Aend=FALSE do

11 if check_forward(({(x1,v1),...,{(x|x],vx])),%J) =0
12 thenend := TRUE fi

13 od

14 ifj=0

15 then j = FC-CBJ(({x1,v1),...,{(z|x|,v/x|)),i + 1)
15 it j i then exit(j) fi

17 elseunion_checking(i, j) fi

18 restore(i) fi

19 od

20 j:=0;

21 forVk:k <ink<|X|do

22 if conflictseti][k] # —1

28

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
a4
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

thenj :=k; fi
od
forvi:j<l<inl<|X|do
if checking[l][i] = TRUE
thenj :=1; fi
od
union_checking(i,1);
union_con flictset(j,1);
for Vm:j <m <iAm < |X|step —1do
forn:n<mAn<|X|do
conflictsetlm][n] := —1;
od
restore(m);
od
if i # 0thenrestore(j); fi
end

funct check_forward(((x1,v1), ..., (z|x],v)x|))%,7) =

count := 0; delete := 0;

for Vd € D; do

if domains[j][d] = —1
then count + +; conflict_checks + +;
if violates(((xi,vi), (2,v5)), Ca;.z;)
then domains[j][d] := i; delete + +; fifi
od
if delete >0
then checkingli][j] == TRUE; fi

exit(count — delete)

end

funct restore(i) =
forvj:j>inj<|X[do
if checkingli][j] = TRUE
then checkingli][j] = FALSE;
fOJVd S Dj @
if domains[j]ld] =i
then domains[j][d] := —1;
fi

end
funct union_checking(i,j) =
for Vk: k <iAk < |X|do
if conflictset[i][k] > —1V checking[k][j] = TRUE

29

69 then con flictset[i][k] := O;

70 elsecon flictset[i][k] :== —1;
71 fi

72 od

73 end

74
75 funct union_conflictsets(i,j) =
76 fork:k<iAk<|X|do

77 if conflictset[i][k] > —1V checkinglj][k] = TRUE
78 then con flictset[i|[k] := 0;

79 elsecon flictset[i][k] := —1;

80 fi

81 if conflictset[i][k] > 1 A conflictset[k][k] < k

82 then con flictset[i][i] = k;

83 fi

84 od

85 end

3.3 Performance Measures for Classical Algorithms

In the pseudo-code of tHeBA (Algorithm 3.1) and th&=CCDBA (Algorithm 3.2) the
variablecon flict_checks is increased every time a constraint is checked. Checking if
a compound label is in the set of compound labels of a consisaiaken as the atomic
step of the algorithm. These steps can be used to define penfice measures. For
classical algorithms one such step is called a conflict check

Definition 3.1 (Conflict Check)
Testing if compound labdl is in the set of compound labels of constraimtf a binary
CSP is called a conflict check.

A classical algorithm is more efficient than another cladsadgorithm when it uses
fewer conflict checks to find a solution. As such, the numbersef conflict checks is
a measure of the computational effort of an algorithm andéschot measure the space
complexity of an algorithm. Both extensions of tRECDBAincrease the space com-
plexity of the algorithm in order to reduce the number of dehfthecks needed, e.g.,
the computational complexity. The increase in space caxitples linear in relation to
the size of the problem of both extensions. As the increasermputation complexity
is exponential relative to the size of the CSP, the increaiee space complexity of the
FCCDBAIs negligible. The same reasoning applies to the increaseraputational
complexity needed to handle the increase of space complexiboth extensions.

30

Chapter 4

Generating the Test-set

In this chapter a test-set of randomly generated conssatigfaction problems will be
created. This test-set will be used throughout the resteofttbsis for experimentation
with evolutionary algorithms. Although the test-set istaarly useful for experi-
mentation with evolutionary algorithms, it is equally usdbr other non-deterministic
algorithms as well.

The constraint satisfaction problem generators discussegéction 2.5 are non-de-
terministic algorithms. They all use random number segeenc make the choices
necessary to generate a constraint satisfaction problstanice. A truly random se-
guence can only be generated by a truly random process. YAreinbdom sequence
can not be generated by a mathematical formula, for knoweledghe formula and
sufficient numbers of the sequence already generated woalolee someone to pre-
dict the next value with certainty. There are, however, faae whichcan produce
long sequences of numbers which satisfy many randomnéessiaibefore they start
to repeat. Such sequences are cafisdudo-randonand they are used by computers
as a substitute for truly random number sequences. The moshonly used method
for generating a pseudo-random number sequence of intisgesised on a recurrence
formula. Pseudo-random number generator using these faenave called linear con-
gruential generators. The sequence is initialised by aomrskeed, a first value of the
sequence, and the pseudo-random number generator willajeraedifferent pseudo-
random number sequence for each different random-seee.valu

The constraint satisfaction problem generators discugseéction 2.5 use pseudo-
random number sequences to make choices while generatii@PdrStance. These
choices include choosing which constraint to add or remouwke CSP instances and
which compound label to add or remove from the constrainthénCSP instance.
When different random-seeds are used, different choicemade, resulting in differ-
ent CSP instances. This is independent of the complexigrpaters used by the CSP
generator.

Using different random-seeds, a CSP generator will prodiiféerent CSP instances.
This feature is used to generate sets of different CSP iostdior the same complexity

31

parameters. Because different choices were made to gerkeaCSP instances in the
set, the CSP instances in the set will show a variance in thglaxity of the CSP
instances. This will occur for example when the CSP genedtooses to remove
a larger number of compound labels from constraints in theegsion of one CSP
instance than in generation of another CSP instance. Whegenamber of choices
have to be made to generate a CSP instance, the probabilifgnafrating an outlier
in complexity is small; approaching zero when the numberhafices increases. It is
impossible to predict the exact complexity of a randomlyegated CSP instance.

This leads to the question of whatepresentativeest-set of CSP instances is. A test-
set is representative for a problem if it includes a largeughosample of instances
of the problem such that it is an accurate description of tgufation of all problem
instances. Obviously, a perfectly representative tetsiaskides all problem instances
that are possible. For the CSP, even for small numbers adhias and small domain
sizes, the population of all problem instances is so largedakperimenting with such
a test-set would be prohibitively expensive. In this chepte provide a method of
selecting a small number of problem instances so that expetation with the test-set
can be performed in a reasonable time. There is however enathtter to consider.
The test-set is intended for use with evolutionary alganghand evolutionary algo-
rithms are incomplete. Practically, this means that prmohlestances that are unsolv-
able will take the maximum allowed amount of effort of the lenionary algorithm to
solve. As such, it makes no sense to include them as no aaalifioformation about
the effectiveness and efficiency of the algorithm can beeghinom including them
in the test-set. Excluding unsolvable problem instancesma¢hat the method for se-
lecting the problem instances for the test-set has to takeaiccount that the test-set
is no longer representative of the population of all poges®EP instances but that it is
representative of the population of all solvable CSP insganBecause of this, we will
call our test-set an appropriate test-set instead of ageptative test-set.

4.1 Test-set Parameters

The CSP instances in the test-set are generated using tred M@EP generator. The
parameter vector of the modél CSP generator includes four parametessfor the
number of variablesy for the uniform domain sizey, for the constraint density and

pe @S an average tightness parameter. Because the fapglerator chooses the com-
pound labels not in the CSP instance with repetitions andhabeu of constraints will

be removed as well, the parameter has to be set higher than the desired average tight
ness of the CSP instance. The generator is therefore imptech@ such a way that

it will approximate the desired average tightnegg by increasing the. parameter

in a stepwise fashion. In the following discussion thereftihhe approximated average
tightnes; will be used, instead of the actual values.

The hardness of a CSP instance is measured by the numbeutidsslit has. Using a
sound and complete algorithm, the number of solutions anslttie exact hardness of
a CSP instance can be calculated. We usetitenological Backtracking Algorithm

32

to do this. In [81], Smith provided a formula for the numbersolutions of a CSP
instance based on the four complexity parameters that veem to generate it:

E(number of solutions= z, = m"(1 — pz)(2)7 (4.1)

The formula only holds for binary CSPs with a uniform domaires We will denote
the number of solutions hy..

In [15], the authors demonstrate that all NP-complete sl go through ghase-
transition All NP-complete problems, including the CSP, have a stedatansition
point which marks the spot in the parameter space where problenfi®gohaving
many solvable problem instances to having almost no savafablem instances. For
many NP-complete problems, this transition point has beeatéd empirically ([15,
65]). For CSPs, Smith predicted that it would occur arourmbf@m instances with
only one solution ([81]), assuming that this solution wié bard to find among all
other possible candidate solutions. When this assumptioariined with equation
4.1 it leads to:

m™(1 —pg) 3P = 1 (4.2)

The transition point of a CSP occurs for those combinationthé parameter space
where there is &0% chance of generating a solvable CSP and consequemtlyta
chance of generating an unsolvable CSP ([65, 82, 20]). Wstld number of variables
and their uniform domain sizes are fixed and the density aedage tightness are
varied, so that there is not a transitipoint, but atransition linethrough the density
and average tightness parameter space. As binary CSPs hisgealiscrete domains,
the phase transition does not occur abruptly, but over arédea in the parameter
space. This area is called thrushy region

In Figure 4.1, the transition lines for combinationsrofndm are shown in the pa-
rameter space bound by densipy)and average tightnesgs). Thez-axis shows the
density, they-axis the tightness. Eigltt,, m)-combinations are shown frofm, m) =
(5,5) to (40, 40) in increments of for bothn andm.

A transition line divides the parameter space of the CSPthre regions:
1. The mushy region, already described;

2. The solvable region, in Figure 4.1 below the mushy regl®8P instances gen-
erated with the parameters in this region are almost exalyssolvable; and

3. The unsolvable region, in Figure 4.1 above the mushy regi@SP instances
generated with parameters in this region are almost exelysinsolvable.

In Figure 4.1, we see that for combinations of largeandm, the solvable region de-
creases in size, while for combinations of small@endm the solvable region increases
in size.

33

T T
0.8 - 1
8 o6l -
=
=
2
(&)
D
<
S o4l - .
n=5m=5
n=10,m=10 -------
02 1 n=15m=15
n=20,m=20
n=25m=25 ----
n=30,m=30 -
n=35m=35
n=40,m=40 -------
0 1 1 1 1
0 0.2 0.4 0.6 0.8 1

density

Figure 4.1: Transition lines for combinationsofindm found using Smith’s formula.

As with all incomplete algorithms, evolutionary algoritrare, in general, unable to
determine whether or not a problem is unsolvable. When theyused to solve an
unsolvable problem they will continue trying to solve it iltiie maximum number of
search steps allowed has been reached. The inclusion divabhEoCSP instances in
the test-set will only increase experimental effort withptoviding more insight into
the performance of the algorithms. As such, we have decidetbrinclude them.

Given the information above, we make the following consadiens for the choice of
the number of variables:j and the uniform domain sizer() of the CSP instances in
the test-set. The considerations are listed in order of iapoe.

1. Then andm parameters should be large enough to make solving the C$Ps no
trivial.

2. Then andm parameters should be small enough to reduce the amount ef-exp
imental effort.

3. Then andm parameters should be chosen in such a way that the solvgjibare
is large enough to include enough density-tightness coatioims for adequate
experimentation.

Obviously, considerations 1 and 2 are conflicting. As a ficattompromise we have
chosen to generate CSP instances wittvariables and a uniform domain size f

34

1 T T T T
transition line n=10,m=10
problem instances generated +
+ +
0.8 | + + + -
+ + + +
[}
o 06 + + + + + + -
=
=]
ey
2
= + + + + + + + +
(]
[=2]
IS
5]
3z 04r + + + + + + + + +
+ + + + + + + + +
0.2 + + + + + + + + + -
+ + + + + + + + +
0 1 1 1 1
0 0.2 0.4 0.6 0.8 1

density

Figure 4.2: Overview of the parameter setup of the test-gatw= 10 andm = 10.

for our test-set. These parameter values will produce CSanges with a maximum
of (120) = 45 constraints and a maximum 06'° possible candidate solutions to search
through. We found that these CSP instances were by no méaakttr solve. The ex-
perimental effort needed to solve one of these CSP instdmovesver is not prohibitive
for a thorough investigation. On an average computeCim®nological Backtracking
Algorithmneeds less than a second to find a single solution and abouLéenar two

to find all solutions when the CSP instance lies within the mguggion.

Consideration 3 is related to the way CSP test-sets are coigramanised. Usually,
a CSP test-set is constructed by generating a set of CShaéestdor a number of
density and tightness combinations with fixed parametarthionumber of variables
and the uniform domain size of these variables. The densityightness combinations
are chosen so that they form a grid-like pattern over theigetightness parameter
space. We used the following values for both density andrggs:{0.1,0.2,...,0.9}.
These values produce a grid-like pattern of 81 densityttiggs combinations. When
10 variables with a domain size df) are used59 grid points lie in the solvable and
mushy region of the density-tightness parameter space.

Figure 4.2 shows a graphical depiction of the parametepsgftthe test-set. The line
signifies the transition line found using Smith’s formula fo = 10 andm = 10,
copied from Figure 4.1. The sets of CSP instances for therdifit density-tightness
combinations that are included in the test-set are showmiasspn the solvable and
mushy region59 sets will be generated. The mushy region is identified asathenf-

35

ing list of density-tightness combination@i , pz) € {(0.1,0.9), (0.2,0.9), (0.3,0.8),
(0.4,0.7), (0.5,0.6), (0.6,0.6), (0.7,0.5), (0.8,0.5), (0.9,0.4)}.

The most important sets of CSP instances in the test-sedane in the mushy region.
The CSP instances in these sets will be the hardest to sobrapé&red to the hardness
of the CSP instances in these sets the hardness of the otRén§t8nces in the test-set
is low. Algorithms solving CSP instances outside the muglgyon should have little
difficulty finding a solution. The CSP instances in the soleaiegion are therefore
generated only for comparison with earlier research. Ingseof this chapter we will
therefore focus mostly on making the sets of CSP instanct&imushy region as ac-
curate as possible. The other CSP instances will be geddypsmply using different
random-seeds, without further analysis. For each detigitypess combination in the
test-set25 instances will be generated.

4.2 Constructing a Test-set in 4 steps

In the previous section we decided to construct a test-sbat@sBP instances with0
variables and a uniform domain size if. The CSP instances will be generated for
59 density-tightness combinations of whiéHay in the mushy region of the density-
tightness parameter space. The set of CSP instances witttHisplensity-tightness
combination we will call thesamplefor that density-tightness combination. Each sam-
ple consists 025 CSP instances.

Now that we have set the parameters for the CSP instances dertszated we can
generate an appropriate test-set. We propose that theviojgroperties for the CSP
instances in each sample are necessary for constructingpaopaiate test-set:

1. All CSP instances in each sample should be solvable;

2. The average number of solutions of the CSP instances isaatbles should
approximate the number of solutions calculated by usingt8srfiormula.

3. The variance in the number of solutions should be mininvar @ll CSP in-
stances in each sample.

Formula 4.1 is defined for sets of both solvable and unsatvaisitances. Because of
requirement 1 the samples in the test-set contain only klghiastances. Therefore
further analysis is necessary to see if we can use Smithisuiar for samples of only
solvable instances. This analysis is also necessary td Seeith’s formula is an ac-
curate approximation of the number of solutions for CSPaimsés generated with a
model ' CSP generator. We will, therefore, first analyse samplestif solvable and
unsolvable CSP instances and adjust the estimated numisetutfons when neces-
sary. The adjusted number of solutions will then be used lbessumple a sample of
only solvable instances in order to minimise the variancthefnumber of solutions.
This final sub-sample should then have the properties meadiabove.

The method used to construct the test-set then consistsiogfeps:

36

Step 1: parameter adjustment Check if the values used for the CSP generated are
equal to the parameters that should be used in Smith’s farmBecause the
CSP generator will choose discrete numbers of constramtsampound labels
and Smith’s formula uses real numbers, it is safe to assuatahare will be a
difference between the two parameter vectors used. Thexelift parameters will
produce different calculated number of solutions and ansaaijent will have to
be made for this. We will use, to indicate the adjusted number of solutions.

Step 2: sample sizingThe test-set construction method described below depends f
a large part on statistical analysis. For statistical asialio be accurate, a large
sample of CSP instances is necessary. In this step we gerdage sample of
CSP instances for each density-tightness combinatioreimirshy region. For
each CSP instance in the sample the number of solutionsdalatdd using a
classical algorithm. The average number of solutions oftmaple, denoted by
T, is then compared to the adjusted number of solutions fonrids first step.
If the difference betweem andz/, is significant, this could be the result of not
having generated enough CSP instances for the samples.evéédie generate
more CSP instances until either the difference betweamdz, becomes in-
significant or a maximum practical sample sizelof0 CSP instances has been
reached. If the difference betweenand z/, is still significant, continue with
Step 3, otherwise continue with Step 4.

Step 3: formula correction Because we generated samples with a large number of
CSP instances, we can assume that the difference betivaadz/, is not due
to having too small a sample. The difference is most likelysea by Smith’s
formula calculating an inaccurate number of solutions. Wérdfore have to
analyse the relationship betwegmndz/, to see if the over- or under-estimation
is systematic. Ifitis, we can correet for this, resulting in the corrected number
of solutions, denoted by”. We then have to analyse the difference between
anda” to see if it is significant. If it is, we have to consider anatberrection,
if it is not we continue with Step 4.

Step 4: CSP instance selectioWith = approximately equal to either, or z//, we
will use it to sub-sample a sample of only solvable CSP irtstan The single
criterion for the sub-sampling is to minimise the variantée hardness of the
sub-sample. We do this by generating new samples for eaditygltightness
combination in the mushy region consisting of only solvabttances. The new
samples are equal in size to the samples generated in Stegr #aéh CSP in-
stance in the sample, the number of solutions is calculasétya sound and
complete algorithm. The CSP instances in these samplesréeeed accord-
ing to the difference between the calculated number of mwistof the CSP
instances and eithet, or 2/, depending on whether step 3 was necessary. The
sub-samples in the mushy region consist of 2h@nstances with the smallest
difference.

In Steps 2 and 3, the difference between the average numbeluions of the sample
and the estimated number of solutions is used as a test. Mot/és a statistical

37

analysis using the following hypothesis:

Hypothesis 4.1
In the mushy region the average number of solutianf a given sample is equal to
the estimated number of solutions.}:

Hy:7=x,
H,:T # x,

In Steps 2 and 3, the adjusted number of solutiari3 6r the corrected number of
solutions ¢) will replacez. in the hypothesis.

The null-hypothesisH) is rejected when th&% margin of error between andzx.. (or
xl, 2”) is exceeded. For the hypothesis test we calculat®ibieconfidence interval
of the samples. If the number of solutions. (., or z!/) lies outside the confidence
interval, the null-hypothesis is rejected. The confidemterival of a sample of siz&
of a population having unknown mearwith known standard deviationis calculated
as follows:

wherez* is the value on the standard normal curve with arebetween—z* andz*.
C'is exact when the population distribution is normal and isragimately correct for
large N in other casesC denotes the confidence interval.

The calculation of the confidence level assumes that thelliion of the sample
points is normal. This we can not assume for the samples geaehere. Theentral
limit theoremstates that when we draw a simple random sample from any gkbqul
with finite standard deviation, the sampling distributidritee sample mean is approx-
imately normal. The size of the sample needed to get a closes@mation of the
mean depends on the population distribution. We implentestdy splitting the sam-
ple into25 equal parts and calculating the mean for each of these psetarding to
the central limit theorem, the distribution over these nsespproximates a normal dis-
tribution. The confidence interval of hypothesis 4.1 is gllted over thes25 means.

4.2.1 Step 1: Parameter Adjustment

Smith’s formula uses four parameters to calculate the numbsolutions:n for the
number of variablesy for the uniform domain sizey, for density, angy: for average
tightness. The parameters are the same as the parameterparameter vector of the
model FF CSP generator. The last parameter of the m@d€lSP generator is different
but as we approximate; by a stepwise increase pf, we can us@; instead. Smith’s
formula uses the four parameters to exactly calculate thebeu of solutions meaning
that it will take fractional constraints and compound Iabieto account. The model

38

’ — ’
n m Pa P2 Xe

10 10 0.1111 0.9 100000

10 10 0.2 0.9 10

10 10 0.3111 0.8 1.638
10 10 0.4 0.7 3.874
10 10 0.5111 0.6 7.037
10 10 0.6 0.6 0.180
10 10 0.7111 0.5 2.328
10 10 0.8 0.5 0.146
10 10 0.9111 0.4 8.020

Table 4.1:2/, calculated using the actual densipy (values.

F CSP generator can not do this, the number of generated aoristand the number
of generated compound labels is by definition integer. Theehé' CSP generator
does this by rounding the number of constraints and the numfoompound labels

to the next nearest integer number. When the number of sptutib the generated
CSP instances is calculated this behaviour will introdudéfarence between calcu-
lated number of solutions by Smith’s formula and the numidesotutions. We will
compensate for this difference by adjusting the densitythedverage tightness of the
generated CSP instances and use these parameters totealelaumber of solutions
by Smith’s formula. We will us@) andps’ to denote the adjusted density and average
tightness.

The adjusted density of a binary CSP instance can be catclitgt

,_1G) -l »
P (721) (.)

wheren is the number of variables of the CSP instance to be genesatt} || is used
to denote rounding to the next discrete number. The CSPiossato be generated for
the test-set havé0 variables f = 10) so they can have a maximum (3150) =45
constraints. For density valugs € {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, the
actual density values of the CSP instancespgre {0.1111..., 0.2, 0.3111..., 0.4,
0.5111...,0.6,0.7111..., 0.8, 0.9111...}. The rounding difference between and
p} is therefored.0111 .. . for density valuep; € {0.1, 0.3, 0.5, 0.7, 0.9}.

Because of the larger number of conflicts to be generated@@Rinstance, the round-
ing difference betweem, andps’ is usually negligible. The adjusted average tightness
of a binary CSP instance can be calculated by:

1)t
’ (5) - py - m?

wheren is the number of variables and is the uniform domain size arjg- || is again

(4.5)

39

o P2 X, X S Clysy

0.1111 0.9 100000 78127 10217 (73910,82345)
0.2 0.9 10 6.743 6.482 (4.067,9.419)
0.3111 0.8 1.638 1.114 0.678 (0.834,1.394)
0.4 0.7 3.874 3.015 1.059 (2.578,3.452)
0.5111 0.6 7.037 5.798 1.511 (5.174,6.422)
0.6 0.6 0.180 0.117 0.092 (0.079,0.155)
0.7111 0.5 2.328 1.937 0.668 (1.661,2.213)
0.8 0.5 0.146 0.118 0.076 (0.087,0.149)
0.9111 0.4 8.020 7.269 1.310 (6.728,7.810)

Table 4.2: Statistical analysis ofandz/, for the samples 0f000 CSP instances in the
mushy region.

used to denote rounding to the next integer. A maximumudf= 100 conflicts can be
generated for each constraint. Using the actual densityegatalculated above paired
with the average tightness valugse {0.9, 0.9, 0.8, 0.7, 0.6, 0.6, 0.5, 0.4} (in order),
the actual average tightness values for the CSP instand¢he imushy region can be
calculated. No rounding difference between the expectethge tightness values and
the actual average tightness values was fo@gd: py’.

The difference betweep; andp) results in different calculated number of solutions
(«1). Table 4.1 shows the number of solutions calculateghiris used.

4.2.2 Step 2: Sample Sizing

The statistical analysis in the following steps needs el@mpugh sample to be accu-
rate. A sample of CSP instances is large enough when theypdthesis of hypothesis
4.1 is valid. If the null hypothesis of hypothesis 4.1 is gdlr a sample size smaller
or equal to the maximum sample siZ#)(0 CSP instances) we continue with Step 4,
if not, further modifications of the estimated number of $iols is necessary (Step
3). The maximum sample size @000 CSP instances was chosen to place a limit
on the effort needed to generate the sample and calculateuthber of solutions for
each instance in the sample. The number of solutions of esthrice in the sample is
calculated using th€hronological Backtracking Algorithm

At first a sample ofil00 CSP instances was generated for each density-tightness com
bination in the mushy region. The exact number of solutimrssich CSP instance
was then determined by tl@BAalgorithm. The samples were then uniform randomly
divided into25 sub-samples of instances each. The average number of solutions was
calculated over the average number of solutions of eaclsaniple. As the adjusted
number of solutions did not fall within th#5% confidence interval of the average num-
ber of solutions of the sub-sampld$; of hypothesis 4.1 had to be rejected. Next we
tried samples wit200, 400 and finally1000 instances. Again, all samples were divided
into 25 equal sub-samples. The same hypothesis test was appliddaoples.

40

average number of solutions
n
T
1

0 '/ 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10
adjusted estimated number of solutions

Figure 4.3: Scatter plot of, andz, excluding(p1,pz) = (0.1,0.9).

Table 4.2 shows the statistical analysis of the samples Wit CSP instances. The
first two columns show the actual density, Y and the tightnesspg) values of the
instances in the samples. The column shows the estimated number of solutions for
these density-tightness combinations found in Step 1.zTbelumn shows the mean
of means of the sub-samples and theolumn shows the standard deviation over these
means. ColumiC'7?*% shows thed5% confidence interval of the samples. Only for
(p},P2)-combination(0.8,0.5) does the adjusted estimated number of solutions fall
within the 95% confidence interval. For all other combinations hypothdsishas to

be rejected. The estimated number of solutions need to raddifirther, we have to
continue with Step 3.

4.2.3 Step 3: Formula Correction

In Step 2, we found that the adjusted number of solutions lfdsu one sample did
not fall within the95% confidence interval and that for these samples the null nypot
esis of hypothesis 4.1 had to be rejected. We take this agdération of the fact that
the difference between the adjusted number of solutionsddy Smith’s formula and
the average number of solutions calculated by a classigaligim is not caused by
having samples of insufficient size. We hypothesise thatthé result of a systematic
error in Smith’s formula. By analysing the relationshipweén the adjusted number
of solutions and the number of solutions calculated byGhenological Backtracking

41

o P2 Xy X S Clysy,

01111 09 76888 78127 10217 (73910,82345)
0.2 09 7.6888 6.743 6.482 (4.067,9.419)
03111 0.8 1.2594 1.114 0.678 (0.834,1.394)
0.4 0.7 29786 3.015 1.059 (2.578,3.452)
05111 0.6 5.4106 5.798 1.511 (5.174,6.422)
0.6 0.6 0.1384 0.117 0.092 (0.079,0.155)
07111 05 1.7900 1.937 0.668 (1.661,2.213)
0.8 05 0.1123 0.118 0.076 (0.087,0.149)
09111 04 6.1664 7.269 1.310 (6.728,7.810)

Table 4.3: Statistical analysis @fandz! for the samples in the mushy region.

Algorithm we can correct the adjusted number of solution for thisedéffice. On in-
spection of the adjusted number of solutions we decidee#&i (i}, pz) = (0.111,0.9)

as an outlier because the value for that sample is so largpareah to the other val-
ues. Figure 4.3 shows the relation between the adjusted ewafilsolutions and the
calculated average number of solutions as a scatter plohgihez-axis the adjusted
number of solutionsaf)) is shown, along thg-axis the calculated average number of
solutions is shown.

The points in Figure 4.3 lie along a straight line. This iradés a linear relationship.
The strength of the relationship is calculated by the cati@h coefficient.. The closer
the correlation coefficient is th0, the stronger the relation. The correlation coefficient
is calculated by:

A
=) (4.6)

St
r(!

T

= Y

wherez; stands for thé-th value ofz, 7 for the average over all values®f, s; for the
standard deviation over all values®f, =/, ; for thei-th value ofz’, z’, for the average
over all values ofz/,, ands,, for the standard deviation over all values«gf. The
correlation coefficient for/, andz is » = 0.98121, indicating a strong relationship.
When(p},pz) = (0.1111,0.9) is included, the correlation coefficientis, but this is

probably inaccurate.
The linear relationship betweer] andz can be expressed by:

v, =a-T+p3 4.7)

whereq is the slope of the line through the data points grid the intercept, the value
of 2/, whenz = 0. Here the intercept i§ = 0. The slope of the line through the points
in Figure 4.3 can be calculated by:

a=r - —= (4.8)

, — —_
P1 P2 Xsubsample Ssubsample

0.1111 0.9 77340 1289.3
0.2 0.9 3 0
0.3111 0.8 1 0
0.4 0.7 3 0
0.5111 0.6 5 0
0.6 0.6 1 0
0.7111 0.5 2 0
0.8 0.5 1 0
0.9111 0.4 6 0

Table 4.4: Mean and standard deviation of the sub-sampkégimushy region.

wherer stands for the correlation coefficient, for the standard deviation of, and

s5 for the standard deviation af, the latter two calculated over the values from the
scatter plot. The slope of the straight line through the gatats in the scatter plot is
a = 0.76888, the relationship found is them = 0.76888 - z,. This relationship is
shown in Figure 4.3 by the dotted line.

We use this relationship to correct the adjusted numberlafisas a second time, by
introducing a correction factor. The correction of the atfd number of solutions
is denoted byz!/. Table 4.3 shows the statistical analysis of the samplegus].
The other columns of the table are copied from Table 4.2. Tmeected number of
solutions all fall inside the confidence interval of theispective samples. The null
hypothesis of hypothesis 4.1 is valid when the correctedbairof solutions is used.
No further correction of the number of solutions is necessafe can continue with
Step 4.

4.2.4 Step 4: CSP Instance Selection

With eitherz’, or z//, Step 4 is used to finish constructing the test-set. We firstigeed
1000 new samples of solvable CSP instances for each densitnéigh combination in
the density-tightness parameter space. FBEDBAwas used to calculate if the CSP
instance is solvable. If not, another CSP instance was gtateuntil a solvable one
was generated. Using thi@hronological Backtracking Algorithnwve calculated the
number of solutions for each CSP instance in these samples.sdmples were then
ordered according to the difference of the calculated nurobgolutions and either’,

or z//. From each sample th¥ CSP instances with the least difference was selected
for the test-set. In Table 4.4 the average number of solsitimd the standard deviation
for the selected instances in the mushy region are shown.

The nine sub-samples in the mushy region added to the unifandlomly generated
samples from the solvable region form the test-set thatheilised throughout the rest
of the thesis.

43

44

Chapter 5

lterated Local-Search and
Evolutionary Algorithms

Evolutionary algorithms belong to a group of algorithmdexliterated Local-Search
algorithms (ILS). The Iterated Local-Search meta-heigrisin be described in a nut-
shell as follows: a sequence of candidate solutions is beititively by an embedded
heuristic, leading to better candidate solutions thanpeeted random trials of that
heuristic were used. This simple idea ([12]) has a long histmd has lead to many
differently named algorithms: iterated descent [11, 1&Yyé-step Markov chains [61],
iterated Lin-Kernighan [53], chained local optimisati@®], or combinations of these
[3]. The historical development of iterated local-seartgodathms can be found in
[54].

An algorithm is considered a local-search algorithm whesrehs a single chain of
candidate solutions that is followed, and the search faebeandidate solutions oc-
curs in a reduced space defined by the output of an embeddedtireun practice,
local-search has been the most frequently used embeddedtieebut in fact, any
optimiser can be used, be-it deterministic or not. Althotiyd description limits the
algorithm to following only a single chain of candidate d@us, often more than one
chain is followed concurrently. These algorithms are stilhsidered to be ILS algo-
rithms although they are also called concurrent ILS alfori or population-based ILS
algorithms.

In essence, an ILS algorithm consists of two parts: a moveabpecontaining the
embedded heuristic and a selection operator. The move topésaused to search
through the search space of the problem. The selection topésaused to direct the
search by selecting candidate solutions for the next itaraff the algorithm. The basic
pseudo-code of an ILS algorithm is shown in algorithm 5.1.

Algorithm 5.1: The Iterated Local Search Algorithm

1 funct ILS =
2 P :=nitialise;

45

3 while —~contains_solution(P) do
4 P := move(P);

5 evaluate(P);

6 P := select(P);

7 od

8 end

In algorithm 5.1 we see that the while-loop from line 3 to #atesely applies the
move-operator to a population of candidate solutioR3.(The population is randomly
initialised in line 2. The algorithm is terminated when audimn is found. Because
some problem instances are unsolvable, a maximum numberafions is commonly
used to stop the algorithm as well. Theove-operator of the ILS algorithm (line
4) modifies these candidate solutions using a heuristic dddzkin the operator. The
select-operator (line 6) then selects candidate solutions fonehe iteration. Selection
of the population for the next iteration of the algorithm &sbkbd on the evaluation of the
population, implemented in thealuate-operator, also called the objective function.

Many different implementations of the ILS algorithm haveebgroposed. Different
selection methods provide different operators based ondtien of the selection pres-
sure. Selection pressure is used to express the strendth sékection. High selection
pressure is exerted when only the best candidate solutiensedected, no selection
pressure is exerted when candidate solutions are selentfntra randomly. Selec-

tion is related to the problem by the objective function. Test candidate solutions
are selected, for example, by ordering the population a@egrto the value given by

the objective function. The best candidate solution is therfirst candidate solution
in the ordering. Different problems have different objeetfunctions and sometimes
different objective functions exist for a single problem.

The move operator includes a heuristic, or rule-of-thumnid,ia used to search through
the search space of the problem. This heuristic can be digistim or non-determi-
nistic. The move operator usually focusses on part of thélpno, a sub-problem,
trying to solve it every time the heuristic is used. At eadrdtion of the algorithm
different sub-problems can be solved. The choice of whidhfoblem to solve can
be made randomly but usually a heuristic is used for this ds IS is closely related
to neighbourhood search. In neighbourhood search a suidepnas chosen and all
possible solutions for the sub-problem are generated. &leetsoperator then selects
the best solution, i.e., candidate solution, that was gaedr When two best candidate
solutions with equal quality have been generated, one of tiseselected at random.
For example, a move-operator for the CSP can be implementsdlbcting a variable
of the CSP instance and generating candidate solutions thisrgariable is labelled
with all possible values in the domain of the variable. Thiece®n operator then
selects the candidate solution with the least number oftcaing violations. The set
of candidate solutions with a different label for a singleialle can been seen as the
neighbourhood of the original candidate solution. The namighbourhood search
stems from the fact that the move operator searches thrinegheighbourhoods in the
chain of candidate solutions in order to find a solution.

An example of an ILS algorithm is th8imulated Annealinglgorithm [1]. Simulated

46

Annealing was introduced as a generalisation of a MonteoGadthod for examining
the equations of state and frozen states-bbdy systems [63]. The conceptis based on
the manner in which liquids freeze or metals re-crystalisthé process of annealing.
In an annealing process, a melt, initially at high tempesatind disordered, is slowly
cooled so that the system at any time is approximately imtbdynamic equilibrium.
As cooling proceeds, the system becomes more and more drdedeapproaches a
“frozen” state at its lowest temperature. The process cahdugght of as an adiabatic
approach to the lowest energy state. If the initial systenpterature is too low or cool-
ing is done insufficiently slowly, the system may become ghed, forming defects or
freezing out in meta-stable states, i.e., trapped in a lo@aimum energy state. Sim-
ulated Annealing is an example of an ILS algorithm with at&pselection pressure
regulated by temperature, applied on a population of cateligolutions altered by a
move operator specific to a problem. For different probledifferent move operators
can be used.

In the next section two examples of general ILS algorithnesgiven: theRandom
Search Algorithmand theHill Climber with Restart Algorithm Both algorithms will
be used as benchmark algorithms in the rest of the thesisheltast section of this
chapter, evolutionary algorithms will be introduced. A ibasvolutionary algorithm,
called thelntuitive Evolutionary Algorithnwill be introduced as a benchmark for the
other evolutionary algorithm introduced later in this tises

5.1 TheRandom Search Algorithnand the Hill Climber
with Restart Algorithm

Two Iterated Local-Search algorithms will be introducedhis section: thdRandom
Search Algorithn{RSA and theHill Climber with Restart Algorithn{HCAWR. The
Random Search Algorithis a very simple algorithm and throughout the rest of the
thesis it will be used to distinguish the CSP instances tteeasy to solve from the
ones that are hard to solve. THdl Climber with Restart Algorithnis more powerful
and it will be used as a performance benchmark for the ewslatly algorithms in the
thesis.

5.1.1 TheRandom Search Algorithm

The Random Search Algorithnis to the ILS algorithms what a brute-force algorithm
is to the classical algorithms. It tries to solve a problemrégeatedly checking if
randomly instantiated candidate solutions are solutiorthé problem. A randomly
instantiated candidate solutions for the CSP is a candgidtgion were all variables
are labelled with a uniform randomly chosen value from théalde’s domain.

The Random Search Algorithmioes not include an imbedded heuristic to guide the
search, nor does it have memory or a selection operatoralédspossible to randomly
instantiate a candidate solution that has been checkedebefb the beginning of the

a7

search, the probability of ‘rechecking’ a candidate soluiis small, but as the search
continues, and more and more (unique) candidate solutiams been checked, this
probability increases. ThRandom Search Algorithis not a complete algorithm and
will search for a solution indefinitely when the problem issalvable. A maximum
number of candidate solutions that tRandom Search Algorithis allowed to check
is therefore also used to terminate the search.

Like the brute-force algorithm for classical algorithmtse Random Search Algorithm
has a low probability of finding a solution in reasonable tiifrtae complexity of the
problem is non-trivial. The usefulness of tRandom Search Algorithiis therefore
limited. In this thesis, th&kandom Search Algorithis used to determine which con-
straint satisfaction problems are trivial or not. It is alssed to provide a minimum
performance for the other algorithms.

Algorithm 5.2 shows the pseudo-code of Random Search Algorithnit shows that
the Random Search Algorithinas no selection operator. As theitialise method
produces randomly instantiated candidate solutions piaoes thenove operator in
line 5. Added are thenax_evaluations parameter and thevaluations variable in
order to terminate the algorithm after a maximum number aflidate solutions have
been checked. The check is made by the while statement (Jinel e cvaluate
operator has been changed to return the number of evaleaiEressary to evaluate
the population. This is usually equal to the size of the pajiorh. If the population
consists of only a single candidate solution, the maximumlmer of evaluations is
equal to the number of iterations.

Algorithm 5.2: The Random Search Algorithm

1 funct RSAmax _evaluations) =

evaluations := 0;

P = initialise;

while —contains_solution(P) V evaluations < max_evaluations do
P = initialise;
evaluations := evaluations + evaluate(P);

d

end

0 N o g b~ W N

5.1.2 TheHill Climber with Restart Algorithm

The Hill Climber with Restart Algorithmis an example of a standard Iterated Local-
Search algorithm. After initialising a population randgmthe Hill Climber with
Restart Algorithmwill solve a problem by repeatedly applying a heuristic moye
erator and selecting the best candidate solution for theitezation. TheHill Climber
with Restart Algorithiris not a complete algorithm and a maximum number of can-
didate solutions that it is allowed to check is thereforeaset parameter. Thdill
Climber with Restart Algorithnterminates when either a solution of the problem is
found or when the maximum number of candidate solutionseésioed.

For the constraint satisfaction problem, tHél Climber with Restart Algorithnini-

48

tialises a candidate solution by labelling each variabléhefcandidate solution with

a random value in the variable’'s domain. The most commongd usove operator

selects a variable in the candidate solution uniform rarigand then generates the
candidate solutions where that variable is labelled witlpassible values in the do-
main of the variable. These candidate solutions are theadatidthe population. The
selection operator then selects the candidate solution the population which vio-

lates the least number of constraints of the CSP.

TheHill Climber with Restart Algorithms an example of a neighbourhood search al-
gorithm. A problem with using neighbourhood search is thaain become stuck in
a local optimum. This happens when the neighbourhoods ehathbles of the prob-
lem have been examined. Because all value combinationseé thariables have to
be checked, this takes a large number of search steps whewnhiger of variables
of the problem is large and/or the domains of these problemdaage. Since the
neighbourhood of a candidate solution depends on all valti¢ise variables in the
candidate solution, two candidate solutions in which ongmale variable is labelled
differently therefore have different neighbourhoods. Wttenneighbourhoods of all
value-combinations of the variables have been examinedHithClimber with Restart
Algorithm will revert to re-examining candidate solutions that haeerbchecked al-
ready. When this happens, the population maintained biAh€limber with Restart
Algorithmis said to have converged on a local optimum and the algoiiglsaid to be
stuck in a local optimum. At this point, theill Climber with Restart Algorithnwill
be unable to proceed to a global optimum on its own.

In order for theHill Climber with Restart Algorithnto escape a local optimum, a
restart strategy is used: during the search HikeClimber with Restart Algorithmis
restarted with a new, randomly generated, population, badsearch for the global
optimum is renewed. Different restart strategies can béeghplepending mostly on
when to restart the algorithm. We have implemented a nastantestrategy, were the
Hill Climber with Restart Algorithnis restarted after a preset number of iterations.

Algorithm 5.3 shows the pseudo-code of tidl Climber with Restart Algorithnwith
this restart strategy. Like tHeandom Search AlgorithrtheHill Climber with Restart
Algorithm also has a parameter callecuz_evaluations determining the maximum
number of candidate checks allowed. The variable is cheagathst thevaluations
parameter in the while statement (4). Again theluate operator returns the number
of evaluations necessary to evaluate the population, lysequal to the size of the
population. Themove_hill_climber described earlier replaces theve operator in
line 9. The restart strategy is implemented by adding-tart_interval parameter
and the if-then-else statement. After an intervateftart_interval evaluations have
been performed, the population is replaced by a new, randmtialised, population
(line 7). No more modification is then done, as it is possiblérid a solution in the
new population. The mod-operator returns the remaindéreodlivision ofiteriations
andrestart_interval. If iterations is a natural multiple ofrestart_interval, the
mod-operator returns zero. It is possible that for certamiginations of population
size andrestart_interval values, the mod is not exactly zero while a restart of the
algorithm is still necessary. When the number of evaluationsach iteration is equal

49

to the population size, line 5 should then be replaced Wittvaluations > 0 A
evaluations modrestart_interval < |P|.
Algorithm 5.3: The Hill Climber with Restart Algorithm

1 funct HCAWRmax_evaluations, restart_interval) =
2 evaluations := 0;

3 P :=1initialise;

4 while ~contains_solution(P) V evaluations < maz_evaluations do
5 if evaluations > 0 A evaluations modrestart_interval = 0
6 then

7 P :=initialise;

8 else

9 move_hill_climber(P);

10 fi

11 evaluations := evaluations + evaluate(P);

12 P := select(P);

13 od

14 end

5.2 Evolutionary Algorithms

Evolutionary algorithms are based on the evolution paradigirst described by

C. Darwin in “The Origin of Species by Means of Natural Setator the Preservation
of Favoured Races in the Struggle for Life.” ([21]), the me&lely accepted collection
of evolutionary theories today is the neo-Darwinian pagadi Neo-Darwinian theory
arguments that the history of life can be fully accounteddgrphysical processes
operating on and within populations and species ([47]).

The processes described in the neo-Darwinian paradigmegreduction, mutation,
competition, and selectiorReproductioris an obvious property of extant species. It
is accomplished through the transfer of an individual'segenmaterial to progeny.
Mutationis guaranteed, in that replication errors during inforimatiransfer will nec-
essarily occur.Competitionis the consequence of expanding populations in a finite
resource spaceSelections the inevitable result of competitive replication as spec

fill the available space. Evolution becomes the inescapasiglt of interacting basic
physical statistical processes ([49, 88, 4] and others).

In [62], E. Mayr summarised some of the more salient charities of the neo-Dar-
winian paradigm:
1. The individual is the primary target of selection.

2. Genetic variation is largely a chance phenomenon, ssticharocesses play a
significant role in evolution.

3. Genotypic variation is largely a product of recombinaténd “only ultimately
of mutation”.

50

4. “Gradual” evolution may incorporate phenotypic discouities.

5. Not all phenotypic changes are necessarily consequef@shocnatural se-
lection.

6. Evolution is a change in adaptation and diversity, notatyea change in gene
frequencies.

7. Selection is probabilistic, not deterministic.

Simulations of evolution rely on these foundations [38,82,They are translated into
algorithms using the common underlying idea of all evoludity algorithms: given a
population of individuals, the environmental pressureseawnatural selection (survival
of the fittest) which causes a rise in the overall fithess opthigulation.

That such a process can be used for optimisation is easy toGgen an objective

function, a set of candidate solutions can be randomly eced®y applying the objec-
tive function, an abstract fithess measure can be calculatesdl candidate solutions
in the set. Based on this fithess, some of the better candidatgons are chosen to
seed the next generation by applying recombination andigation.

Recombination is then an operator applied to a number ofidatedsolutions (usually
two), called parents, which results in a number of candidatetions, called children.
Mutation is usually a unary operation applied to one cartdidalution which pro-
duces as a result a single new candidate solution. The atedidlutions produced by
recombination and mutation form an offspring populatioricilcompetes, based on
their fitness, with the parent population for a place in thet generation. This pro-
cess is iterated until either a solution is found or a presfipget computational limit is
reached, usually, a maximum number of candidate solutltatsare examined.

In this process, selection acts as a force pushing qualitylevthe variation opera-
tors, recombination and mutation, create the necessaeysity. Their combined ap-
plication leads to improving fithess values in consecutiopytations, approximating
optimal fitness values closer and closer.

Many components of the evolutionary process are stochdstiselection, fitter indi-

viduals have a higher chance to be selected than less fit louetypically, even weak
individuals have a chance to become a parent or to surviveorRigination is stochastic
as, in general, the choice of which variables of the candidatution will be recom-

bined is made randomly. Similarly for the mutation operatioe variables that are to
be mutated, and the values that they are taking are choséamy

Evolutionary algorithms are studied by the Evolutionaryn@aoitation research field.
Over the years, four main dialects within the evolutionasgnputation field have been
establishedEvolutionary Strategie€volutionary ProgrammingGenetic Algorithms
andGenetic ProgrammingT he differences between the four dialects are charaeteris
by the typical representations, the methods for producnglom variance in the pop-
ulation, and the method employed for selecting parents.s8udision on these differ-
ences can be found in [32]. Here, it suffices to say that therigfgns discussed in this
thesis are most closely related@netic Algorithms

51

5.2.1 Thelntuitive Evolutionary Algorithm

The Intuitive Evolutionary Algorithmis used as a benchmark evolutionary algorithm
for the other evolutionary algorithms in this thesis. Itjesifically designed to solve
constraint satisfaction problems and is: easy to undetstaas decent performance
and has no major alterations to the canonical evolutionigigrithm described above.

The pseudo-code of thimtuitive Evolutionary Algorithms given in algorithm 5.4.
From the similarities between algorithm 5.1 and 5.4 it isydassee that evolutionary
algorithms are part of the Iterated Local-Search group. differences are apparent:
The select operator from algorithms 5.2 and 5.3 is split into two setetbperators,
select_parents andselect _survivors, and themove operator is split into arossover
and amutate operator.

Algorithm 5.4: The Intuitive Evolutionary Algorithm

funct IEA(maz_evaluations) =

evaluations := 0;

P = initialise;

while —contains_solution(P) V evaluations < max_evaluations do
S := select_parents(P);
S := crossover(S);
S := mutate(S);
evaluations := evaluations + evaluate(S);
P := select_survivors(P, S);

© 00 N o g b~ W N

od

[y
o

The split in theselect operator is necessary because evolutionary algorithiiy dpp
crossover andmutate operators on just a part of the population called the parept p
ulation. The candidate solutions in the parent populatiersalected with replacement.
The crossover operator typically takes two candidate solutions from theept pop-
ulation and produces two candidate solutions from them. yMdiffierent crossover
operators have been proposed. The candidate solutionsiqaody thecrossover
operator are called the children of the operator, the pajpnlaf all children is called
the child population. It is used as a parent population ferrthitate operator. The
mutate operator takes a single parent candidate solution and pesda single child
candidate solution. Th&itialise operator initialises the population randomly, just as
in algorithms 5.2 and 5.3, thevaluate operator is also the same as in those two algo-
rithms. The conditional statement in the while loop (linesA¢alled the stop-condition
of the algorithm.

In evolutionary algorithms it is customary to use the teimomosomédor candidate
solutionandgeneandallele for variable andvaluerespectively. The terrindividual

is commonly used as a synonym fadrromosomeut we will use in its more precise
meaning, which is to refer to a pair consisting of a candidalation and its fithess
value. One iteration of an evolutionary algorithm is oftalled ageneration The
crossover- and themutation-operators together are called the genetic- or variation-
operators of an evolutionary algorithm.

52

Innards of the Intuitive Evolutionary Algorithm

This section will describe how thimtuitive Evolutionary Algorithnmis implemented
to solve constraint satisfaction problems. In [48], Hollasuggested that, for genetic
algorithms, candidate solutions should be implementedguaibinary representation.
For the CSP this would entail the encoding of each value asayiector. The com-
plete candidate solution would then be the concatenatitimese vectors in order. This
representation has been criticised as being cumbersomiengnalctical for problems
including real values. For the CSP especially, it was folnad tepresenting the candi-
date solutions as a vector of values, without encoding, iemmactical with no adverse
affects on the performance of the algorithm. As suchigitive Evolutionary Algo-
rithm uses this representation for its individuals. This repneséeon is denoted as an
ordered set of valuesThe individuals are initialised by uniform randomly sdieg a
value from the domain of each variable in the CSP. A populasdhen a set of these
individuals.

The fitness value of an individual is calculated by the oldjedunction. In algorithm
5.4 this is done using thevaluate operator. This operator evaluates all individuals in
the population. The fitness value of an individual is commoaferred to as thétness
of an individual. The fitness of an individual is used by thkesgon operators for se-
lecting certain individuals over others for the next getiera The selection operators
thus determines the direction of the search of an evolutjoalgorithm. An objective
function for an evolutionary algorithm solving a CSP has ¢oable to determine if
a candidate solution is a solution to the CSP, since at thi# plee search can stop.
However, since the CSP is a satisfaction problem, for anugieolary algorithm, only
determining whether or not a candidate solutions is a smius not enough. An ob-
jective function also has to be able to distinguish whichvas tandidate solutions is
better without them being solutions to the CSP. Two commasld methods for this
have been proposed ([17]):

1. Assign a fitness value based on the number of constraiatgtik individual
violates; and

2. Assign a fitness value based on the number of variablevithlate a relevant
constraint

Anindividual is then a solution when either no constraimes\aolated or when no vari-
ables violate their relevant constraints. Both objectivactions are to be minimised.
Given a CSP(X, D, C), s = ({x1,v1),...,{z|x|,vx|)) @ candidate solutior;; a
constraint inC, andC"” the set of constraints relevantig, the two objective functions
f1 and f5 are defined as follows:

IC]

fils) = 3 _x(sc:) (65.1)

53

where

1 if violates(s,c;)
) = . 5.2
x(s,ci) {0 otherwise ®2)
and
1] '
fa(s) =Y x(s,CY) (5.3)
j=1
where
- 1 if 3c € C7 : violates(s,c)
,07) = , 5.4
X(5,C7) {0 otherwise 4

Objective functionf; provides more information thafy,. This is obvious when the
range of the fitness values of the two objective functionscarepared. The range of
the fitness values of; is (0, |C), the range of the fitness values f&fis (0, | X|). The
number of constraints in a CSP is calculated uging 1|X| - (|X| — 1), therefore
whenp; - 1 -|X|- (| X| — 1) > |X|, fi will provide more information. The ranges
of the fitness values of both objective functions are equarwh - (3|X| — 1) = 1.
For example, for a CSP with) variables, thef; objective function will provide more
information when the density is betwee5 and0.95. Because the fitness values are
calculated over the constraints of the CSP, howeverfthabjective function will use
more conflict checks per evaluation. Timeuitive Evolutionary Algorithnwill use the
first objective function f;).

Many different parent selection operators have been pexpls evolutionary algo-
rithms. In various ways, all try to maintain a balance betwe selection of good in-
dividuals to for further development and lesser individnalrder to maintain diversity
of the population. Théntuitive Evolutionary Algorithmuses a parent selection oper-
ator based ofinear ranking selectior{[87]). Linear ranking selection orders (ranks)
the individuals in the population by their fithess valueddiViduals are then uniform
randomly selected based on their rank in the ordering byrgéing a pseudo-random
number betweef andpop_size — 1, wherepop_size stands for the size of the pop-
ulation. Since most pseudo-random number generators emlgrgte numbers in the
rangel0, 1), the rank is calculated by multiplying the random numbepby_size and
rounding it down to the nearest integer number:

i = |pop_size - random | (5.5)

wherei is the rank in the ordered population angndom a pseudo-random number
in the rangg0, 1). |-] denotes that the number is rounded down to the nearest hatura

54

0.8 |

06 | i

multiplier

o4k //,, //’/v |

0.2 |

bias=2 ----

0.6 0.8 1

random value

Figure 5.1: Biased ranking multiplier plotted agaimandomvalues for bias €
{1.0(linear), 1.2,1.5,1.7, 2}.

number. Selection pressure in linear ranking selectioxasted through the random
selection ofrankedindividuals.

The Intuitive Evolutionary Algorithnthanges the linear ranking selection operator by
adding a bias so that better individuals are more often teled he operator is called
the biased rankingselection operator. The amount of bias is set by a bias-peteam
for the operator:bias. The range obias is betweenl (no bias, or linear ranking
selection) an@ (strong bias), inclusive. Which individual is selected icatated by
the following equation:

bias — \/bias? — (4 - (bias — 1)) - random

2 (bias — 1) (5-:6)

1 = | pop_size -

wherei is the rank in the ordered population, angndom and |-] the same as in
equation 5.5.

The effect of different values for the bias-parameter isasshoFigure 5.1. It shows
the ranking multiplie(bias — \/bias? — (4 - (bias — 1)) - random)/(2 - (bias — 1))
(y-axis) applied to the population size (equation 5.6) fofedént values obias for
the range of possibleandom values {-axis). The line “linear”, wherbias = 1,
shows that no bias is applied and every individual has theesamance of being se-
lected. Wherbias is increased, the range sindom where higher ranked individuals

55

IEA

Evolutionary Model Steady State

Representation Ordered Set of Values
Objective Function f1

Crossover operator Uniform Random Crossovgr
Mutation operator Uniform Random Mutation
Parent Selection Biased Ranking

Survivor Selection Elitist Replace Worst

Other Functions None j

Table 5.1: Characteristics of thetuitive Evolutionary Algorithm

are chosen increases while the range @idom where lower ranked individuals are
chosen decreases.

The survivor selection operator merges the child-popaatif the genetic operators
(S) with the population of the evolutionary algorithr®?). The Intuitive Evolutionary
Algorithm uses arelitist replace worst survivor selectiasperator. A survivor selec-
tion operator is called elitist when is preserves individiaom the population with
the best fitness value. In thetuitive Evolutionary Algorithnonly a single individ-
ual from the population is preserved. The other individdedsn the population are
replaced by individuals from the child population when tH#hess values are worse.
The survivor selection operator in thetuitive Evolutionary Algorithnmaintains the
size of population. An evolutionary algorithm in which recbination of less than
the whole population is performed every generation is saihtploy thesteady state
evolutionary model.

The genetic operators used in timuitive Evolutionary Algorithnare called theini-
form random crossovesperator and theniform random mutatiooperator. The uni-
form random crossover operator takes two parent indivilaatl randomly swaps each
value between them, producing two child individuals. Umniforandom mutation is
also calledk/I-mutation. It takes a single parent individual and changesh e/alue
with probability p, called the mutation rate. It takes its name from the two patars

to calculate the mutation raté:for the number of values of the individuals, here the
number of variables of the CSP to solve, dnthe parameter to determine the muta-
tion rate using the equatiop:= % Much theoretical and empirical research has been
done on the best mutation rate setting (see for example B6/% 67]) for different
evolutionary algorithms for different problems. Througitperimentation we found
thatk = 1 is a near optimal value for the mutation rate for thauitive Evolutionary
Algorithm, constraint satisfaction problem combination. The vatuthe individual is
changed to another value in the domain of its variable.

The characteristics of all evolutionary algorithms pragmbn the thesis will be sum-
marised ircharacteristics tablesThe characteristics table of th&uitive Evolutionary
Algorithmis shown in Table 5.1.

56

Chapter 6

Performance Measures and
Experimentation

In this chapter th®@andom Search Algorithrthe Hill Climber with Restart Algorithm
and thelntuitive Evolutionary Algorithnalgorithms will be used as an example of our
method of experimentation. First we introduce the perforceameasures that will
be used throughout the thesis and how they are displayedl@stand figures. The
measurements of the three algorithms will be shown nexhénhird and final section
of the chapter we show how the results are compared and howlusions can be
drawn from them with a certain degree of accuracy.

6.1 Performance Measures

The classical algorithm described earlier only needed glesiperformance measure,
the number of conflict checks needed to find a solution if thebl@m instance is
solvable or the number of conflict checks needed to deterihimgroblem instance
is unsolvable. Because non-deterministic algorithms atecomplete, the conflict
checks performance measure does not give enough informatfp for example, a
non-deterministic algorithm does not find a solution dur@nigin, this does not imply
that the problem instance the algorithm was trying to savenisolvable. This can only
be estimated with some degree of certainty with a very lomgara large number of
shorter ones and even then, there is the possibility of ndirfina solution when there
is one. Since in this thesis we use a test-set that contalgsolvable CSP instance,
this experiment is actually unnecessary, however, this doemean that multiple runs
on a single instance are also unnecessary because multiigenill provide an esti-
mate of the overall performance of the algorithm. An acaiestimate of the overall
performance of the algorithm can be given by running theréttyom multiple times on
the same (set of) problem instances and then averaging tftgrpance measures over
the number of runs. The accuracy of the estimate increases the number of runs

57

increases.

This section will define a number of performance measures.niéasures will be used
to assess the performance of the algorithms on three pregert

1. The effectiveness; which determines how good an algarighn finding a solu-
tion;

2. The efficiency; which determines how fast an algorithmfaasha solution; and

3. The behaviour: which gives an insight in how an algorithmdgia solution.

Behavioural measures can also give an explanation on whglgnethm outperforms
another.

6.1.1 Success Rate

The Success Rat&R of an algorithm is calculated by dividing the number of sagsz
ful runs of an algorithm by the total number of runs. A suctiggsin of an algorithm
is a run where the algorithm found a solution to the problerhe Tange of the&sR
measure is betwedhand1, but is sometimes expressed as a percentile. 18R 0,
no solutions were found, if it i$, all runs were successful. TI8Ris a measure of the
effectiveness of the algorithm.

The SRmeasure is the most important measure when we compare tagthafgs. An
algorithm with a higheiSRfinds more solutions than an algorithm with a lov&R
and finding solutions is, after all, what the algorithm isigesd to do. The accuracy
of the SRmeasure is influenced by the total number of runs, more rumsg® a more
accurate approximation of tHeRof the algorithm. When the difference between the
SRof two algorithms is small, it does not necessarily mean thatalgorithm with
the bestSRoutperforms the other algorithm. The difference can alsedesed by
the inaccuracy of the measure, properties of the test-get, @&d random influences.
Further analysis is then necessary.

6.1.2 Average Number of Evaluations to Solution

The average number of evaluations to solutiohB9 of an algorithm is calculated by
the average number of evaluations over all successful itmsnumber of evaluations
is calculated by counting the number of times that the eteloperator was used by
the algorithm. If a run is unsuccessfAlESis undefined. ThAESis a measure of the
efficiency of the algorithm.

TheAESmeasure is used as a secondary measure for comparing twithaigo When
two algorithms have approximately the sa8R theAESmeasure is used to determine
which algorithm is more efficient. The algorithm with the lemAESis more efficient
than the algorithm with a high&xES

58

6.1.3 Conflict Checks

The number of conflict checks needed to find a solutt@@)(measure is calculated by
the average number of conflict checks over all successfsl rline number of conflict
checks is calculated by counting the number of times thatnapeoaind label is tested
to be in a constraint of the CSP. If a run is unsucces€d,is undefined. The&C
measure is a measure of the efficiency of the algorithm.

The CC measure is used as a more fine grained efficiency measure omjgace the
performance of a non-deterministic algorithm with a cleakalgorithm. TheCC mea-
sure is more precise than t&€Sbecause it counts the conflict checks used while
the AEScounts the evaluations. Because different evaluationabpes use different
amounts of conflict checks and evaluations of different @#atd solutions also use
different amounts of conflict checks, the difference betwego algorithms can be
quite large.

The CC measure also accounts for the “hidden work” done by the #hgor Hidden
work is defined as the number of conflict checks performed byatgorithm outside
the evaluation operator. The efficiency of the evaluatiografor can be approximated
by dividing theCC by theAES This can only be an indication of the efficiency because
it leaves out the hidden work performed outside the evalnaiperator.

6.1.4 Unique Individuals Checked

The number of unique individuals checkddIC) measure is calculated by counting
the number of unique candidate solutions that were evaludigng the run. Th&JIC
measure is a behavioural measure and is measured at istdoralg a run. When the
UIC measure is applied to a number of runs, the measure is adeozge all runs at
each interval. The interval over which the measure is catedlis usually every00

or 1000 evaluations, depending on the maximum number of evalusatiowed.

For a single run, th&IC consists of a monotonic increasing sequence of values. When
the algorithm has not converged on a local optimum it cossisia strict monotonic
increasing sequence of values. WhenUh€ is averaged over all runs, it does not have
to consist of a monotic sequence of values, as smaller nwmfemique individuals

can occur when one of the runs is successful and the remainitsghave an average
UIC that is smaller than the averagkC including the successful run. TRH4C mea-

sure is depicted as a plot where on th@xis the number of evaluations and on the
y-axis the (averagd)IC is shown. The line where every evaluated candidate solution
is unique is added as a reference.

6.1.5 Mean Best Fitness and Mean Champion Error
The mean best fithnesMBF) measure is calculated by averaging the fitness value of
the best candidate solution in the population over a numbems at a given moment.

Moments are specified via our notion of time, measured byopaed fithess evalu-

59

ations. TheMBF measure is depicted as a plot where on thaxis the number of
evaluations and on thg-axis theMBF measure is shown. THdBF measure depends
on the fitness function. This makes comparing two algorithvite different fithess
functions difficult which is why in the same plot the champ@mor is added.

The mean champion erroMCE) measure is calculated by averaging the number of
violated constraints of the best candidate solution (thergdion) in the population,
again over a number of runs at a given moment. Just dglBfemeasure, the intervals
are determined using the number of performed fithess evwaihsat This measure is
independent of the evaluation operator used. A plot whetle the MBF and theMCE
measure are shown uses the left-hgrakis for theMBF measure and the right-hand
y-axis for theMCE measure.

The interval over which both measures are commonly usg&@lisr 1000 evaluations.
Both theMBF and theMCE measures are behavioural measures.

6.2 Experimentation

All experiment in this thesis will be performed on the test-generated in Chapter
4. 10 independent runs on alK75 instances in the test-set will be performed. Al-
though this might seem like a low number of runs, performifigndependent runs on
25 instances for each density-tightness combination in theset provide250 sam-
ple points for each density-tightness combination. Asdtee59 density-tightness
combinations in the test-set this amounts to a total4aH0 runs performed for each
algorithm. TheSRis calculated over alt50 sample points for each density-tightness
combination, thlAESandCC measures are calculated over successful runs only. The
UIC, MBF, andMCE measures are calculated at an interval@f0 evaluations during
each run. All algorithms use a population sizel 6fcandidate solutions for all runs. A
maximum number 000000 evaluations is allowed for each algorithm. With a popu-
lation size of10 candidate solutions this allows for approximatép00 generations
depending on the algorithm used.

The results of the experiments will be summarised by thrgleseand two plots of each
algorithm. The tables show tI&R AES andCC measures. Along the columns of the
table the density is shown, along the rows the average &gbtis shown. Density-
tightness combinations not in the test-set are represenmitidda '-’. The density-
tightness combinations in the mushy region are represémtbe lowest row for each
column in the tables. When th®ESand CC measures exceeth0000000 evalua-
tions and conflict checks respectively, they will be rountiethe nearest million with
-10%added. The two plots show théC, and theMBF MCE plots as explained earlier.

6.2.1 Results of theRandom Search Algorithm

In Table 6.1 the parameters used for the experiments Rétlidom Search Algorithm
are shown. Table 6.2 shows tB&of the Random Search Algorithmit shows that

60

RSA

Population Size 10
Selection Siz 10
Maximum Number of Evaluations 100000

Table 6.1: Parameters of tiRSA

the Random Search Algorithiis unable to solve any CSP instance in the mushy re-
gion except for density-tightness combinationl, 0.9) where53.2% of the runs were
successful. As thRandom Search Algorithgearches for a solution by checking ran-
domly instantiated candidate solutions, this rather paafgomance was to be ex-
pected. Table 6.2 also shows that for a large portion of tieabte region in the
test-setRSAfound a solution for all runs (8Rof 1.0). The instances in this region
are obviously very easy to solve and should not be used to amntpe performance
of two algorithms. Table 6.2 also shows that 8iRof the Random Search Algorithm
drops off sharply after these easy instances. For the harskances a more powerful
search method is required.

Table 6.3 shows thAESof the Random Search Algorithni-or the density-tightness
combinations where no runs were successful AE&measure is undefined, indicated
by undeffFor the density-tightness combinations where all runs weceessful thAES

is low. The AESmeasure is inaccurate when the number of successful ruaSRBh

is low. TheAESincreases when the complexity increases, indicating tlwaiereearch
was necessary. The only two exceptions are density-tightoembination$0.4, 0.6)
and(0.5, 0.5) but this is due to the loRof these density-tightness combinations and
the inaccuracy of thAES

Table 6.4 shows th€C of the Random Search Algorithmiust as with thdESmea-
sure, for density-tightness combinations where no runge weccessful, thAESmea-
sure is undefined, indicated mndef. The CC measure is also inaccurate when the
SRfor a density-tightness is low. Again, ti&C increases when the complexity of the
instances increases.

Figure 6.1 shows th&JIC of the Random Search Algorithiior the density-tightness
combinations in the mushy region. Throughout the thesigngtier we display plots
of results in the mushy region, we do so by displaying a groupiree plots. Each

plot in the group displays the results of an experiment ors#ieof CSP instances of
one of the density-tightness combinations in the mushyredrihe plots are displayed
in the following order: The top row, from left to right; denhsitightness combina-
tions (0.1,0.9), (0.2,0.9), and(0.3,0.8). The middle row, from left to right; density-
tightness combination®.4, 0.7), (0.5,0.6), and(0.6, 0.6). The bottom row, from left

to right; (0.7, 0.5), (0.8,0.5), and(0.9, 0.4).

The plots show that thRandom Search Algorithexamines a unique individual almost
every time a new individual is initialised. The chance ofialising a new individual
that was already examined before is small but increases esintividuals are exam-
ined. After the maximum number of individuals allowed wexamined, the chance of

61

generating an individual that was already examined is aqinmaielyllo% = m.
The Random Search Algorithsearches through almost the maximum search space

allowed, unfortunately, most of the search space seartinedgh is infeasible.

Figure 6.2 shows thBIBF andMCE of theRandom Search Algorithfior the density-
tightness combinations in the mushy region. The straigleslithrough almost all plots
indicate that no real search was performed. The exceptidheiplot for density-
tightness combinatiorf0.1,0.9) which shows a “saw-tooth” line foMBF. This is
caused by the successful runs. When a runs are successfldeshditness of the
individuals in their populations i8. When a runs is successful at the interval when the
measure is taken this reduces the average mean best fithesedicated by the spike
downwards. When the next interval is calculated, the subdeass is not included and
the average mean best fitness is back at its former value. pikessncrease in depth
because the average is taken over fewer values as more aerdungrare successful
and are left out. The spike is double the depth when two rumswrcessful at the same
interval in the run.

62

Pz 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.3 1.0 1.0 1.0 1.0 1.0 1.0 0.58 0.216 0.044
0.4 1.0 1.0 1.0 1.0 0.52 0.088 0.0 0.0 0.0
0.5 1.0 1.0 0.996 0.28 0.012 0.0 0.0 0.0 —
0.6 1.0 1.0 0.208 0.004 0.0 0.0 — — —
0.7 1.0 0.764 0.0 0.0 — — — — —
0.8 1.0 0.104 0.0 — — — — — —
0.9 0.532 0.0 — — — — — — —

Table 6.2:SRof theRandom Search Algorithm

a2 01 02 03 04 05 06 07 08 09

0.1 10 10 12 14 18 29 42 58 95
0.2 10 15 30 82 199 459 1435 3268 11966
0.3 13 37 185 644 3724 14789 40496 42819 46935
0.4 20 116 1440 9780 46054 44260 undef. undef. undef.
0.5 ol 536 17410 45909 26007 wundef. undef. undef. —

0.6 124 3724 50477 44650 undef. undef. — — —
0.7 465 38981 wundef. undef. — — — — —
0.8 4615 47010 undef. — — — — — —
0.9 41146 undef. — — — — — — —

Table 6.3:AESof theRandom Search Algorithm

;P2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 40 62 89 120 171 278 406 566 937
0.2 35 65 146 394 978 2277 7152 16217 59915
0.3 37 118 601 2134 12241 49269 132841 142246 159318
0.4 47 288 3605 24587 116234 111178 undef. undef. undef.
0.5 97 1075 34225 92617 53995 undef. undef. undef. —
0.6 205 6178 83460 76249 undef. undef. — — —
0.7 661 55714 undef. undef. — — — — —
0.8 5825 58842 undef. — — — — — —
0.9 46241 undef. — — — — — — —

Table 6.4:CC of theRandom Search Algorithm

63

uique il checked

unique s checked

i indhicals checked

mean best ftness

[S—

i

meanbes

0.1,0.9) 0.2,0.9) 03.0.8)
oo ¥ o f om0
o o o
o o
oo o oo
04.0.7) 05,06) 06.06)
o o o
oo 1 o won
40000 H 40000 40000
o o
oo . o
0.7,05) 08,0.5) (0.9,0.4)
o e o
3 k3
oo 1w i womo
H H
P { e
o e
© (0209 0.308)
0996 as3 1005 816 1005 e
o - w § 2 §
O O Toon0 20000 30000 40000 50000 60000 70000 80000 0090 100000 0 10000 20000 30000 40000 50000 50000 70000 50000 0000 100000 O T lo00 20000 30000 40000 50000 60000 70080 500050000 100000
0.40.7) (05.0.6) (0.6,0.6)
h 1630
1 F] 1 1 1625
§ 300 120 §
.
0985 ME; rand 1245 0585 c 1365 0.985 1600
0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 0 10000 20000 30000 40000 50000 60000 70000 800OO 90000 100000
0.7.0.5) 0.810.4) 10.9,0.4)
1o o § 0
. 5
K i
R T T

Figure 6.2:MBF andMCE of theRandom Search Algorithm

64

HCAWR
Population Size 10
Selection Siz 10
Maximum Number of Evaluations 100000
Restart Interval 5000

Table 6.5: Parameters of th&CAWR

6.2.2 Results of theHill Climber with Restart Algorithm

In Table 6.5 the parameters used for the experiments witkhl@&WRare shown. In
order to find the restart interval of thdill Climber with Restart Algorithma number

of test experiments were done. It was found that after ab@a evaluations thédill
Climber with Restart Algorithneconverged to a local optimum and no new individuals
would be examined. The restart interval was therefore sed(t evaluations. Table
6.6 shows theSRof the Hill Climber with Restart Algorithm It shows that theHill
Climber with Restart Algorithnwvas successful in finding solutions in all runs.

Table 6.7 shows thAESof the Hill Climber with Restart AlgorithmBecause all runs
were successful, theRESmeasure for thélill Climber with Restart Algorithnis reli-
able. This because thESis an average measure and when all runs are successful its
reliability doesn’t suffer from a lack of samples. The tabltews that thédill Climber

with Restart Algorithmmeeds relatively few evaluations to find a solution but that t
AESincreases as the complexity of the instances increases. igBubstantiated by
Table 6.8 which shows th€C of the Hill Climber with Restart AlgorithmFigure 6.3
shows theJIC plots of theHill Climber with Restart Algorithnin the mushy region.
The stepwise increase of thHC is explained by the restart strategy. The steps have a
length of5000 evaluations. After this number of evaluations, th€ does not increase,
indicating a premature convergence to a local optimum. itghint the population is
reinitialised randomly and theIC increases again unB00 evaluations later another
convergence to a local optimum occurs, etc.

Figure 6.4 shows th®1BF andMCE plots of theHill Climber with Restart Algorithm
in the mushy region. These plots too show stepwise changesibe of the restart
strategy used. ThEIBF of the population decreases stepwise whileN@E measure
shows a spiked behaviour. The spikes occur when the rdiséthpopulation includes
not yet improved candidate solutions with a large error. &irer is greatly decreased
when after another interval the candidate solutions areaugal by the move operator.
The total number of evaluations of théBF and MCE plots corresponds to thelC
plot, the spikes in thCE line correspond to the steps in tbéC plot.

65

mPZ 01 02 03 04 05 06 07 08 09

0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 —
0.6 1.0 1.0 1.0 1.0 1.0 1.0 — — —
0.7 1.0 1.0 1.0 1.0 — — — — —
0.8 1.0 1.0 1.0 — — — — — —
0.9 1.0 1.0 — — — — — — —

Table 6.6:SRof the Hill Climber with Restart Algorithm

P 01 02 03 04 05 06 07 08 09

0.1 10 10 11 13 17 22 25 33 33
0.2 10 14 23 31 39 48 54 60 69
0.3 12 24 40 50 62 73 129 235 579
0.4 17 34 %) 70 281 720 2352 6203 15178
0.5 27 48 183 637 2747 7295 23718 17290 —
0.6 37 125 1112 3707 15487 18464 — — —
0.7 68 830 8744 16208 — — — — —
0.8 390 3487 15412 — — — — — —
0.9 1858 9712 — — — — — — —

Table 6.7:AESof the Hill Climber with Restart Algorithm

;P2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 50 105 305 561 1207 2100 2743 4003 4288
0.2 98 628 1931 3206 4470 6101 7172 8448 10198
0.3 303 1949 4264 5943 7912 9736 18817 36017 93199
0.4 910 3286 6343 8660 39583 106039 360394 976505 2 - 10°
0.5 2229 5180 23882 87971 396324 1-10 4.10% 3.-10% —
0.6 3541 15254 149729 516498 2-10° 3-10% — — —
0.7 7554 107407 1-10% 2-106 — — — — —
0.8 48309 454559 2.10¢ — — — — — —
0.9 234242 1-106 — — — — — — —

Table 6.8:CC of the Hill Climber with Restart Algorithm

66

(0.1,0.9) (0.2,0.9) (0.3,0.8)
18000 40000 80000
1o000. 35000 70000
o B R
; Foomo 3 oo
i 1
o Gz 5 som
- oo , 0
2000 5000 g 10000
T Vo e R R) R R
won o
(0.4,0.7) (0.5,0.6) (0.6,0.6)
.
won
oon
swon o
i i oo
Lo H
fom ! o
o0
wow
o 10000 20000 30000 40000 50000 60000 70000 B0000 90000 10000 20000 30000 40000 50000 60000 70000 on 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
o won 0
(0.7,0.5) (0.870.5) (0.9,04)
70000 80000
won
wwon
oo oo
ki ki
1. Foo »
§ somo o
£ 2 30000
0000 & 50000
30000 N :zmnn
oo
o0
o o
nu‘ 10000 20000 30000 40000 SO000 60000 70000 8OO0 90000 100000 ou 10000 20000 30000 40000 50000 60000 70000 80000 nu 10000 20000 30000 40000 50000 60000 70000
{0.170.9) (0.2,09) (0.3,08)
Lo Lo)
1006 1006 1§ Fue 25 §
1004 1004 =
-

0998 Mg; i 0998 08 Vg; i 08 08 & = - 1
T T e e w0 e e e e T e i
(0.4,0.7) ©508) 1 7 (0.6,0.6)

8 H 285 1 s
B . E g
2
"

0s LEET PEE) 1

T T T) T ch oo R 0w

(0.7,0.5) (0.8,0.5) (0.9,0.4)

. ‘e H
2 .

o8 1 s LETTT n kY i 1

T e e e R TR O T [T TR

Figure 6.4:MBF andMCE of the Hill Climber with Restart Algorithm

67

IEA
Population Size 10
Selection Size 10
Maximum Number of Evaluations 100000
Crossover Rate 1.0
Mutation Rate 0.1
Linear Ranking Bias 1.5

Table 6.9: Parameters of thieA.

6.2.3 Results of thantuitive Evolutionary Algorithm

In Table 6.9 the parameters used for the experiments withntioéive Evolutionary
Algorithm are shown. Table 6.10 shows tB& of the Intuitive Evolutionary Algo-
rithm. TheIntuitive Evolutionary Algorithnfinds solutions in the test-set throughout
all density-tightness combinations although the perforceas lower than the perfor-
mance of theHill Climber with Restart Algorithm The Intuitive Evolutionary Algo-
rithm has trouble finding solutions for the instances in the musigjon.

Table 6.11 shows thAESof the Intuitive Evolutionary Algorithm The AESis higher
than theAESof the Hill Climber with Restart Algorithmespecially when the hardness
of the instances increases. BecauseSRef the Intuitive Evolutionary Algorithmis

low for these instances, the accuracy of #&ESmeasure is also less than the accuracy
of the AESmeasure for thélill Climber with Restart Algorithm This is substantiated
by theCC of the Intuitive Evolutionary Algorithnshown in Table 6.12.

Figure 6.5 shows th&JIC plots of thelntuitive Evolutionary Algorithmin the mushy
region. The plots show that thdC keeps increasing during the run but that the rate of
increase decreases. Important to note is that during thaoymemature convergence
to a local optimum occurred.

Figure 6.6 shows th®IBF and MCE plots of thelntuitive Evolutionary Algorithmin

the mushy region. ThBIBF andMCE lines in the plots lie close together because the
evaluation operator of thimtuitive Evolutionary Algorithnis actually an implemen-
tation of theMCE measure. The spikes in the plots for density-tightness auatibn
(0.1,0.9) are caused by successful runs and the effect they have onefhega taken
for both methods. This effect is less for the other plots beeahe number of success-
ful runsis less.

68

Pz 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.3 1.0 1.0 1.0 1.0 1.0 1.0 0.992 0.972 0.824
0.4 1.0 1.0 1.0 1.0 0.98 0.872 0.576 0.292 0.088
0.5 1.0 1.0 0.996 0916 0.596 0.252 0.06 0.088 —
0.6 1.0 1.0 0.876 0.476 0.108 0.068 — — —
0.7 1.0 0.892 0.328 0.108 — — — — —
0.8 0.98 0.584 0.064 — — — — — —
0.9 0.808 0.156 — — — — — — —

Table 6.10:SRof the Intuitive Evolutionary Algorithm

P2 01 02 03 04 05 06 07 08 09

0.1 10 10 11 12 16 22 28 37 42
0.2 10 13 23 37 56 79 117 133 196
0.3 12 25 o7 86 171 226 1319 2697 6510
0.4 18 46 135 337 2133 5282 10054 13766 20571
0.5 31 86 1300 3151 10545 10500 19471 12835 —
0.6 51 500 5138 15594 11971 9929 — — —
0.7 92 3499 10652 19965 — — — — —
0.8 2361 9272 16009 — — — — — —
0.9 4775 18352 — — — — — — —

Table 6.11:AESof theIntuitive Evolutionary Algorithm

nP 01 02 03 04 05 06 07 08 09

0.1 50 91 153 221 372 584 892 1346 1719
0.2 51 117 327 662 1289 2128 3729 4785 8023
0.3 59 223 795 1557 3940 6111 42204 97081 266928
0.4 90 415 1893 6068 49053 142605 321729 495587 843407
0.5 155 778 18198 56724 242536 283500 623083 462060 —
0.6 254 4503 71936 280690 275336 268078 — — —
0.7 461 31492 149134 359367 — — — — —
0.8 11807 83447 224122 — — — — — —
0.9 23873 165166 — — — — — — —

Table 6.12:CC of theIntuitive Evolutionary Algorithm

69

0.1,0.9) (0.2,0.9) (0.3,0.8)
3 oo 1 oo w00
£ oo 2 o oo
20000 2000 o0
20000 oo E w000 Tooo0 2000 oo w000) Toooco D o oo 000 oo
evakatons evauatons [E—
100000 100000 100000
(0.5,0.6) (0.6,0.6)
oo w000 om0
¥ oo 1 om oo
20000 20000 2000
B a0 0 w000 o000) oo w000) oo) oo oo) oo
evanatons evakatons [—
100000 100000 100000
(0.7,0.5) (0.8,0.5) (0.9,0.4)
sono w000 om0
£ como £ oo £ aoom
i H H
§ som § a0 § w0
20000 20000 20000
evaluations. evaluations. h evaluations
18 w2 2 20 20
{0.1,0.9) n (0.2,0.9) (0.370.8)
2 2
26 2
2 25 2
S 105 sl LB
§ 108 100 s> 23 3
10 2 2
1 10
2 2
102 * 102 o N
10! g o zo00 30000 40000 50000 6000 Taoen 50000 50000 100000 ¥ 6 o000 2000 30000 40000 50000 50000 70000 5000050000 100006 100 000 000 3000 90000 50000 60000 70000 80000 50000 100000
0.4,0.7) (0.5,0.6) (0.6/0.6)
2 34 b
2
2
B
2
20
20
oo oo Ao Son0Gonn 7o Goomn woon 10ood D R T T 0 Tow 70 300 000 S0 G000 700 N0 000 0000
evananons evaatons evakasons
0.7:0.5) i (0.8/0.5) (0.9,0.4)
2 o a7 a7 2
. e 5 s 25 2
! as as 24 2
2
g 2ars, 34 5 23
4 24 -8
iE) s § 2
H = L
E22 " e h
as n p p
21
2t 3 3 19 19
2 2 29 29
19 28 ks 28
g T T R T 0 Mo 7o S 40 S0 6N 70N 000 000 10005
evakatons evaatons

Figure 6.6:MBF andMCE of the Intuitive Evolutionary Algorithm

70

6.3 Comparison

Comparing the performance of the algorithms is done in twasph: first a superficial

inspection of the results and then a statistical analysiee domparison focusses pri-
marily on the mushy region because we expect that in the nmeglign the differences

between the algorithms will be more pronounced.

During the first phase of the comparison we will consider$ReAES andCC mea-
sures of the algorithms. Table 6.13 shows these measuréisef®SA the HCAWR
and thelEA in the mushy region. The first phase of the comparison is osgduo
determine which algorithms clearly outperform the oth@ise besSRmeasure in the
table for each density-tightness combination is shown Id-fece. To make the com-
parison more accurate, we have not roundedAtBi&and CC measures in the mushy
region. The results in Table 6.13 show tiRB€AWRoutperforms all other algorithms
when we consideSER The RSAhas the worst performance of the three algorithms,
only for density-tightness combinatidif.1,0.9) does it solve some CSP instances.
The HCAWRalso has the be®tESof all three algorithms for most density-tightness
combinations. Although thBESfor thelEA is sometimes lower, this can be attributed
to the inaccuracy of this measure resulting from the lo8fthat it achieved.

The first phase of the comparison shows that there is a bigrdifte between the per-
formance of thd&RSA theHCAWR and thdEA. Itis clear that thedCAWRoutperforms
the other two algorithms. At this point, no further statiatianalysis is really necessary
to support this conclusion. Not all comparisons will havehsa big difference though
and we give a method for statistical analysis for use in tluases. We will analyse
the performance difference using the two santgiest over the measures of two algo-
rithms. The standard two sampigest formulates two hypotheses in order to decide
which has the better performance:

H() 1 = T2 (61)
Ha1 1T 7é To (62)

There are two hypotheses, the first one, called the nulldmgsis {{,), states that the
average value of the data points in the first sample is equbEktaverage value of the
data points in the second sample. The second hypothesiajtémrative hypothesis
(H,,), states that the average value of the data points in thestirsple is unequal
to the average value of the data points in the second samgle.réBult of the two
samplet-test is expressed byravalue. Thep-value gives the probability that the null-
hypothesis (6.1) is true and the alternative hypothesB) (6.not. Thep-value has a
range betweef.0 and1.0, ap-value of0.5 means that there is an equal probability of
both hypotheses being true, signifying that thest is inconclusive.

Using hypotheses 6.1 and 6.2 we can determine the prolyatfilitvo algorithms hav-

ing equalSR AES or CC measures. The data points for the samples are then the values
of these measures per run, for a totadf data points for each density-tightness com-
bination. Because a run can only be successful or unsuctessfiverage these data

71

RSA HCAWR IEA
(p1,p2) SR AES CC SR AES CcC SR AES CcC

(0.1,0.9) 0.532 41146 462141.0 1858 2342420.808 4775 23873
(0.2,0.9) 0.0 undef. undef.1.0 9712 12670150.156 18351 165166
(0.3,0.8) 0.0 undef. undef.1.0 15412 20879470.064 16009 224123
(0.4,0.7) 0.0 undef. undef.1.0 16208 22606340.108 19965 359467
(0.5,0.6) 0.0 undef. undef.1.0 15487 22374190.108 11971 275336
(0.6,0.6) 0.0 undef. undef.1.0 18464 27415670.068 9929 268078
(0.7,0.5) 0.0 undef. undef.1.0 23718 36406300.06 19471 623083
(0.8,0.5) 0.0 undef. undef.1.0 17290 27227630.088 12835 462060
(0.9,0.4) 0.0 undef. undef. 1.0 15178 24659750.088 20571 843407

Table 6.13: Comparison of tHRSA theHCAWRand thelEA in the mushy region.

points per CSP instance for a total number of data points @esity-tightness combi-
nation of25. Although this reduces the number of data points, this égtircreases
the accuracy of the test. Theest assumes an approximately normal distribution of
the data points and, according to the central limit theor@raraging a sample over a
number of sub-sets makes the distribution of the samplecappate the normal dis-
tribution.

By altering the alternative hypothesis we can order therdlgns according to perfor-
mance. Two alternative hypothesis can be used:

Ha2 T > T (63)
Ha3 T < T2 (64)
But as thep-value of alternative hypothesi$,, (6.4) is equal to one minus thevalue

of alternative hypothesi#/,, (6.3), only a singlet-test is needed to calculate both
probabilities.

The hypotheses used to order the algorithms are:

HO :§R41 = S7R42 (65)
H,, SRy, # SRy, (6.6)
H,, SRy, > SRy, (6.7)

where A; is the first algorithms in the test, in this case thid Climber with Restart
Algorithm and A is the second algorithm in the test, in this caseltitaitive Evo-
lutionary Algorithm The order in which the algorithms are used in the test makes n
difference because thevalue of H 4, is one minus the-value of H 4,,.

Thep-values for the two alternative hypothesis (the null hypsth remains the same)
are shown in Table 6.14. From the table we can see that trexeliife between tHeR

72

(pl) E) Ha1 Haz

(0.1,0.9) 0.0 0.0
(0.209) 0.0 0.0
(0.308) 0.0 0.0
(0.4,07) 0.0 0.0
(0.5,0.6) 0.0 0.0
(0.6,0.6) 0.0 0.0
(0.7,05) 0.0 0.0
(0.805) 0.0 0.0
(0.9,04) 0.0 0.0

Table 6.14: Two sampleTests of theHCAWRand thelEA.

of two algorithms is large as the probability for the null byipesis in both-tests is
0.0 for all density-tightness combinations. Because-alalues aré).0 we have shown
that the average success ratH@AWRIs not equal to the average success ratéof

but that it is in fact larger. The probability that it is not soin fact0.0. Clearly, the
Hill Climber with Restart Algorithnoutperforms théntuitive Evolutionary Algorithm
and theRandom Search Algorithm

73

74

Chapter 7

Evolutionary Algorithms for
Solving the Constraint
Satisfaction Problem

This chapter gives a inventory of evolutionary algorithrasgolving constraint satis-
faction problems. The algorithms included cover the défgrtypes of methods used in
evolutionary algorithms for solving constraint satisfastproblems. Each algorithm
is discussed in its own section and included are a full desori of the algorithm, a
specification of the characteristics of the algorithm, theameter setup used for the
experiments and an overview of the results of these expatsné comparison of the
performance of the algorithms is given in the next chapter.

7.1 Heuristic Evolutionary Algorithm

In [28, 29], A.E. Eibenet al. propose to incorporate existing heuristics for the con-
straint satisfaction problem into the genetic operatomsvofutionary algorithms.

These heuristics are used ages-of-thumbto guide the operators to choose which
variables or values to change. The heuristics are dividdro categories:

Variable Heuristics A variable heuristic chooses which variable the operatoukh
re-label. The most commonly used variable heuristic forcthestraint satisfac-
tion problem chooses the variable with the largest numbeelefzant violated
constraints for a particular candidate solution. By resllibg this variable, the
biggest improvement by a single re-labelling can be made.

Value Heuristics A value heuristic chooses which value a chosen variableldhsi
re-labelled with. The most commonly used value heuristi¢e constraint sat-
isfaction problem chooses the value which satisfies the retestant constraints.

75

This heuristic was also used in th#l Climber with Restart Algorithm

Experiments with theHill Climber with Restart Algorithnmshowed that the exclusive
use of heuristics leads to a convergence on a local optimutheopopulation when
the neighbourhood of a series of candidate solutions isoexglexhaustively. This
prevents the algorithm from reaching the global optimumiarttie Hill Climber with
Restart Algorithnma restart strategy is used to counter this behaviour. AGh@urestart
strategy is also possible for evolutionary algorithms, enoommonly, the mutation
operator is used for this. Heuristics are then incorporatetthe crossover operator
only. In [28, 29], A.E. Eiberet al,, identified two ways of incorporating heuristics into
a recombination operator:

The Asexual Heuristic Operator This operator uses both the variable and the value
heuristic. First it uses the variable heuristic to selectuaber of variables.
These variables are then re-labelled with a value chosehéyalue heuristic.
Variables are re-labelled iteratively, taking the effeatgprevious re-labellings
into account. The number of variables to re-label is deteechiby a parameter
of the operator. In [18], it was found that selecting one tpraof the variables
has the best overall performance for the constraint satiefaproblem. The
asexual operator produces one child for each parent andecasdd both as a
crossover and a mutation operator.

The Multi-Parent Heuristic Operator The multi-parent heuristic operator uses the
multi-parent crossover mechanism of scanning. The scgrmathanism deter-
mines the values of the children by scanning the values op#nents for each
variable. The multi-parent heuristic operator createsahilel from more than
two parents. The number of parents is determined by a paeawidhe operator.

In [18], it was found that using parents produced the best overall performance.
No variable heuristic is used in the multi-parent heurisperator since the scan-
ning mechanism considers all variables. The value heaiistised to select the
value for each variable of the child. Only the values of theepts are considered.

Two versions of thedHeuristic Evolutionary AlgorithnfHeuristicEA are defined, one
for each heuristic operator. In [18], another, third, vensivas defined, using the multi-
parent heuristic operator as a crossover operator and ¢éxealsheuristic operator as
a mutation operator. In the same paper, a fourth versiongusie asexual heuristic
operator as both a crossover and a mutation operator wagegjéecause it would
simply entail a double application of the same operator. ffnee versions of the
Heuristic Evolutionary Algorithnare abbreviated as:

HEAL1 using the asexual heuristic operator as a crossover operato
HEAZ2 using the multi-parent heuristic operator as a crossoveratpr; and

HEA3 using the multi-parent heuristic operator as a crossoveratpr and the asex-
ual heuristic operator as a mutation operator.

76

7.1.1 HeuristicEA Characteristics and Parameter Setup

Tables 7.1, 7.3, and 7.5 show the characteristics tabldsedfiEA], the HEA2 and
the HEA3 respectively. All three versions of thdeuristic Evolutionary Algorithm
use a steady state evolutionary model, an ordered set cds/adypresentation, fithess
function f;, a biased ranking parent selection operator, and a replacg survivor
selection operator. These characteristics are explamé&hapter 5. ThédEAL and
theHEA2use a uniform random mutation operator. The three versibtiedleuristic
Evolutionary Algorithrmuse the heuristic operators as explained in the previoti®eec

Tables 7.2, 7.4, and 7.6 show the parameter tables ofiff&l, the HEA2 and the
HEAS3 All three versions of théleuristic Evolutionary Algorithnave a population of
10 individuals (Population Size), from whictD parents are selected (Selection Size)
using the biased ranking parent selection operator wittaa bi1.5 (Ranking Bias).
The crossover operator of all three versions is applied &ittrossover rate of.0
(Crossover Rate) and the uniform random mutation openatbeHEAland theHEA2
uses a mutation rate of1 (Mutation Rate). A mutation rate @f.1 here means that
there is &.1 probability of re-labelling a variable where each variahlée individual

is checked. The experiments of all three versions ofHbaristic Evolutionary Algo-
rithm are terminated after00, 000 fitness evaluations (Maximum Number of Evalua-
tions). The asexual heuristic operator of tHEA1and theHEA3 changes one quarter
of the ten variables of the CSP instances in our test-setdexiupwards t8 (Change
Number of Variables). The multi-parent heuristic operateesb parents (Number of
Parents).

7.1.2 HeuristicEA Experimental Results

Tables 7.7, 7.10, and 7.13, show that both Al and theHEAS solve the CSP
instances in the solvable region in almost all runs. In themguegion itself, both the
HEAland theHEA3have aSRof 1.0 for density-tightness combinatigf.1,0.9). The
HEAZ2 has the worsSRthroughout the density-tightness combinations in the mush
region, in general solving the CSP instances there in ongnerfins. Tables 7.8, 7.11,
and 7.14 show that relative to tihetuitive Evolutionary AlgorithmtheHEAland the
HEAZ2use a [owAESin the mushy region. Only thdEA3uses a higiAESin the mushy
region. On the other hand, Tables 7.9, 7.12, and 7.15 shavalththree versions of
theHeuristic Evolutionary Algorithnuse a highCC in the mushy region. The highC
are used by the heuristic operators. The heuristics useotiféat checks to determine
which variable or value to choose. As these heuristics aed ositside the objective
function, this is not reflected in a highkES

TheUIC plots of all three versions of thdeuristic Evolutionary Algorithnin Figures
7.1, 7.3, and 7.5 all show that throughout the run, all veisikeep evaluating new
unique individuals. Of the three versiondEAL searches through the largest portion
of the search space and, on average, is the least close tonatpre convergence to
a local optimum at the end of its runs. The runs for both A1l and theHEA3
solved all CSP instances in density-tightness combingfiah0.9) before the second

77

HEA1

Evolutionary Model Steady State

Representation Ordered Set of Values
Objective Function f
Crossover operator Asexual Heuristic
Mutation operator Uniform Random Mutatiorn
Parent Selection Biased Ranking
Survivor Selection Replace Worst

cher Functions None /

Table 7.1: Characteristics of th¢EAL

HEAL
Population Size 10
Selection Size 10
Maximum Number of Evaluations 100, 000
Change Number of Variables 3
Ranking Bias 1.5
Crossover Rate 1.0
Mutation Rate 0.1

Table 7.2: Parameters of tih#EAL

HEA2

Evolutionary Model Steady State
Representation Ordered Set of Values
Objective Function f
Crossover operator Multi-Parent Heuristic
Mutation operator Uniform Random Mutation]
Parent Selection Biased Ranking
Survivor Selection Replace Worst

wther Functions None /

Table 7.3: Characteristics of th¢EA2

HEA2
Population Size 10
Selection Size 10
Maximum Number of Evaluations 100, 000
Number of Parents 5
Ranking Bias 1.5
Crossover Rate 1.0
Mutation Rate 0.1

Table 7.4: Parameters of thtEA2

78

HEA3

Evolutionary Model Steady State
Representation Ordered Set of Valuep
Objective Function f
Crossover operator Multi-Parent Heuristi¢
Mutation operator Asexual Heuristic
Parent Selection Biased Ranking
Survivor Selection Replace Worst
kOther Functions None /

Table 7.5: Characteristics of th¢EA3

HEA3
Population Size 10
Selection Size 10
Maximum Number of Evaluations 100, 000
Number of Parents 5
Change Number of Variables 3
Ranking Bias 1.5
Crossover Rate 1.0

Table 7.6: Parameters of tiEA3

interval, i.e., befor€000 evaluations. Th&IC plots for these two algorithms therefore
show only a single dot. ThEIC plots for theHEA2and theHEA3show that these two
algorithms search through the smallest portion of the $espace and that, on average,
by the end of their runs, their populations have almost cayaston a local optimum.
Both theHEA2and theHEA3use the multi-parent heuristic operator andth€ plots
suggest that this operator limits the amount of search dpatés searched.

The MBF/MCE plots of all three versions of thdeuristic Evolutionary Algorithnin
Figures 7.2, 7.4, and 7.6 show that, on average MB& is close to theMCE. The
reason for this is that thé objective function is the same as tN&CE measure. The
difference between thdBF and theMCE in theHEAland theHEA3can be explained
by the influence of finding a solution has on these measures.re&feheMBF is
calculated by averaging over the best fitness values of thiéduals in the population,
the MCE is calculated over a single value at the same interval. Weitheasure is
calculated over runs that are not yet successful but as maseend successfully, the
average of both measures is calculated over fewer runshEétEALland theHEA3
which have more successful runs, this is shown as a lessarggat than for th&HEA2,
which has fewer successful runs.

79

pP* 01 02 03 04 05 06 07 08 09

0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.928 0.504
0.5 1.0 1.0 1.0 1.0 1.0 0.872 04 0.428 —
0.6 1.0 1.0 1.0 0.98 0.504 0.42 — — —
0.7 1.0 1.0 0.888 0.572 — — — — —
0.8 1.0 1.0 0.556 — — — — — —
0.9 1.0 0.892 — — — — — — —

Table 7.7:SRof theHEAL

pP* 01 02 0.3 04 05 0.6 07 08 09

0.1 10 10 11 12 14 16 17 19 19
0.2 10 12 16 18 19 20 21 23 26
0.3 12 17 19 20 23 26 31 35 44
0.4 14 19 22 25 33 42 69 7980 2789
0.5 18 20 27 37 102 13528 1951 7603 —
0.6 19 23 40 2089 3387 5704 — — —

0.7 20 33 11548 1448 — — — — —
0.8 24 53 3931 — — — — — —
0.9 37 335 — — — — — — —

Table 7.8:AESof theHEAL

Pz 01 02 0.3 04 05 06 07 08 09

0.1 50 129 546 1127 2139 3504 4171 4996 5120
0.2 172 1263 3168 4486 5178 5635 6388 T199 8874
0.3 813 3563 4984 5636 7198 8745 11319 14059 18864
0.4 2022 4633 6097 7891 12080 16824 31613 444585 2-10°
0.5 3944 5311 8780 14073 47751 435723 1-105 4-106 —
0.6 4635 6865 15594 41547 1-10° 3-10° — — —_
0.7 5034 11831 197501 760728 — — — — —
0.8 6993 22073 2-10° — — — — — —
0.9 13715 166541 — — — — — — —

Table 7.9:CC of theHEAL

80

(0.1,0.9) (0.2,0.9) (0.3,0.8) -
¥ oo £ oo
5 e Y] s
(0.4,0.7) (0.5,0.6) (0.6,0.6)
o) o
o 7 o)
o) ! o ! oo
o -
o n
(0.7,0.5) (0.8,0.5) (0.9,0.4)
o) o
2 ki
2 wm oo)
) § s g a0
o o
(0.1,0.9) (0.2,0.9) (0.3,0.8)
-0 114 E § §
1 H
1z © € °
h o5 o 05 1 O 10000 70000 30000 40000 50000 60000 70600 80000 80000 100008 46 To0c0 20000 0000 40000 50000 69000 70000 B0000 90000 100000
0.4,0.7) (0.5,0.6) b (0.6,0.6)
132 :
128 g 107 9
122 s 106 s e N
12 1055,
11 ! 114 1045 L 108 7
A e ool s e i
(0.7,0.5) (0.8,0.5) (0.9,0.4)
i
» 2 s B 5
4§ gl ek
g 15 8§ H
12 e e 112

e

=

evaatons

115
0 10000 20000 3000 40000 50000 60000 70000 B000 90000 300000

175
3000 40000 50000 60000 7000080000 90000 1000060

000

20000

103

0

11
0000 20000 30000 40000 50000 60000 70000 G000 90000 100000
evalatons

Figure 7.2:MBF andMCE of theHEAL

81

pP* 01 02 03 04 05 06 07 08 09

0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.3 1.0 1.0 1.0 1.0 1.0 1.0 0.988 0.948 0.808
0.4 1.0 1.0 1.0 1.0 0.98 0.888 0.572 0.288 0.076
0.5 1.0 1.0 1.0 0.92 0.592 0.232 0.04 0.064 —
0.6 1.0 1.0 0.832 0.444 0.072 0.056 — — —
0.7 1.0 0.904 0.324 0.08 — — — — —
0.8 0.956 0.616 0.068 — — — — — —
0.9 0.764 0.188 — — — — — — —

Table 7.10:SRof theHEA2

m2 01 02 03 04 05 06 07 08 09

0.1 10 10 11 12 14 18 21 25 27
0.2 10 12 19 24 34 43 58 36 193
0.3 12 19 33 59 88 183 1590 4047 5461
0.4 15 29 73 182 2281 5448 11402 11387 16609
0.5 22 58 1171 5280 9081 14371 14444 13596 —
0.6 35 391 4589 16208 10727 13596 — — —
0.7 134 5287 12545 21876 — — — — —
0.8 2791 8732 13660 — — — — — —
0.9 5862 14268 — — — — — — —

Table 7.11:AESof theHEA2

mP? 01 02 03 04 05 06 07 08 09

0.1 50 145 691 1511 3273 6054 8125 10826 12754
0.2 213 1704 6203 9965 16787 23099 34199 54168 131724
0.3 1111 6547 15739 34054 54646 121997 1-10° 3-106 4.10°
0.4 3232 12922 43767 119653 2-10° 4-10° 8.10 8-10% 12-10°
0.5 8319 33141 800097 4-10° 6-10° 10-10° 10-10° 8-106 —
0.6 16996 260913 3-10% 11-10° 7-10% 10-106 — — —
0.7 84533 4-10° 9-10° 15-106 — — — — —
08 2-10° 6-10° 9.106 — — — — — —
0.9 4-10° 10-106 — — — — — — —

Table 7.12:CC of theHEA2

82

100000 100000 4 o -
(0.1,0.9) (0.2,0.9) (0.3,0.8) p
w000 S0 0000
oo 1 oo % oo
20000 20000 20000
B) 0o £ o000 0000 o B 0000 Tauoco 2000 o0) 000 oo
pr— evluzions evusions
100000 100000 4 0 -
(0.4,0.7) (0.5,0.6) (0.6,0.6)
000 S0 . 0000
0o £ oo % oo .
H H
0000) 5 om0 5 w0
20000 20000 20000
r— evlusions evlusions
100000 100000 N
(0.7,0.5) (0.8,0.5) (0.9,0.4)
0o sauo - 0000
k] I
£ omo 1 oo oo
P £ o ‘ w0
20000 20000 20000
rr— evlusions evlusions
1 1 22 22 20 20
(0.1,0.9) (0.2,0.9) (0.3,0.8)
108 100 28 28
100
wor 27 27
107 . .
e
108 28 2
104 e 1§ 24 3
10
23 23
s ™ 1 B
o 22 22
1o ot
16 16 . .
% 0 Too0 2000 000 40000 50000 60000 70000000 90000 100000 0 om0 o 000 A0 50000 a0 70000 soemn 0000 100 TO0 2000 3000 4000050000 5000070000 0005000010000
0.40.7) (0.5,0.6) (0.6,0.6)
26 26 25 25 ar a1
2 2 a8 a6
25 25
23 22 as as
2y,]
2§ i i
. 8t 2§ 3
2 2 a2 a2
21 21
1 10 a1 a1
2 2 10 10 s
McE 10 e 20
0 I 000 W00 40000 S0 60000 70000 000090000 100000 0 TO000 76000 3000 4000050000 60000 70000 8000050000 100005 0 000 700 000 40000 50000 G000 70000 60000 saaud 100000
I 0.7,05) (0.8,0.5) (0.9,0.4)
a6 26 24 24
as as 23 23
H a0 §Ea 22 §
H £1 ¢
] s Fgu .
a1 a1 10 19
s 1 18
19 19 M == 20 1 - 1
0 100 000 000 40000 SG00 60000 70000 000 90000 100000 0 TO000 700 3000 40000 50000 60000 70000 E0000 50000 100030 0 D000 70000 000 40000 50000 G000 70000 60000 5000 100006
evaions evliaions evausions

Figure 7.4:MBF andMCE of theHEA2

83

& 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.992 0.76
0.5 1.0 1.0 1.0 1.0 1.0 0.968 0.588 0.488 —
0.6 1.0 1.0 1.0 1.0 0.692 0.44 — — —
0.7 1.0 1.0 0.976 0.712 — — — — —
0.8 1.0 1.0 0.688 — — — — — —
0.9 1.0 0.984 — — — — — — —
Table 7.13:SRof the HEA3
P2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 10 10 11 12 14 16 17 19 19
0.2 10 12 16 18 19 20 20 20 20
0.3 12 17 19 20 20 20 20 21 24
0.4 14 19 20 20 20 23 33 339 1563
0.5 18 20 20 22 32 438 969 1258 —
0.6 19 20 22 47 2382 988 — — —
0.7 20 21 432 1404 — — — — —
0.8 20 31 1635 — — — — — —
0.9 26 419 — — — — — — —
Table 7.14:AESof theHEA3

Pz 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 50 212 1359 2983 5858 9723 11523 13749 13904
0.2 412 3602 9091 12934 14486 15237 15643 15792 15887
0.3 2347 10526 14551 15027 15467 15583 15778 17054 21967
0.4 6032 13443 15329 15357 16137 20332 35849 509570 2-10°
0.5 11885 14905 15478 18130 34542 660473 1-10% 2-106 —
0.6 13827 15246 18087 55841 4-10% 1-106 — — —
0.7 14679 17182 630507 2-106 — — — — —
0.8 15607 32547 2-10% — — — — — —
0.9 23899 621391 — — — — — — —

Table 7.15:CC of theHEA3

84

1s 100000 N o0 -
(0.1,0.9) (0.2,0.9) (03,0.8) -
a0 w000
1 oo % oo
20000 200
o000 o0 oo o000 Tooo0 £ oo o000 o000 oo
- — -
100000 100000 100000 .
0.4,0.7) (0.5,0.6) (0.6,0.6)
w00 a0) w000
i]
w00 % oo 2 om0 .
H H
o000) § oo)
2000 20000 2000
[— evisions evtnions
100000 100000 100000
(0.7,0.5) (0.8,0.5) (0.9,0.4)
w00 so000 - w000
k] I
£ omo 1 oo oo
§]
§ womo £ o om0
20000 20000 2000
- evinions evnions
: s s i
(0.1,0.9) (0.2,0.9) (0.370.8)
e g 128
e 1095
os -0s ! 12
1
10
u s f bl
.o S 12§
g H
e 8§ Wt
107
106
os o5 10
08 102 o7
N 1065 2
T o5 o o5 1 %% 0 Tomo 2000 0000 0000 50000 00070000 5000050000 1000ty ¥ o000 2000 5000400050000 600007000 0000 0000 100006
0.40.7) {0.5,0.6) (0.6,0.6)
102 1
g 1w § i
sou 1
% Ioo00 20000 30000 40000 50000 60000 70000 0000 90000 100000~ %! o000 20000 30000 40000 50000070000 50000 90000 100000 T 2000 3000 4000 50000 60000 70000 60000 90000 100006
{0.7,0.5) X (0.8,0.5) 0.9,0.4) |
Lotes
‘“75 135 1016 e
Lo 10155,
1
; T 7 o N
1o H s i H
H § 0§ o 1§
106 H -] i £
s 5 2E o 2
Loss Loiss o
12 1018 ”
Los
| e a—————————
1045 === |15 14 17 1012 102
o Tooo 700 30000 4000 50000 60000 70000 50000 a0 1000 0 o0 20000 300on 40000 50000 Gonn 70000 5609000 100080 0 000 2000 30000 40000 50000 60000 70000 80000 90000 1008
evmis evauaions ewatons

Figure 7.6:MBF andMCE of theHEA3

85

7.2 Arc Evolutionary Algorithm

The Arc Evolutionary Algorithm(ArcEA) was first introduced in [74] by M.-C. Riff-
Rojas. Based oREAL in addition theArcEAuses constraint network information in
the objective function of the algorithm. In [75rcEAwas further adapted by replac-
ing the asexual heuristic operator with a special crossoperator using information
gathered by the objective function. In [76], in a third anéfiversion of theéArcEA the
crossover operator was made more adaptive. In additiomyrtii@em random mutation
operator used by the first version was replaced by a mutaperator also using con-
straint network information. All three versions of tAecEAused a specially designed
parent selection operator. In total, five new parts wer@thiced:

The Arc Objective Function This objective function takes its name from the defini-
tion of an arc in the constraint satisfaction problem. Arcésel order) arc is
three variables and their two relevant constraints. Theohjective function
uses constraint network information by calculating ¢ner evaluationfor each
constraint in the problem. The error evaluation of a comstia defined as fol-
lows: for a binary CSRX, C, D), two variablesr; € X andzs € X, 21 # w2,
both relevant to constrainte C', are also relevant to the constraint<in C C'
andCy C C respectively; the error evaluation ofis then the size of the sub-
setC’ C C, whereC’ = C; N Cy. Because the constraint network of a CSP
remains static, the error evaluation of all constraintstoacalculated at initial-
isation of the algorithm. The arc objective function cattek the fitness value
of an individual by adding the error evaluation of all vi@dtconstraints in the
candidate solution of the individual. Constraints with ghhéerror evaluation are
relevant by arc to more variables and are thus harder tdysdhig focussing on
these constraints, the arc objective function directs ¢laech of the evolutionary
algorithm towards solving these constraints first.

The Arc Crossover Operator The arc crossover operator constructs a single child
from two parents. The construction starts with a child in ehhnone of the
variables are labelled. The variables in the child are tlaelled iteratively
considering each constraint in the CSP in random order ubimdpbels of the
parents. The constraint currently considered is denotedhlog the two relevant
variables toc are denoted by, andz,. The following three cases can then be
distinguished:

1. Both variables are unlabelled in the child. Three casepassible:

(a) The compound label with variable s&t= {x;,x>} of neither par-
ent satisfieg. The compound label that minimises the summed error
evaluation of the constraints relevantitpor x5, whose other relevant
variable is already labelled in the child is used to labgland x5 in
the child.

(b) The compound label with variable s&t= {x,z,} of exactly one
parent satisfies. That compound label is used to lahgl andz; in
the child.

86

(c) The compound labels with variable s¢t= {1, 25} of both parents
satisfiesc. The compound label from the parent with the best fithess
value is used to label; andz in the child.

2. One variable is unlabelled in the child. The label in the arents that
minimises the summed error evaluation of the constrailevaat to the
unlabelled variable is used to label the unlabelled vagiaibthe child.

3. Both variables are labelled in the child. Nothing is dond the next con-
straint is considered.

When the summed error evaluation of the constraints relegawb variables are
tied, the value used is determined randomly. A variablevegiteto any constraint
in the CSP is labelled by a random value from its domain.

The Constraint Dynamic Adaptive Crossover Operator This operator

uses the same construction method as the arc crossovetargmrareplaces the
random order in which the constraints are considered withdaptive ordering
based on the error evaluation of the constraints in bothnpgard he ordering is
divided into three parts: first the constraints that areated in both parents are
considered, then the constraints that are violated in ortkeoparents are con-
sidered, finally, constraints that are not violated in bathepts are considered.
In each of these parts the constraints are ordered baseéioeittor evaluation:
constraints with a higher error evaluation are consideeddrb constraints with
a lower error evaluation. By using this ordering, the caistrdynamic adaptive
crossover operator focusses on constraints that have noéga satisfied before
constraints that have already be satisfied. The operatgriandic because it
changes focus based on the parent pair it is supplied withud-also changes
during the run of the algorithm.

The Arc Mutation Operator The arc mutation operator also uses the error evaluation
of constraints. First it selects a variable to re-label amif randomly. It then re-
labels this variable with the value that minimises the suchareor evaluation of
the constraints relevant to the selected variable.

The a-(Parent Selection Operator The a-3 parent selection operator

splits the population into three groups. The first groupudek all individuals
with a fitness value better than the mean fitness value of tpelation. The
second group includes all individuals with a fitness valugelnghan the mean
plus the standard deviation of the fithess values. If thedg@rianction is to be
maximised, the standard deviation is subtracted. The triodp then includes
all remaining individuals in the population. The operate selects individuals
proportionally from these three groups depending omtlaad 5 parameters of
the operator. If botla and(are given as percentagespercent of the selection
size are selected from the first group;- « percent are selected from the second
group andl00% — 3 percent are selected from the third group. Selection from
within a group is done uniform randomly and with repetitic@ommonly used
parameters are = 50% and3 = 85%. Note that then-3 parent selection

87

ArcAl

Evolutionary Model Steady State
Representation Ordered Set of Values
Objective Function Arc Objective Function
Crossover operator Asexual Heuristic
Mutation operator Uniform Random Mutatior]
Parent Selection «-3 Parent Selection
Survivor Selection Replace Worst

KOther Functions None /

Table 7.16: Characteristics of tigcEAL

ArcEAl

Population Size 10
Selection Size 10
Maximum Number of Evaluations 100, 000
Change Number of Variables 3
Selection 0.5
Selections 0.85
Crossover Rate 1.0
Mutation Rate 0.1

Table 7.17: Parameters of tAecEAL

operator is similar to a linear ranking parent selectionrafo in which there
are only three ranks where parents are selected from thake véth a fixed
probability (determined by and /).

The three papers of M.-C. Riff-Rojas ([74, 75, 76]) defineethdifferent evolution-
ary algorithms. The three algorithms will be abbreviated BycEAL ArcEA2 and
ArcEA3 ArcEALlis an adaptation diEA1with the objective function replaced by the
arc objective function and the biased ranked parent sefeofierator by the arc parent
selection operatoArcEA2then replaces the asexual heuristic operatéraEAlwith
the arc crossover operator and the uniform random mutapenator with the arc mu-
tation operator.ArcEA3then replaces the arc crossover operator ofAteE=A2 with
the constraint dynamic crossover operator.

7.2.1 ArcEA Characteristics and Parameter Setup

Tables 7.16, 7.18, and 7.20 show the characteristics tabtbg ArcEAL the ArcEA2
and theArcEA3respectively. All three versions of thhec Evolutionary Algorithrmuse

a steady state evolutionary model, an ordered set of vadypeesentation, and a replace
worst survivor selection operator, all explained in ChapteThe other characteristics
of the three versions of thArc Evolutionary Algorithmwere given in the previous

88

ArceEA2

Evolutionary Model Steady State
Representation Ordered Set of Valueg
Objective Function Arc Obijective Function
Crossover operator Arc Crossover
Mutation operator Arc Mutation
Parent Selection «a-3 Parent Selection
Survivor Selection Replace Worst
KOther Functions None /

Table 7.18: Characteristics of thgcEA2

ArceA2

Population Size 10
Selection Size 10
Maximum Number of Evaluations 100, 000
Selection 0.5
Selections 0.85
Crossover Rate 1.0
Mutation Rate 0.1

Table 7.19: Parameters of thecEA2

section.

Tables 7.17, 7.19, and 7.21 show the parameter tables @frtieAl, the ArcEA2 and
the ArcEA3 All three versions of thérc Evolutionary Algorithmhave a population of
10 individuals (Population Size), from whicl0 parents are selected (Selection Size)
using thea-3 parent selection operator with anof 0.5 (Selectiona) and aj of 0.85
(Selection3). The crossover operator of all three versions is appligtl wicrossover
rate of 1.0 (Crossover Rate) and the mutation operator is applied wittutation rate

of 0.1 (Mutation Rate). The experiments of all three versions efAlrc Evolution-
ary Algorithmare terminated after00, 000 fitness evaluations (Maximum Number of
Evaluations). The asexual heuristic operatoAafEA1changes} variables in the in-
dividual (Change Number of Variables).

7.2.2 ArcEA Experimental Results

Tables 7.22, 7.25, and 7.28, show that #reEA1 has the highesBR of the three
versions of theArc Evolutionary Algorithm Both theArcEA2and theArcEA3do not
solve the CSP instances in the mushy region as often @gtii\1does. This suggests
that the addition of the arc crossover operator and the @nstdynamic adaptive
crossover operator does not contribute to a I8ghTables 7.23, 7.26, and 7.29 show
that theAESof all three versions of thArc Evolutionary Algorithris relatively low.

89

ArceEA3

Evolutionary Model Steady State

Representation Ordered Set of Values

Objective Function Arc Objective Function

Crossover operator Constraint Dynamic Adaptive Crossoyer
Mutation operator Arc Mutation

Parent Selection «-3 Parent Selection

Survivor Selection Replace Worst

Other Functions None /

Table 7.20: Characteristics of thgcEA3

ArceEA3

Population Size 10
Selection Size 10
Maximum Number of Evaluations 100, 000
Selection 0.5
Selections 0.85
Crossover Rate 1.0
Mutation Rate 0.1

Table 7.21: Parameters of thecEA3

However, because th&Rof the ArcEA2and theArcEA3are not as high as th&Rof
the ArcEAY, theseAESvalues are less accurate. This is becaus@i®(as theCC) is
calculated over successful runs only and with less suadeassfs, the accuracy of the
AESmeasures is reduced. The same is seen fo€Ctheneasure in Tables 7.24, 7.27,
and 7.30.

The UIC plots of all three versions of th&rc Evolutionary Algorithmin Figures 7.7,
7.9, and 7.11 show that both thecEA2and theArcEA3search only a limited portion

of the search space. These plots also show that after only eM@uations, almost no
new unique individuals are evaluated, suggesting prematuvergence of the popula-
tion. TheArcEA], much like theHEAY, searches through a larger portion of the search
space and shows no sign of premature convergence of thegtiopul TheMBF/MCE
plots in Figures 7.8, 7.10, and 7.12 show little differeneén®en how the arc objec-
tive function calculates fitness values andM@E. Although the arc objective function
uses constraint network information, this did not give tlgoathm an edge over, for
example, theHEAL One has to keep in mind that thec Evolutionary Algorithnwas
written with CSPs with varying tightness is mind whereashia test-set we use all
constraints have approximately the same tightness. Withand to satisfy constraints
to focus on, the direction provided by the more elaborateohjective function does
not result in a betteBR The same (but less clear from the experiments we ran) can
probably be said for the other components of Alne Evolutionary Algorithnthat use
the error evaluation of the constraints. We expect that @staget with CSP instances

90

with more variance between the tightness of constrainesute of error evaluations
would give an edge to th&rc Evolutionary AlgorithmFor all three versions of thirc
Evolutionary Algorithm the MBF and theMCE are close together and almost com-
pletely monotonic in their decrease. TRBF/MCE plots show no sign of premature
convergence of the population. ThkC andMBF/MCE plots together do not point to
premature convergence of the population as the reasonddothSRof the ArcEA2
and theArcEA3 but, instead, point to a lack of effectiveness of the atbams to find
solutions within the number of evaluations allowed. TMBF/MCE plots are fairly
regular for theArcEA2and theArcEA3because of the low number of successful runs
over which the measures were calculated.

91

pP* 01 02 03 04 05 06 07 08 09

0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.4 1.0 1.0 1.0 1.0 1.0 1.0 0.968 0.704 0.3
0.5 1.0 1.0 1.0 1.0 0.936 0.644 0.22 0.24 —
0.6 1.0 1.0 0.996 0.884 0.312 0.284 — — —
0.7 1.0 1.0 0.684 0.384 — — — — —
0.8 1.0 0.948 0.368 — — — — — —
0.9 0.988 0.688 — — — — — — —

Table 7.22:SRof the ArcEAL

pP* 01 02 03 04 05 06 07 08 09

0.1 10 10 11 12 14 16 17 19 20
0.2 10 12 16 19 21 24 27 29 33
0.3 12 17 21 25 29 33 40 81 156
0.4 14 20 27 33 44 89 297 2815 5067
0.5 18 24 34 104 287 2732 2116 778 —
0.6 20 30 112 653 962 2099 — — —
0.7 23 45 1561 4403 — — — — —
0.8 71 398 2008 — — — — — —
0.9 279 3467 — — — — — — —

Table 7.23:AESof the ArcEAL

mP? 01 02 03 04 05 06 07 08 09

0.1 50 110 345 661 1220 2005 2381 2971 3251
0.2 111 688 1751 2587 3309 4129 5076 5877 7023
0.3 436 1863 3079 4118 5530 6819 8942 20581 43490
0.4 1036 2641 4645 6297 9516 21302 79078 794981 2-10°
0.5 2038 3713 6635 25542 74370 765289 568997 220251 «—
0.6 2590 5310 29708 174661 260864 588314 — — —
0.7 3448 9238 412297 1-10° — — — — —
0.8 15947 102493 523101 — — — — — —
0.9 67462 865715 — — — — — — —

Table 7.24.CC of the ArcEAL

92

(0.1,0.9) (0.2,0.9) (0.3,0.8) -
soon0 ¥ oo £ oo
o -
T B R TR T =
(0.4,0.7) (0.5,0.6) (0.6,0.6)
o) o
o 7 o)
o) ! o ! oo
o -
(0.7,0.5) (0.8,0.5) (0.9,0.4)
o P o
2 ki
2 wm oo)
) § s g a0
o o

Figure 7.7:UIC of the ArcEAL

sss ™ s e
{0.1,0.9) (0.2,0.9) (0.370.8)
m 152
. e o
: 3
H 14 §
an - 1
368 B — 13
0 Tooo0 zom 000 40000 50000 G000 7000 800w 50000 10000 0 Tom 2000 3000 40000 50000 s0000 7o0m 80000 50000 100006 0 00 7000 0000 40000 50000 60000 70000 80000 50000 100005
(0.4,0.7) (0.5,0.6) . (0.6,0.6)
16 12 »
us 15
L e 2 s
u 12
o as
f 110
""" 107 T 117 a LET 192
o Ioo0 2000 30000 #0000 50000 600w o Too 7000 50000 10000 50000 60000 70000 50000 0in 00 O Tooo0 20000 30000 #0000 0000 00 700 a0ie0sui0 10000
H 0.7,0.5) 0.8,0.5) (0.9,0.4)
22
2
H S 1
§ o E s § § §
L . R 2
. 221
a
2
w08 o
1 06 ! 218 19 € 122
0 Too0 20000 30000 #0000 50000 0000 7000 00 a0 10 o Tom0 75000 30000 #0000 50000 60000 70000 5000 o0im 100 O Too00 20000 30000 40000 0000 e00mm 700 aui0 a0 10008

Figure 7.8:MBF andMCE of the ArcEAL

93

pP* 01 02 03 04 05 06 07 08 09

0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.996
0.3 1.0 1.0 1.0 1.0 0.996 0.972 0.876 0.756 0.456
0.4 1.0 1.0 0.992 0968 0.84 0.556 0.224 0.108 0.012
0.5 1.0 0.988 0.932 0.732 0.252 0.1 0.008 0.008 —
0.6 1.0 0.948 0.628 0.208 0.016 0.024 — — —
0.7 0.984 0.712 0.168 0.02 — — — — —
0.8 0.94 0.408 0.016 — — — — — —
0.9 0.708 0.12 — — — — — — —

Table 7.25:SRof the ArcEA2

pP* 01 02 03 04 05 06 07 08 09

0.1 10 10 11 13 16 22 26 31 33
0.2 10 13 22 30 42 51 72 84 188
0.3 12 24 40 95 163 565 1098 1565 2372
0.4 16 37 71 478 1712 1728 2667 396 250
0.5 28 95 338 1509 2208 1044 218 1953 —
0.6 37 237 2184 1720 494 186 — — —

0.7 164 2029 494 186 — — — — —
0.8 1544 1747 362 — — — — — —
0.9 2804 8269 — — — — — — —

Table 7.26:AESof the ArcEA2

mP? 01 02 03 04 05 06 07 08 09

0.1 50 95 209 424 957 1863 2883 4170 5219
0.2 56 240 1008 2043 3953 5751 10128 13408 35851
0.3 102 710 2253 4176 17224 72339 167911 269468 466275
0.4 212 1306 4340 40796 188529 223412 409633 67419 48171
0.5 509 2101 22263 129995 242882 134956 40616 51267 —
0.6 751 10262 147895 148207 23545 253660 < — — —
0.7 3814 87257 32826 15292 — — — — —
0.8 38036 74987 24073 «— — — — — —
0.9 68308 351511 — — — — — — —

Table 7.27:.CC of the ArcEA2

94

a0 oo L o -
(0.1,0.9) (0.2,0.9) (0.3,0.8) -
oo oo -
oo L o 2 oo
oom £ oo £ o
oo 2om0 o0
zoom o o oo o 2o oo oo o o oo oo o oo =
f— f— et
om0 oo e .
(0.4,0.7) (0.5,0.6) (0.6,0.6)
woom oo) -
woom o £ oo)
H H
oo) e £ o
200 om0 2000
om0 om0 -
(0.7,0.5) (0.8,0.5) (0.9,0.4)
woom somo L -
3 3
£ como £ oo -
§ o § womo g oo
2o0m 200 2000
s W e g 22
{0.1,0.9) (0.2,0.9) (0.3,0.8)
1 108 e 172 { =
356 194 2
w 276
12
2 §
188 5 E
1o
164 268
e 266
102
f oo
0 Tooo0 zoom 30000 40000 50000 60000 70000 5000050000 10000 0 1000 7000 30000 4000 50000 60000 70000 80000 30000 00006 0 o0 70000 30000 4000 50000 00w 7000060000 50000100000
e (0.4,0.7) (0.5,0.6) (0.6,0.6)
212 27 m2 26
N
2 28
2
20
§ 2 ae 8 5
o 2 R B H
2
21
2 2
262 2
» .. 20
195 LS5 T2 ‘Jw 246 4.0
om0 o o0 b emeo0 o o0 oo ol e N D T
A {0.7,0.5) (0.870.5) A (0.9,0.4)
: s 28
“
o
521 22
. PR .
H K :
2§ 51 2§
H P s H
s 2 s 2 2 o
o a6 “ 200
s 5 222
g 2
95 " 31 5 '355 as € 278
0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 0 10000 20000 30000 40000 S0000 60000 70000 80000 90000 100000 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100060

Figure 7.10:MBF andMCE of the ArcEA2

95

pP* 01 02 03 04 05 06 07 08 09

0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.988
0.3 1.0 1.0 1.0 1.0 0.992 0.988 0.888 0.752 0.532
0.4 1.0 1.0 1.0 1.0 0.868 0.564 0.272 0.1 0.008
0.5 1.0 0.996 0.912 0.724 0.248 0.108 0.012 0.004 —
0.6 1.0 0.944 0.656 0.2 0.012 0.028 — — —
0.7 0.976 0.696 0.196 0.032 — — — — —
0.8 0.908 0.356 0.024 — — — — — —
0.9 0.692 0.128 — — — — — — —

Table 7.28:SRof the ArcEA3

;P2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 10 10 11 13 16 21 25 31 32
0.2 10 13 22 30 39 52 64 79 196
0.3 12 24 42 57 91 363 1132 1920 2799
0.4 17 37 71 452 426 2482 2467 5444 1225
0.5 28 66 767 775 1225 413 2720 290 —
0.6 41 360 995 574 173 8060 — — —
0.7 81 581 2605 2906 — — — — —

0.8 250 2991 648 — — — — — —
0.9 2036 4056 — — — — — — —

Table 7.29:AESof the ArcEA3

mP? 01 02 03 04 05 06 07 08 09

0.1 50 97 236 520 1244 2387 3519 5477 6506
0.2 58 311 1294 2582 4686 7808 11837 16649 50139
0.3 112 989 3169 5877 12605 63628 229993 453099 760467
0.4 296 1771 5897 52190 63303 429485 507992 1-10° 333482
0.5 682 3603 69641 90344 177084 72220 596776 66792 —
0.6 1194 21573 92708 68401 25600 1-106 —— — —
0.7 2589 35258 244572 353944 — — — — —
0.8 8657 177186 60408 — — — — — —
0.9 72839 251766 — — — — — — —

Table 7.30:CC of the ArcEA3

96

100000 100000

o]
(0.1,0.9) (0.2,0.9) (0.3,0.8) -
son oon
1 oo % oo
o0
S —
o 20000 40000 60000 80000 00 20000 40000 60000 80000 100000 40000 60000 80000 100000
o o _
(0.4,0.7) (0.5,0.6) (0.6,0.6)
son) won
H H
! oo ! oom

20000

2000 20000

e - e — —
- -
(0.7,0.5) (0.8,0.5) (0.9,0.4)
- P -
1) 3
w0 e aocoo
$ wom § s g a0
- -
(0.1,0.9) (0.2,0.9) (0.3,0.8)
114 198
“ -
112 o
w §
-
182 e
%0 o0 zo0m 300 40000 50000 0000 7000 aon 50000 100009 70 oo 20000 3000 40000 50000 50000 70000 30000 50009 100000 %0 oz o000 #0000 50000 60000 7000 w000 50000 100000
i (0.4,0.7) F (0.5,0.6) ' (0.6,0.6)
;
0 o0 zo0m 300 40000 50000 60000 70000 eaom 50000 100000 O loWo 200 3000 4000 G0W G0 70000 50000 90000 10000 0 10000 20000 3000 4000 500 60000 70000 90000 50000 1anecs
(0.7,0.5) (0.8,0.5) (0.9,0.4)
.
a
£3 53 5
© 416
. veE —o— —_— B " o vez —— ot
© 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 70 10000 20000 30000 40000 50000 60000 70000 B0000 90000 100060

Figure 7.12:MBF andMCE of the ArcEA3

97

7.3 Co-evolutionary Algorithm

The Co-evolutionary Algorithn{CoeEA was proposed by J. Paredis, and was used
to solve a number of problems: neural net learning ([71]hst@int satisfaction ([70,
71]), and searching for cellular automata that solve thsitieolassification task ([72]).
The Co-evolutionary Algorithnuses the co-evolutionary approach for evolutionary al-
gorithms, from which it takes its name. The co-evolutionapproach pits two popu-
lations, commonly referred to as the host- and parasitedptipn, against each other.

The Co-evolutionary Algorithnfor solving the constraint satisfaction problem uses a
host-population of candidate solutions to compete with ragite-population of con-
straints. All constraints of the CSP to be solved are indidehe parasite-population.
The size of the host-population is determined by a paramétez fithess of an indi-
vidual of both populations is based on a history of encosrbetween individuals of
both populations. Amncounteioccurs when a constraint from the parasite-population
is matched with the candidate solution of an individual @& Host-population. If the
constraint is satisfied in the candidate solution, the iddial from the host-population
earns a fitness point. If the constraint is not satisfied, nldéidual of the parasite-
population earns a fitness point. The fitness value of anichai in both populations

is the amount of fithess points gathered in the P&t encounters. By matching of-
ten violated constraints with candidate solutions thaiehsatisfied many constraints
recently, a dynamic host-parasite relationship betweenlo populations is estab-
lished. The relationship is characterised as a host-garesationship because both
populations depend on each other for their fitness.

At each generation during the run of tlkm-evolutionary Algorithm20 encounters

between the individuals of the host- and parasite-popuiaie allowed to occur. En-
counters occur by repeatedly selecting an individual frachegpopulation and pairing
them off. Selecting the individuals is biased forwards ctithg individuals with higher

fitness values. The genetic operators of crossover andiowtae applied only to the
individuals of the host-population. The crossover operatdhe two-point surrogate
crossover operator, described in [87, 13]. The operatoesigtied to minimise the
chance of generating children that have a similar candisialigtion as their parents.
The mutation operator used in ti@®-evolutionary Algorithnis the uniform random

mutation operator.

7.3.1 CoeEACharacteristics and Parameter Setup

Table 7.31 shows the characteristics table of@eevolutionary AlgorithmThe Co-
evolutionary Algorithnuses a steady state evolutionary model, an ordered setuafsval
representation, a uniform random mutation operator, aeglace worst survivor selec-
tion operator, explained in Chapter 5. Selection of theviiddials in both populations
is done using the biased ranked parent selection operaterfifiess function and the
two-point surrogate crossover operator used byQGbeevolutionary Algorithnhave
been discussed in the previous section.

Table 7.32 shows the parameters table for @weevolutionary Algorithm The Co-

98

CoeEA

Evolutionary Model Steady State
Representation Ordered Set of Values
Objective Function CoeEAObjective Function
Crossover operator Two-point Surrogate Crossover
Mutation operator Uniform Random Mutation
Parent Selection Biased Ranking
Survivor Selection Replace Worst

KOther Functions None /

Table 7.31: Characteristics of timeEA

CoeEA
Population Size 10
Selection Size 10
Maximum Number of Evaluations 100, 000
Individual History Size 200
Ranking Bias 1.5
Number of Encounters 20
Encounter Bias 1.5
Crossover Rate 1.0
Mutation Rate 0.1

Table 7.32: Parameters of timeEA

evolutionary Algorithmhas a host-population af) individuals (Population Size), from
which 10 parents are selected (Selection Size) using the biasethggpdkrent selection
operator with a bias of.5 (Ranking Bias). The two-point surrogate crossover operato
is applied with a crossover rate bf) (Crossover Rate) and the uniform random muta-
tion operator uses a mutation ratedof (Mutation Rate). Experiments with tii@eEA
are terminated after00, 000 fithess evaluations (Maximum Number of Evaluations).
Each individual in both populations maintains a histor2@6 encounters (Individual
History Size) and each generation of tbe-evolutionary Algorithn20 encounters are
performed (Number of Encounters). Selection of the indigid from both populations
for these encounters is done using the biased ranking psebation operator, using a
bias of1.5 (Encounter Bias).

7.3.2 CoeEAExperimental Results

Table 7.33 shows that th@o-evolutionary Algorithms unable to solve the CSP in-
stances in the mushy region in any of its runs nor for a sizpbidon of the solvable
region. Consequently, theESand CC for these density-tightness combinations are
undefined in Tables 7.34 and 7.35. These tables also showh#h@b-evolutionary
Algorithmuses a lot oAESand CC when the run is successful. We believe that one

99

reason for this performance is that the host-parasiteioekttip between the two pop-
ulations is too dynamic, even with the long history of endemmused. This can result
in the best individual in the host-population satisfying tonstraint that has been vi-
olated recently the most in one generation but violating ithe next. This dynamic
relationship of the two populations can result in constérainges to both populations
without ever resulting in a directed search to a global optiman example of thRed
Queenprinciple [86]. In experiments not shown here, we tried teftune the param-
eters of theCo-evolutionary Algorithmin an effort to increase the performance of the
algorithm. This was unsuccessful.

The UIC plots for theCo-evolutionary Algorithmn Figure 7.13 show that the algo-
rithm searches through a large portion of the search spacidoCSP instances in
the mushy region. However, ttdBF/MCE plots in Figure 7.14 show that for all the
new unique individuals checked, no increase, on average,achieved in th&/IBF

or theMCE. In fact, theUIC and theMBF/MCE plots together suggest the behaviour
of a random search algorithm. This means that the fithesesalalculated by the
encounters of the host- and parasite-population is of naaus®intain selection pres-
sure. Although many unique individuals are checked, priybladcause of the use of
the two-point surrogate crossover operator, the inforomegiained by evaluating these
individuals is not used to produce individuals with a higfigress value in the next
generation. Without selection pressure, @eeEAcan not direct the search to a global
optimum, i.e., a solution.

100

pP> 01 02 03 04 05 06 07 08 09

0.1 092 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.2 0.524 0.952 1.0 1.0 0.96 0.664 0.316 0.16 0.052
0.3 0.18 0.252 0.78 0344 0.084 0.02 0.0 0.004 0.0
0.4 0.092 0.02 0.008 0.024 0.0 0.0 0.0 0.0 0.0
0.5 0.016 0.0 0.0 0.0 0.0 0.0 0.0 0.0 —
0.6 0.008 0.0 0.0 0.0 0.0 0.0 — — —
0.7 0.0 0.0 0.0 0.0 — — — — —
0.8 0.0 0.0 0.0 — — — — — —
0.9 0.0 0.0 — — — — — — —

Table 7.33:SRof the CoeEA

m2 01 02 03 04 05 06 07 08 09

0.1 583 868 1220 1426 2007 2706 3817 6107 8534
0.2 499 3248 6024 13263 29972 42686 50073 54494 48403
0.3 266 3682 35468 51860 48209 34436 undef. 28010 undef.

0.4 10 292 34610 63367 wundef. undef. undef. undef. undef.
0.5 10 undef. undef. undef. undef. undef. undef. undef—
0.6 10 undef. undef. undef. undef. undef. — — —

0.7 undef. undef. undef. undef. — — — — —
0.8 undef. undef. undef. — — — — — —
0.9 undef. undef. — — — — — — _

Table 7.34:AESof the CoeEA

n”? 01 02 03 04 05 06 07 08 009

0.1 4059 9530 19502 28494 50156 78444 129743 232063 366927
0.2 3476 35708 96364 265242 749275 1-105 2-105 2-10 2-10°
0.3 1842 40484 567463 1-10% 1-10° 998624 undef. 1-10% undef.
0.4 50 3192 553740 1-10° undef. wundef. undef. undef. undef.
0.5 50 undef. undef. undef. undef. undef. undef. undef—

0.6 50 undef. wundef. undef. undef. undef. — — —

0.7 undef. undef. wundef. undef. — — — — —

0.8 undef. undef. undef. — — — — — —

0.9 undef. undef. — — — — — — —

Table 7.35.CC of the CoeEA

101

100000 100000 100000
(0.1,0.9) (0.2,0.9) (03,0.8)
w0 w000 w000
3 oo oo oo
200 20000 20000
) oo oo 0000 o000 o020 oo o000 o000 Tooooo) gy) E) Tooeo
I - [—
100000 100000 100000
0.4,0.7) (0.5,0.6) (0.6,0.6)
w0 w000 w000
3 oo oo % o
H H
) o000 HE
2000 20000 20000
evimions evaions [o—
10000 100000 100000
(0.7,0.5) (0.8,0.5) (0.9,0.4)
w00 w000 w000
I 3 k]
3 oo % oo £ oo
g 40000 § 40000 5 a0 ”
20000 20000 20000
o6 sos : . 55 e ,.
(0.1,0.9) 0.2,0.9) T 03.0.8)
oo o0 as% N 185
502 o8 899
10
502 07 2
04 nsne
R a5
H 8992 § 2 B
Fos 53 e §
] i wrs
0z s
PR)
1w
a97 [X3 a0
o o5 1365
496 01 asse
0 To000 70000 000 40000 50000 0000 70000 8000w 30000 200000 0 TTO000 70000 30000 40000 50000 60000 70000 8000 So0my 10006 @ To0o0 TI000 30000 40000 50000 50000 70000 80000 30000100000
0.4,0.7) 0.6,0.6)]
. o
. n n
» 2 ¢
I g
5, 0 E
N 8 2
) & 155 - 16 18
D e O T 000 0000 4o soo Goos0 To0% B0 100008 I 0m a0 A0 50000 o000 700 sieco 50000 10009
©7p5 0.870.5) (0.9,0.4)
£
1 18.1 £ 20 ks 182
0 Too00 2000 0o Aanie 50000 50000 7000 aoess 50000 100095 0 Tooeo 2000 %000 4000 Goom0 Gaeo0 70000 8000 a0 10068 Too0 20000 0000 400 56000 60000 70000 g0u s 100008

Figure 7.14:MBF andMCE of the CoeEA

102

7.4 Eliminate-Split-Propagate Evolutionary
Algorithm

In [57], E. Marchiori introduced an evolutionary algoritHior solving constraint sat-
isfaction problems based on pre- and post-processingitpesfor CSPs. The algo-
rithm was further investigated in [19, 85], but here we usewarsion from [57]. We
call this algorithm theEliminate-Split-Propagate Evolutionary AlgorithESPEA.
The technique applied in tHeliminate-Split-Propagate Evolutionary Algorithisba-
sed on the glass-box approach from [85] which decomposedParC8ich a way that
there is only one single type of constraint. By decomposingencomplex constraints
into primitive ones, the resulting constraints have the esamanularity and therefore
the same intrinsic hardness. The rewriting of constrami@oine in two steps and is
calledconstraint processingBecause after constraint processing, all constrainte hav
the same form, a single repair rule can be used to enfdependency propagation
Because a single repair rule is used, a local-search tashcian be used to repair an
individual, applying the repair rule to every violated ctvagt in a candidate solution.
TheESPEAakes its name from the initials of the two steps of the camstprocessing
phaseEliminateandSplit, and from the propagation of the dependencies by the repair
rule. Constraint processing and dependency propagatfortier discussed below:

Constraint Processing When theESPEAwas introduced it was tested on tfige
houses puzzland the N-queens problem ([57, 85]). The constraints in these
problems are, unlike the definition of constraints in the C&fen defined as
equations. These equations are the equivalent of what wmilseveral con-
straints in the CSP. Because the equations combine seeasttaints, their rel-
ative complexity varies. Constraint processing is a wayediicing the variance
of complexity of these constraints. The method proposegrfocessing these
constraints consists of two phases: #ignination phaseand thesplit phase
The elimination phase eliminates functional constraintsrider to reduce the
number of variables in the problem analogous to the GENOC®@tad ([64]).
The split phase then decomposes the resulting constratota set of constraints
in canonical form. Each constraint is represented by a caitipo of primitive
constraints. The canonical form proposed in [57] is of threnfo

a-wi—Ba; A (7.1)

wherez; andz; stand for the variables of the constraint. Because somahias
are discarded during the elimination phase, when the solafithe original CSP
is calculated, these variables have to be recovered. Thaffant, reverses the
elimination phase. Because we use a constraint satigfiaptiablem without
functional variables and with constraints already in a cécad form, constraint
processing is unnecessary, although the dependency @tigragtep has to be
rewritten using these constraints.

Dependency PropagationDependency propagation is implemented in the form of a
probabilistic repair rule:

103

if o-p; — - p; =~ thenre-labelp; orp; (7.2)

The repair rule deals with violations of primitive consiriai. It states that if a
constraint is violated by a candidate solution, it shoutegire-label the first or
the second variable of the constraint. There are threesgsusolve with this
repair rule: which variable to re-label, to which value oé thariable’s domain
to re-label it to, and in what order the constraints are toroegssed. In [57], a
uniform randomly chosen variable is re-labelled with a amif randomly chosen
value. The constraints are checked in random order. No ¥iagglied to any of
these choices nor to the ordering of the constraints.

Because in our definition of the CSP, the constraint prongsstiep of theEliminate-
Split-Propagate Evolutionary Algorithris unnecessary, this leaves only the depen-
dency propagation step. This is implemented as a repair Thie repair rule is imple-
mented in a repair operator added to the genetic operattig ituitive Evolutionary
Algorithm The repair operator is used after the mutation operatoe. okher compo-
nents of thdntuitive Evolutionary Algorithmremain unchanged.

7.4.1 ESPEACharacteristics and Parameter Setup

Table 7.36 shows the characteristics table of Hiiminate-Split-Propagate Evolu-
tionary Algorithm The characteristics of theliminate-Split-Propagate Evolutionary
Algorithmare for a large part identical to the characteristics ofitheitive Evolution-
ary Algorithmin that it too uses a steady state evolutionary model, anreddset of
values representation, thfe fithess function, the uniform random crossover operator,
the uniform random mutation operator, the bias rankingmsselection operator and
the replace worst survivor selection operator. All thesarabteristics are explained
in Chapter 5. As an additional operator, tBkminate-Split-Propagate Evolutionary
Algorithmuses theESPEArepair operator discussed in the previous section.

Table 7.37 shows the parameter table of Bleninate-Split-Propagate Evolutionary
Algorithm The Eliminate-Split-Propagate Evolutionary Algorithiras a population
of 10 individuals (Population Size), from which) parents are selected (Selection
Size) using the biased ranking parent selection operatihr avbias ofl.5 (Ranking
Bias). The crossover operator of th#iminate-Split-Propagate Evolutionary Algo-
rithm is applied with a crossover rate 00 (Crossover Rate) and the uniform random
mutation operator in thEliminate-Split-Propagate Evolutionary Algorithanses a mu-
tation rate of0.1 (Mutation Rate). The experiments of teBéiminate-Split-Propagate
Evolutionary Algorithmare terminated aftet00, 000 fitness evaluations (Maximum
Number of Evaluations). ThESPEArepair operator has only a single parameter, de-
termining the portion of constraints that are checked tairgpe individuals. We use
all constraints to repair the individuals:0 (Constraints Check Rate).

104

ESPEA

Evolutionary Model Steady State

Representation Ordered Set of Values
Objective Function f1

Crossover operator Uniform Random Crossovgr
Mutation operator Uniform Random Mutation
Parent Selection Biased Ranking

Survivor Selection Replace Worst

Other Functions Repair Operator /

Table 7.36: Characteristics of tlEEsSPEA

ESPEA
Population Size 10
Selection Size 10
Maximum Number of Evaluations 100, 000
Constraints Check Rate 1.0
Ranking Bias 1.5
Crossover Rate 1.0
Mutation Rate 0.1

Table 7.37: Parameters of tRESSPEA

7.4.2 ESPEAExperimental Results

Table 7.38 shows that thliminate-Split-Propagate Evolutionary Algorithsolves
the CSP instances in the solvable region in almost all ruméy @r density-tightness
combinations(0.3,0.7), (0.6,0.5), and(0.8,0.5) was theESPEA SRhot almost1.0.
The SRof the ESPEAwas not so high in the mushy region, only for density-tigkte
combination (0.1,0.9) did it haveSRof 1.0. The lowesSRof theESPEAN the mushy
region is for density-tightness combination (0.7,0.5)hwatSRof 0.328. Tables 7.39
and 7.40 show that for the solvable region, E®PEAhad a fairly lowAESandCC,
for the density-tightness combinations in the mushy regionever, theESPEAuses
a fairly large amount of botAESandCC. However, because these measures are cal-
culated over successful runs only, and BE8PEAhas a lowelSRin the mushy region,
these values are inaccurate. In general, the repair opefatoe ESPEA even though
it does not use any expensive heuristics, still uses a oesitabunt ofCC because all
constraints are used to repair the individuals in the pdjmra

The UIC plots of theESPEAIn Figure 7.15 show that thESPEAsearches through a
substantial portion of the search space. The jump iri@plot for density-tightness
combination (0.1,0.9) is explained by the fact that in betwthe two intervals, many
runs of the algorithm were successful. Sinceth€ is calculated as an average over
all runs, this has an effect of théiC as a whole. Th&JIC plots show that th&€SPEA
shows no sign of premature convergence of the populatidreimushy region, enough

105

new unique individuals are evaluated during the run of tigerdthm. TheMBF/MCE
plots of theESPEAIn Figure 7.16 show that th§ objective function is similar to the
calculation of theMCE. TheMBF and theMCE, on average, follow each other closely.
The plots further show that, except for density-tightnessilgination (0.1,0.9), the
search concentrates rapidly around individuals that hiawesame fitness value. The
exception for density-tightness combination (0.1,0.9xplained by the fact that all
runs of theESPEAwere successful after only a few evaluations.

106

;P2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.4 1.0 1.0 1.0 1.0 1.0 1.0 0.996 0.844 0.432
0.5 1.0 1.0 1.0 1.0 0.988 0.788 0.328 0.468 —
0.6 1.0 1.0 1.0 0.968 0.436 0.404 — — —
0.7 1.0 1.0 0.796 0.436 — — — — —
0.8 1.0 0.932 0.388 — — — — — —
0.9 1.0 0.676 — — — — — — —
Table 7.38:SRof the ESPEA
;P2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 10 10 11 12 14 16 17 19 19
0.2 10 12 16 19 22 24 30 35 47
0.3 12 17 22 27 39 95 88 126 213
0.4 14 21 34 55 99 523 1832 5598 8365
0.5 19 30 64 126 2094 5972 8599 5332 —
0.6 24 50 162 2265 7928 5581 — — —
0.7 35 123 2854 6280 — — — — —
0.8 166 1157 4982 — — — — — —
0.9 997 6604 — — — — — — —
Table 7.39:AESof theESPEA

;P2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 50 91 162 246 401 603 786 996 1164
0.2 52 132 308 491 73 1039 1603 2154 3414
0.3 65 220 467 805 1579 2683 5325 8709 17026
0.4 90 294 803 1794 4318 27996 116941 402717 685535
0.5 139 441 1642 4356 96098 322239 549994 383535 —
0.6 187 817 4392 81351 364466 301103 — — —
0.7 300 2129 79780 225890 — — — — —
0.8 1614 20743 139361 — — — — — —
0.9 9918 118774 — — — — — — —

Table 7.40:.CC of theESPEA

107

. oo oo
(0.1,0.9) (0.2,0.9) (0.3,0.8)
oo
. - o
S omo
oo o
oo .
o a0
o
R R R T T e oo F B Temo
o onn o0
(0.4,0.7) (0.5,0.6) (0.6,0.6)
womo oo oo
2 womo 2 oomo £ wom
H H
¢ om © oo) won
oo a0
evaluations. evaluations. h evaluations.
o onn aron
(0.7,0.5) (0.8,0.5)
como oo oo
H 3 H
3 womo % oo £ coom
g 40000 § 40000 5 a0
oo a0
evaluations. evaluations. h evaluations.
(0.1,0.9) (0.270.9) (0.3/0.8)
128 145 155 2
Lo "
& 125
"
o088 LS5 0985 11 L 11 2L 12
T T R o e o o e e o o
(0.4,0.7 (0.5,0.6) (0.6,0.6)
155 148
e 14
g i © §F g
1 1 10 LS 15
T R S o e e o e s o oo T
(0.7:05) (0.8,0.5) (0.9:0.4
18 s ss w 28
28 35 26
45 24
= 58t 22
2 o 8
s 2 s §
¢ 18 “ 18
12 2 12
— 1 15 MEIE 15 1 1
o o s S T e i s T o o o oo oo s oo o wom oom oom coom 1o somo somo o

Figure 7.16:MBF andMCE of the ESPEA

108

7.5 Host-Parasite Evolutionary Algorithm

In [45, 44], H. Handeet al. introduce an evolutionary algorithm also based on the co-
evolutionary approach, which we call thivst-Parasite Evolutionary Algorithm

(HPEA). In the HPEA, a parasite-population of schemata is used to improve a host
population of candidate solutions. Schemata are definedrafidate solutions where

a number of variables are labelled with an asterisk. Theigkts used as a “don’t
care”-value. The schemata are used as an overlay or tenopkatthe individuals of the
host-population. When applied to a host-individual, thei@sk values in the schemata
are replaced by the values of the corresponding variabléeediost-individual.

Unlike theCo-evolutionary Algorithmboth host- and parasite-populations are evolved.
Both populations have their own objective function and thelgion of both popula-
tions is done using genetic and selection operators. Thensata of the parasite-
population are used to enhance the fitness of the host-gapulanly. The rela-
tionship of the two populations is parasitic from the poiftlee parasite-population
as the schemata and fitness values of the parasite-indisideaend solely on the
host-individuals. However, it also resembles a symbiatlationship as the parasite-
population is used to enhance the ability of the host-pdjmrdo find solutions to the
problem. As such it resembles the relationship betweereXample, sharks and their
cleaner-fish.

The objective function of the host-population is based aribbmber of constraints
violated by a candidate solution. The fitness of the hositsiddals is normalised be-

tween zero and one and is to be maximised. The host-crosspegseator is the uniform

random crossover operator and the host-mutation opesatbeiuniform random mu-

tation operator. Parents are selected using the biasethgapdrent selection operator
and survivors are selected using the replace worst sureperator. With the excep-
tion of the different objective function, the host-partloéHPEAclosely resembles the
Intuitive Evolutionary Algorithm

The fitness value of a parasite-individual is calculated l®asuring the improvement
of the schema on a portion of the host-population. The imgment is measured
by summing the positive difference of the fitness values feefmd after the schema
is applied to the host-individual. Applying a schema to attiedividual is called
super-positioninghe schema. The parasite-crossover operator is the unifmdom
crossover operator, the asterisk labels are treated lidimany labels. The parasite-
mutation operator is an adaptation of the uniform randomatirt operator where for
re-labelling to a asterisk a new parameter is used. The pdesietermines the proba-
bility that an asterisk is used to re-label a variable, iagtef an ordinary value. A third,
repair, operator is added to evolve the parasite-populalibe operator only considers
the variables not labelled with an asterisk. These varsadle re-labelled iteratively to
values that do not violate any constraint relevant to othbelled variables. A local-
search algorithm as was used in thid Climber with Restart Algorithms used to do
this. Parents for the parasite-population are selectetjubie biased ranking parent
selection operator and survivors are selected using theaepvorst survivor selection
operator.

109

Interaction between the host population and the paraspelption is based on two
mechanisms:

Super-position Super-position is the interaction from the host-poputatmthe para-
site-population. This interaction provides the schematéné parasite-popula-
tion with their fithess values. Each schema in the parasifedation is applied
to a number of host-individuals. Asterisk values in the schi@ are replaced by
the corresponding values of the host-individual.

Transcription Transcription is the interaction from the parasite-popaieto the host-
population and is the actual transmission of the parasifeation’s genetic in-
formation. TheHost-Parasite Evolutionary Algorithreequentially performs a
generation of the host population before it performs a geiter of the parasite
population. Transcription is performed after the pargsiteulation is evaluated.
It uniform randomly selects a number of host-individualsdzhon a parame-
ter called the transcription rate. Randomly selected selterare then super-
positioned over these host-individuals.

The Host-Parasite Evolutionary Algorithmses two populations and in effect evolves
these populations separately, only exchanging geneticrirdtion during super-posi-
tion and transcription. Different genetic and selectioerapors and even objective
functions can be used for the host part of the algorithm.

7.5.1 HPEA Characteristics and Parameter Setup

Table 7.41 shows the characteristics table for Huest-Parasite Evolutionary Algo-
rithm. Unlike the other characteristics tables in this chaptes, thble for theHost-
Parasite Evolutionary Algorithneonsists of three columns. The centre column show
the characteristics of the host part of the algorithm andrigpet column shows the
characteristics of the parasite part of the algorithm. Bb#hhost and the parasite-
population of theHPEA use a steady state evolutionary mode, a uniform random
crossover operator, a uniform random mutation operatoiasel ranked parent se-
lection operator and a replace worst survivor selectiorraipe The crossover oper-
ator and the mutation operator for the parasite-populdimve been adapted so that
they can handle schemata, no adjustment is needed for tivpdmslation’s genetic
operators since it uses an ordered set of values repreasantdthese characteristics
are explained in Chapter 5. As a third operator, the parpsiteof the algorithm also
includes a repair operator, described in the previous@eclihe host-population uses
the f, objective function that normalises the fitness values tomgedetwee and1,
maximised. The objective function of the parasite-popaiteis based on the improve-
ment of the transcription of the schemata on a number of indstiduals, explained
above. The ternimprovementf; is used in the characteristics table to describe this.
More details on these objective functions can be found irptegious section as well.

Table 7.42 shows the parameter table for Hust-Parasite Evolutionary Algorithm
The Host-Parasite Evolutionary Algorithmmaintains a host-population @f individ-

110

HPEA

Evolutionary Model Steady State Steady State
Representation Ordered Set of Values Schemata
Objective Function f1 Normalised Improvement;
Crossover operator Uniform Random Uniform Random
Crossover Crossover
Mutation operator Uniform Random Uniform Random
Mutation Mutation
Parent Selection Biased Ranking Biased Ranking
Survivor Selection Replace Worst Replace Worst
KOther Functions None Repair Oper@fl

Table 7.41: Characteristics of thEPEA

HPEA

Asterisk Rate
Ranking Bias
Ranking Bias

Host Population Size
Parasite Population Size
Host Selection Size
Parasite Selection Size
Maximum Number of Evaluations 100, 000
Number of Super-Positions
Transcription Rate

Mutation Rate Host Population
Mutation Rate Parasite Population

Host
Parasite

Crossover Rate Host Population
Crossover Rate Parasite Population

10
5
10
)

2

0.8
0.1
0.3
0.7
1.5
1.5
1.0
1.0

Table 7.42: Parameters of thREPEA

111

uals (Host Population Size), from whidlo parents are selected (Host Selection Size)
using the biased ranking parent selection operator withaa bf1.5 (Ranking Bias
Host). Simultaneously, thidost-Parasite Evolutionary Algorithmmaintains a parasite
population of5 individuals (Parasite Population Size), from whiglparents are se-
lected (Parasite Selection Size) using the biased rankirgnpselection operator with
a bias ofl.5 (Ranking Bias Parasite). The crossover operators of bethdkt- and the
parasite-population are applied with a crossover rate®fCrossover Rate Host Pop-
ulation and Crossover Rate Parasite Population) and thatimoibperator of both pop-
ulations uses a mutation rate®f (Mutation Rate Host Population and Mutation Rate
Parasite Population). The experiments ofltiwst-Parasite Evolutionary Algorithare
terminated aftet 00, 000 fithess evaluations have been performed (Maximum Number
of Evaluations), combining the number of evaluations ofitibe host- and the parasite-
population. During each fitness evaluation of an indivicdefehe parasite-population,

it is super-positioned ovex host population individuals (Number of Super-Positions).
The Host-Parasite Evolutionary Algorithmases a transcription rate 6f8 (Transcrip-
tion Rate) and the uniform random mutation operator for thegite-population uses
an asterisk rate df.7 (Asterisk Rate).

7.5.2 HPEA Experimental Results

Table 7.43 shows that tHéPEA has reasonabl8Rfor the solvable region of the test-
set. In the mushy region however, tB&of the algorithm is much lower. Table 7.44
shows that th&ESto attain thisSRis quite large. As expected, maintaining the two
populations of theAPEAuses many evaluations. Table 7.45 shows thaHREAalso
needs a higiCC to attain thisSR The low SRof the HPEAIs also explained because
of the lower number of allowed evaluations for the host p&the algorithm. Because
the HPEA uses evaluations for the maintenance of both populatiordstee runs are
terminated after a certain number of evaluations have beed, uhe host-population
of the algorithm is allowed fewer evaluations to find a salntin than the population
of an algorithm with has only one population. This is a dragkoaf all evolutionary
algorithms that use the co-evolutionary approach: theaeedst incurred by having to
maintain two populations has to be compensated by an imgrpggormance of the
algorithm. The highCC of theHPEAIis probably caused by the local-search technique
used in the repair operator of the parasite-population. SRef the HPEA is not
increased enough to compensate for the iighcost of this operator however.

TheUIC plots in Figure 7.17 show that th&PEAsearches only through a small portion
of the search space. The amount of search space searchetablyrlimited by the
way the parasite-population is used. TMBF/MCE plots in Figure 7.18 show that the
MBF andMCE graphs follow each other closely. Except for density-tigiss combi-
nation (0.1,0.9), th&Rof theHPEAIs low, which makes both thdBF/MCEandMCE
measures accurate and explains the smooth monotonic deaséhoth plots. Both
plots together show that the population of tHEEA does not converge prematurely
to a local optimum. The erratic behaviour of t8F/MCE plot for density-tightness
combination (0.1,0.9) is explained by the effects of susftésuns on calculating the
mean of theMBF andMCE measures.

112

pP> 01 02 03 04 05 06 07 08 09

0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.988 0.912
0.4 1.0 1.0 1.0 1.0 0.984 0.968 0.788 0.472 0.156
0.5 1.0 1.0 1.0 0.988 0.768 0.436 0.152 0.204 —
0.6 1.0 1.0 0.96 0.708 0.188 0.188 — — —
0.7 1.0 1.0 0.576 0.228 — — — — —
0.8 1.0 0.852 0.256 — — — — — —
0.9 0.98 0.564 — — — — — — —

Table 7.43:SRof theHPEA

mP? 01 02 03 04 05 06 07 08 09

0.1 25 25 26 28 33 43 51 69 5
0.2 25 29 44 72 103 139 189 242 380
0.3 27 50 98 164 253 394 851 2713 6514
0.4 35 82 199 339 1143 6881 10771 16288 20945
0.5 o7 148 673 3512 11357 21170 21258 20629 —
0.6 86 263 3603 14406 20224 22063 — — —
0.7 143 2255 12752 20118 — — — — —
0.8 875 8692 23212 — — — — — —
0.9 2727 15222 — — — — — — —

Table 7.44 AESof the HPEA

mP? 01 02 03 04 05 06 07 08 09

0.1 100 180 316 478 788 1438 2001 3165 3836
0.2 100 307 1047 2268 4159 6194 9631 13298 22539
0.3 168 995 3191 6381 11352 19695 45607 151718 416938
0.4 413 2129 7267 14424 56944 367844 645799 1-10° 1-10°
0.5 1108 4453 25003 167218 630930 1-10% 2.10 2.106 —
0.6 2099 9045 156620 696238 1-10° 1108 — — —
0.7 4022 77272 593063 1-10° — — — — —
0.8 30985 361459 1-106 — — — — — —
0.9 85374 718336 — — — — — — —

Table 7.45:.CC of theHPEA

113

100000 100000 100000
(0.1,0.9) (0.2,0.9) (0.3,0.8)
80000 g 80000 80000
3 oo % oo oo
20000 2000 2000
ED oo o w000 o000 20000 oo w000) Taooco 20000 gy E) Tooeo
evakasons evakatons [R—
100000 100000 100000
(0.5,0.6) (0.6,0.6)
aono w000 om0
£ oo £ oo £ aoom
H H H
§ som § a0) § wom
20000 20000 20000
evaluations. evaluations. h evaluations
100000 100000 100000
(0.7,0.5) (0.8,0.5)
son0 w000)
I 3 k]
3 oo % oo -
g 40000 § 40000 5 a0
20000 20000 20000
evaluations. evaluations. h evabations
o 1 B 2
(0.1,0.9) (0.2,0.9) (0.3,0.8)
1o 2
20
{ 105
R 104 R
i 108 2
£ 102
24 1
Lot
2
1
!
70000 30000 4000050000 GAND 70000 5000050000 100000 0 Moz G Ao S0 6o 7OW0 B s0on 1w o Tooo0 o0 000 20000 50000 60000 70000 #0000 50000100k
0.4,0.7) X (0.5,0.6) (0.6,0.6)
2 s 21
29 24 26 *
28 = 25 2z 3z
R 2
L il . s 3
g i Fae g
C i w8 »]
H W o i H
2
2 - n M 26
2 - 2 s
e MBE —e—
21 15 1pLE TR 12 2
7o 3000 40000 SON0 G000 70000 G000 90600 100000 0 Mo 7o a0 400 SO0 600 7000 000 5000 1000 0 Tow 70 300 000 S0 G000 7000 N0 000 10
0.7,0.5) (0.8,0.5) (0.9,0.4)
20
2 2 B s
26 38 u
2
. w2
£ 24 H
g s
H 2 L
s 28
26
1 s »
2 16 28 ks 22
g T T R Ty 0 Mo 7o S 4o S0 6N 700 000 000 10008

Figure 7.18:MBF andMCE of theHPEA

114

7.6 Local Search Evolutionary Algorithm

In [59], E. Marchiori introduced another evolutionary aligom that uses the combi-
nation of a repair operator and ordinary variation operakbe repair method consists
of a specially adapted local-search algorithm. We callakgsrithm: theLocal Search
Evolutionary AlgorithmLSEA. In [58], the algorithm was adapted to solve the Maxi-
mum Clique Problem, closely related to the CSP, and a cosgarias given between
an evolutionary algorithm setup, an iterated local-seaethp, and a local-search setup
with a restart strategy.

TheLocal Search Evolutionary Algorithises an array of domain sets representation.
One domain set for each variable of the CSP is used. The idleatithe algorithm will
reduce the domain sets to include only values that do noata@aklevant constraints to
the values in the other domain sets. During the search, nmater@re values are re-
moved from the domain sets until only the values remain ttetansistent with each
other. Because only values remain in the domain sets thabasstent with the values

in the other domain sets, the objective function ofltB&Ais straightforward, it counts
thenonempty domain sets in the individual. Since thecal Search Evolutionary Al-
gorithmsearches for individuals with domain sets with at least dnevaonsistent with
each other, this is enough. The objective function is cated_S objective function.

Because the representation used byltheal Search Evolutionary Algorithiis so dif-
ferent from the ordered set of values representation, @edard genetic operators
cannot be used. New genetic operators were therefore @esighhelLocal Search
Evolutionary Algorithmhas three operators: the LS crossover operator, the LS muta-
tion operator and the LS repair operator. The LS crossoverabpr takes two parents
and generates two children. Initially the domain sets ofcthiédren are empty. With
equal probability, each value from the domain sets of themaris added to the corre-
sponding domain set of either the first or the second childv&loes are added twice

to a domain set, instead, the value is added to the domairf &t ohild that does not
contain it yet.

The LS mutation operator has two parts, it takes one pargurbiduce one child. The
first part adds a uniform randomly chosen value to a uniformdoanly chosen domain
set of the child. If the value is already in the domain settlagovalue is chosen. The
second part of the operator removes a value of a domain setvaltie is selected with

a low probability, typically0.05. Neither the LS crossover operator nor the LS mutation
operator uses heuristics and both operators are blind strednts. The biased ranking
selection operator is used for parent selection and replacst survivor selection is
used for survivor selection.

The LS repair operator is applied just after initialisatiointhe individuals and just
after the mutation operator. It consists of three partdedahitialisation, repair, and
improve The local-search repair operator takes a single parentristaict a single
child. The objective of the repair operator is to have thédotontain a maximal partial
solution over all variables of the CSP, constructed basdti®parent. The three parts
of the local-search repair operator are described below:

115

Initialisation The initialisation part of the operator initialises the ldhivith empty
domain sets for all variables of the CSP.

Repair The repair part of the operator consists of two phases:

Extract During the extract phase the operator selects for eachblaria the
CSP a uniform randomly chosen value from the domain set gidhent. It
then checks if this value is consistent with the other vahlesady added to
the child. Ifitis not consistent, another value is unifoemdomly selected.
No value can be selected twice. If no value is found to be stesi, the
domain set is left empty. All domain sets are checked in rendader.

Extend During the extend phase, the operator tries to extend theathogets
of the child by checking if a uniform randomly chosen vahat in the
domain set of the parent is consistent with the already addis in the
child. Again the different domain sets are extended in ramdader and no
value in the domain sets is checked twice.

The objective of the repair part of the operator is to unifeamdomly construct
an array of maximal domain sets whose values are all consistth each other.

Improve The improve part of the operator consists of three phases:

Arc-consistency During the arc-consistency phase, the operator checkerié th
is a value in the domain sets that is inconsistent with aliealof a (empty)
domain set in the child. If such a value is in the domain seth@fchild,
it is removed. This phase is called arc-consistency becaaussstency is
checked by arc.

Delete During the delete phase, the operator removes the valué dordain
sets that has the largest number of violated constrairdgast to the other
domain set values. If two or more values have an equal nunfhéolated
constraints, all values are deleted.

Extend This extend phase is the same as the extend phase in the papaof
the operator.

The objective of the improve part of the operator is to imgrtive array of do-

main sets by first eliminating values from the domain setsdhase one or more
domain sets to remain empty and remove the values from thaidsats which

limit the further extension of the child the most. After the-aonsistency and
delete phase, the child is no longer an array of consisterimah domain sets.

The extend step is repeated in the hope that more valuesa@ed smithe domain
sets.

The domain sets and the values to be added to them are selegttedn randomly.
This ensures that the array of consistent maximal domam isejenerated without
bias. The operator also ensures that the algorithm remaifesasible search space,
unlike the repair operator of thgliminate-Split-Propagate Evolutionary Algorithm

116

LSEA

Evolutionary Model Steady State
Representation Array of Domain Sets
Objective Function LSEAODbjective Function
Crossover operator LS crossover
Mutation operator LS mutation
Parent Selection Biased Ranking
Survivor Selection Replace Worst

KOther Functions LS Repair Operator /

Table 7.46: Characteristics of thSEA

LSEA

Population Size 10
Selection Size 10
Maximum Number of Evaluations 100, 000
Domain Value Add Rate 0.1
Domain Value Remove Rate 0.05
Repair Delete Rate 0.9
Ranking Bias 1.5
Crossover Rate 1.0

Table 7.47: Parameters of thSEA

7.6.1 LSEA Characteristics and Parameter Setup

Table 7.46 shows the characteristics table ofltheal Search Evolutionary Algorithm
The Local Search Evolutionary Algorithmses a steady state evolutionary model, the
biased ranking parent selection operator and the replacst worvivor selection op-
erator, explained in Chapter 5. Thecal Search Evolutionary Algorithmses the LS
fitness function, the LS crossover operator, the LS mutatp@rator and the LS repair
operator explained in the previous section.

Table 7.47 shows the parameters table ofibeal Search Evolutionary AlgorithnThe
Local Search Evolutionary Algorithmses a population df0 individuals (Population
Size), from which10 parents are selected (Selection Size) using the biase@&dank
parent selection operator with a biaslof (Ranking Bias). The LS mutation operator
adds a value to a domain set with a probabilityodf (Domain Value Add Rate) and
removes a value from a domain set with a probability 06 (Domain Value Remove
Rate). The LS crossover operator is applied with a cross@terof1.0 (Crossover
Rate). The LS repair operator deletes values from the dosedswith a probability of
0.9 (Repair Delete Rate). The experiments ofltleeal Search Evolutionary Algorithm
are terminated after00, 000 fitness evaluations (Maximum Number of Evaluations).

117

7.6.2 LSEA Experimental Results

Table 7.48 shows that theSEAwill find a solution for the CSP instances in the solvable
region in almost every run. In the mushy region, Birwas lower but still compar-
atively high. Table 7.49 shows that tR&Sof the LSEAIn the mushy region is low,
finding on average a solution in the first generation for m@&® @stances in the mushy
region. TheAESused for solving the CSP instances in the mushy region ishigilt is
comparatively low when compared to the other algorithmewdised. Table 7.50 shows
that although th& SEAuses fewAES it uses many¥Cs. This indicates that most of the
conflict checks are used outside the objective functioncéihe other operators of the
algorithm do not use conflict checks, these must all be useleblS repair operator.

TheUIC plots in Figure 7.19 show that theSEAsearches only a small portion of the
search space. This is probably caused by the LS repair apevhich ensures that the
search is limited to the feasible search space only. MB&/MCE plots in 7.20 show
almost no difference between tMBF andMCE measures during the run. For density-
tightness combination (0.1,0.9), all runs were succedsdtdre the first interval, so
these plots show only a single data point. The flatness d¥l&8le/MCE plots is caused
by the low number oAESneeded by th& SEAto find a solution. The way in which
the fitness function is calculated results in a rather skéAB& measure indicating a low
selection pressure with little difference between goodlzamtiindividuals.

118

P2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
04 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.936
05 1.0 1.0 1.0 1.0 1.0 1.0 0.776 0.796 —
06 1.0 1.0 1.0 1.0 0.924 0.752 — — —
0.7 1.0 1.0 0.992 0.808 — — — — —
0.8 1.0 1.0 0812 — — — — — —
09 1.0 0.988 — — — — — — —
Table 7.48:SRof the LSEA
P2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 10 10 10 10 10 10 10 10 10
0.2 10 10 10 10 10 10 10 10 10
0.3 10 10 10 10 10 10 10 10 13
04 10 10 10 10 10 13 24 363 4097
05 10 10 10 11 25 389 11562 11422 —
0.6 10 10 13 88 10124 12080 — — —
0.7 10 11 1399 5935 — — — — —
0.8 10 26 9825 — — — — — —
0.9 13 540 — — — — — — —
Table 7.49:AESof the LSEA
mP2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 840 868 921 951 1003 1047 1108 1158 1231
0.2 895 974 1146 1253 1436 1656 1961 2307 2791
0.3 974 1167 1477 2013 2560 3174 4066 4912 6813
0.4 1103 1602 2440 3220 4551 6468 13073 164325 2-10°
0.5 1367 2306 3794 5347 13398 163912 5-106 4.106 —
0.6 1835 3390 6752 40279 4-10 5-106 — — —
0.7 2878 5545 619586 3-10% — — — — —
0.8 4539 14481 5-106 — — — — — —
0.9 8893 300212 — — — — — — —

Table 7.50:.CC of theLSEA

119

[———

0000

oo wow
(0.1,0.9) (0.2,0.9) (0.3,0.8)
oon woon
2 oow wwon

0000

200 20000
0 0000 o0 oo = oo 20000 o000 E w0000 ooom
eaaons eataons evons
om0 om0 00
(0.4,0.7) (0.5,0.6) (0.6,0.6)
w000 soom w000
% oo 3 oo £ oo
i g H
§ soom § oo . § oo
20000 200 20000
- eataons evons
1000m om0 000
(0.7,0.5) (0.8,0.5)
w000 soom w000
3 i 1
3 oo % oo -
g 40000 § 40000 5 a0
0000 2000 20000
' o1 o o o1
(0.1,0.9) (0.2,0.9) (0.3,0.8)
o0 ss oo 50
008 s oo 00
os -os
oo s o oo
io -0 I B s g
0 s s o
as -0s
o s o
. o 0 o 1 %0 om0 a0 w0 w0 w00 w0000 70000 50000 50000 oot o To00 2000 0000 #0000 000 conmn 7000050 10000
0.4,0.7) (0.5,0.6) 0.6,0.6)
50 ws oos s
oo s om oo
i o ki £
o5 s e s
o o s
89 ks 89 8975 k3 8975
o T00 2000 30000 #0000 50000 00w 70000 00 sotm0 1000 O 100 Z000 30000 40000 50000 60000 70000 5000t 10000 @ Tooo0 000 0 460 50000 6000 7000 B0 50000 100
0.7,0.5) (0.8,0.5) (0.9,0.4)
000 ws e 0% 008
sos oo oo o
a0z e LL Y
I b 006 o 8
Eom 0 - o ©
005 o o6 o8
oo oo
oo a0 o oo
892 892 8o oo 802
e T
o 5 o s o 5
o 100 2000 30000 10000 S0000 00w 70000 00 ootmo 1000 0 100 700 30000 10000 50000 60000 70000 500w 000 00 o 1000 2000 50000 0000 o000 00w 7000 sntee o0 100000
evons evators eatatons

Figure 7.20:MBF andMCE of the LSEA

120

7.7 Micro-genetic Iterative Descent Evolutionary Algo-
rithm

The Micro-genetic Iterative Descent Evolutionary AlgoritiiIDEA) was proposed
by G. Dozieret al. in [24] and was further refined in [14, 25]. In thIDEA, infor-
mation about the CSP is incorporated in both genetic operatiod in the objective
function. The objective function is adaptive and employsBineakout Creating Mech-
anism developed by Morris in [66] to escape from local optint&ie Micro-genetic
Iterative Descent Evolutionary Algorithia called micro-genetic because small popu-
lations are evolved.

The MIDEA uses a representation that includes a pivot value, the nuofilsenstraint
violations for each variable, andiavalue additional to the ordered set of values rep-
resentation. Thé-value is used to determine the pivot variable of the indigid The
pivot variable is initialised to zero.

The population is evolved using one of two genetic operatdfsich operator is used
is determined by an adaptive scheme. At initialisation efdlgorithm, both operators
have an equal probability of being used. After the operatapplied, the fithess values
of the children are compared to the fitness values of the tmréhthe child fitness
values are better than the fitness values of the parents,rtfalglity of using the
operator is increased proportionally to the amount of theromwement. Each genetic
operator has its own probability, called taecumulated awardef the operator. The
probability of using the operator is calculated by dividihg accumulated award by
the total accumulated awards of both operators.

The MIDEA uses themultiple-point heuristicoperator ([26]) as a crossover opera-
tor. The operator recombines two parents into one child. djerator copies ev-
ery value from the parent which are consistent with eachrothibe remaining vari-
ables are added by performing a multi-point crossover withbability 0.5 - (1 +
1/constraint violationgralue)), or by copying the value from the first parent. The
multi-point crossover chooses a value from a domain limiggdhe values of the two
parents. As the domains of the variables are discrete, lalésdetween the values of
the parents can be selected. For a variable with first pasdae9 and second parent
value3, the operator can choose a value from the{8et, 5,6, 7, 8,9}.

The MIDEA uses thesingle-point heuristic mutationperator. The operator re-labels
a single variable. Which variable is re-labelled is deteediby the pivot value of the
parent. The variable is re-labelled to a value chosen umifandomly from the family-
domain of the variable, described below. The child is thengared to its parent. If the
fitness value of the parent is better or equal to the fitnesgeafithe child, thé:-value
of the pivot variable of the child is decreased by one and Hile ¢s inspected to see
if the pivot should point to another variable. This is donechiculating thes-value of
each variable. The-value of variable is the sum of the number of constraintatiohs
of the variable and it&-value. The variable with the highestvalue will be the new
pivot variable of the child. If the current pivot variableshan equak-value to one or
more other variables, the pivot remains unchanged. Ifstkialues of other variables

121

are equal, the pivot is chosen uniform randomly among therthel fithess value of
the child is better than the fitness value of the parenttlvalue and thus the pivot
variable remains unchanged.

This method for inheriting information for choosing whichriable is to be mutated
provides two mechanisms for the algorithm to exploit. Fiastonsecutive line of suc-
cessful children can optimise the number of constraintatiohs of a single variable.
Second, it allows the algorithm to switch to other varialldgn this optimising stops

or when other variables have highewalues. A drawback of the method is that after
a while it is possible that the-values cause the algorithm to choose a variable that is
not involved in any constraint violations. This occurs whke h-values of the vari-
ables involved in constraint violations get lower than toeual number of constraint
violations. When this happen, no further progress will be epaad to prevent this, all
h-values will be reset to zero using probability functigrfor individual ::

1

Ty = ———
|Oi|+2

(7.3)

whereO; is the number of variables involved in constraint violaiaaused by indi-
viduali.

The fitness value of an individual is determined by addingraajig to the number of
constraint violations of the individual. The penalty is them of the weights of all
breakouts whose values occur in the individual. A breakouisists of two parts: a
compound label that violates a constraint and a weight &ssocto the compound
label. The set of breakouts is initially empty and is moditigdncreasing the weights
of the breakouts or by adding new breakouts according togblenique used in the
Iterative Descent Method ([66]).

In addition, theMicro-genetic Iterative Descent Evolutionary Algorithuses the mech-
anism of maintaining families. The algorithm uses famit@®rce the mutation opera-
tor into a more structured exploration of the search spaaeh ihdividual evaluated by
the algorithm is assigned to a family. Each family has a darf@i the pivot variables
from which the mutation operator may choose when the pivoakie is re-labelled.
Initially, a family starts this domain equal to the domairtlod corresponding variable.
When a value is used to label a family member, that value is vethérom the do-
main set. This prevents future relative to reuse it. When aailofdecomes empty, a
new pivot variable is chosen and a new family is founded, g full domain. The
individual with the empty family domain becomes the first nbemof the new family.

7.7.1 MIDEA Characteristics and Parameter Setup

Table 7.51 shows the characteristics table oMligro-genetic Iterative Descent Evolu-
tionary Algorithm The Micro-genetic Iterative Descent Evolutionary Algorithrees
a steady state evolutionary model, a biased ranking pastett®n operator, and a
replace worst survivor selection operator, explained iagiér 5. TheMIDEA uses a
specialMIDEA representation which adds breakouts to fhebjective function. The

122

MIDEA

Evolutionary Model Steady State

Representation SpeciliDEA Representation
Obijective Function fiand Breakouts

Crossover operator Multi-Point Heuristic
Mutation operator Single-Point Heuristic

Parent Selection Biased Ranking

Survivor Selection Replace Worst

Other Functions Families /

Table 7.51: Characteristics of th&DEA.

MIDEA
Population Size 10
Selection Size 10
Maximum Number of Evaluations 100, 000
Crossover Award 1
Mutation Award 1
Ranking Bias 1.5

Table 7.52: Parameters of tMiDEA.

MIDEA uses the multi-point heuristic operator as a crossoverabpeand the single-
point heuristic operator as a mutation operator. The olftinction and both genetic
operators are explained in the previous section.

Table 7.52 shows the parameter table of liero-genetic Iterative Descent Evolu-
tionary Algorithm The Micro-genetic Iterative Descent Evolutionary Algorithms
a population of10 individuals (Population Size), from whictD parents are selected
(Selection Size) using the biased ranking parent seleci@nator with a bias of.5
(Ranking Bias). The crossover operator and the mutatioratpeare applied based on
an award system which awards one point for an applicatioh@ttossover operator
when it improves the fithess of the individuals (Crossoverm@ly and one point for
an application of the mutation operator when it improvesfitmess of the individuals
(Mutation Award). The experiments of ti\icro-genetic Iterative Descent Evolution-
ary Algorithmare terminated after00, 000 fitness evaluations (Maximum Number of
Evaluations).

7.7.2 MIDEA Experimental Results

Table 7.53 shows that ti&Rof the Micro-genetic Iterative Descent Evolutionary Al-
gorithmis low in both the solvable and the mushy region of the testfFam the mushy
region, theMIDEA did not find a solution in any run for five density-tightnessntina-

tions. Table 7.54 and 7.55 therefore show undefined entirebése density-tightness

123

combinations. Given that th&Rof the MIDEA is so low, both theAESandCC are
inaccurate since their average is calculated only over sstegessful runs. Still, both
tables show that th&#IIDEA uses a largAESand CC to find solutions to the CSP
instances in the test-set.

The UIC plots in Figure 7.21 show that thdIDEA searches through a small portion
of the search space and that tH&C hardly increases during the run. This suggests
premature convergence of the population on a local optimtimeMBF/MCE plots in
Figure 7.22 support this suggestion as the plots show alnwsariation in both the
MBF and theMCE. Both theUIC and theCC plots are accurate because of the large
number of unsuccessful runs. Combining the two plots we mostlude that, on av-
erage, the population of tidIDEA converges to a local optimum almost immediately
after it is started.

124

mP2 01 02 03 04 05 06 07 08 09
01 10 10 1.0 10 10 1.0 10 1.0 099
02 10 10 1.0 1.0 10 0976 0956 0.884 0.772
03 1.0 1.0 0976 00944 0.796 0.692 0.548 0.332 0.14
04 1.0 0996 0896 0.732 036 014 0.044 0.024 0.0
05 0.996 0.928 0532 0284 006 002 00 00 —
0.6 0.996 0672 0.16 0036 00 0004 — — —
07 0888 024 0012 0004 — — — — —
0.8 0544 0.052 0.0 - - = = = =
09 022 0004 — @— @—- @ - -
Table 7.53:SRof the MIDEA.
P2 01 02 03 04 05 06 07 0.8 0.9
01 10 10 11 13 17 2 32 42 50
02 10 14 29 47 77105 189 244 349
03 13 33 70 137 240 394 601 613 978
04 19 69 201 259 1305 641 4739 575 undef
05 38 138 331 1601 1655 1200 undef. undef. —
06 72 221 502 661 undef. 6635 « — — —
07 185 785 803 940 — — — — —
0.8 354 375 undef. — — — — — —
0.9 413 550 — — — — — — —
Table 7.54:AESof the MIDEA.
P2 01 02 0.3 04 05 0.6 07 08 09
0.1 1350 1361 1501 1777 2246 3499 4255 5638 6778
0.2 1404 1928 3942 6297 10338 14239 25465 32979 47118
0.3 1766 4434 9506 18490 32405 53283 81215 82753 132108
0.4 2576 9250 27192 34982 176355 86643 640305 77633 undef.
05 5086 18687 44748 216372 223653 162108 undef. undef. —
0.6 9670 29810 67776 89295 undef. 896603 — @ — @ —
0.7 24958 106109 108495 126945 — — S —
0.8 47830 50687 undef. — — — e
0.9 55753 74250 @ — — — — e

Table 7.55:CC of the MIDEA.

125

J——

i indvcals checked

i ndhicals checked

mesn best ftness

[S—

oo oo om0
(0.1,0.9) (0.2,0.9) (0.3,0.8)
80000 g 80000 80000
oo % oo
oo oo o
(0.4,0.7) (0.5,0.6) (0.6,0.6)
oo oo won
oo 1 oo £ oomo
! o) awon
o o0
evaluations. evaluations. h evaluations.
oo o o
(0.7,0.5) (0.8,0.5)
oo . on
3 K
oo £ o S
1o) § o
o o0
(0.10.9) (0.2,0.9) (0.3,0.8]
) 319 a07s.
12 a2 2 a2
1415 1415 e a07
H §§ H
1305 1305 ar N
138 138 e !
B e R o T
(0.40.7) (0.5,0.6) {0.6,0.6
.
sass H o s 5
415 & a1 °
4145 “ 4108 57
a13s = 4135 e 4,095 5685 569
0 1000 20000 30000 40000 50000 60000 70000 80000 90000 100000 © 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 0 10000 20000 30000 40000 50000 60000 70000 B0000 90000 100000
{0.7,05] (0.870.5) (0.9,0.4]
o N 446
T 604
406 H as
404 495 aa
o
CE L CE e }*
I T o o S o s Lol D

evaatons

Figure 7.22:2MBF andMCE of the MIDEA.

126

7.8 Stepwise Adaptation of Weights Evolutionary Algo-
rithm

The Stepwise Adaptation of Weights Evolutionary Algorif8AWEA was first intro-
duced by A.E. Eiben and J.K. van der Hauw in [33, 84] as impm#mt to the weight
adaptation mechanism of Eiben, Raand Ruttkay, defined in [30, 31]. Tisepwise
Adaptation of Weights Evolutionary Algorithihas been studied in several variations
in [30, 34, 35], and a comprehensive study of different patans and genetic oper-
ators can be found in [17]. In [42], tHetepwise Adaptation of Weights Evolutionary
Algorithmis surpassed by other techniques for specific suites ofishiigy problems
(SAT), but for the constraint satisfaction problem, Stepwise Adaptation of Weights
Evolutionary Algorithmhas been found to have good performance for different con-
straint satisfaction problems.

The Stepwise Adaptation of Weights Evolutionary Algorittiefines two equally im-
portant additions to the standard evolutionary algorittime:decoder, and the stepwise
adaptation of weights mechanism.

The decoder in th&tepwise Adaptation of Weights Evolutionary Algorittakes a
permutation of the variables of a constraint satisfactioosbfgm and uses a greedy
algorithm to label these variables, in order, with valuemfrthe domains of these
variables, so that the thus constructed partial candidzlte¢ien remains consistent.
Variables that can not be labelled with a consistent valadedir unlabelled. The fithness
value of an individual is the number of variables that aredefabelled.

The stepwise adaptation of weights mechanism is based amtien that some con-
straints in the constraint satisfaction problem are hatasatisfy than others. Perfor-
mance of an evolutionary algorithm can be improved by foogssn satisfying these
constraints. Itis assumed that constraints that have reot datisfied after a number of
iterations of the evolutionary algorithm are hard to sgti§he stepwise adaptation of
weights mechanism uses this assumption by defining a sp@gjedtive function: the
SAW objective function

The SAW objective function maintains a set of weights forreagnstraint in the con-
straint satisfaction problem. This set is initialised bysaigning a weight of to each
constraint. After an interval of a number of generations, itidividual with the best
fitness value in the population is used to increase the weijtihe constraints that are
violated in the individual. Because the decoder labels waliables that are consistent
with each other, constraints with an relevant unassignédhla are considered to be
violated. The amount with which the weight is increased igeined by parameter
Aw. Usually a value ofAw = 1 is used. The interval after which the weights are
updated is determined by another parameter:uthdate interval A commonly used
value for the update interval parameteRisgenerations of th&AWEA

In [17] for the constraint satisfaction problem, and in [3di the k-graph colour-

ing problem, it was found that there was no significant difere in the performance
of the Stepwise Adaptation of Weights Evolutionary Algoritiwhren the fitness of an
individual was calculated based on variables that werallgdissigned instead of con-

127

straints that were violated. As such, we use the variablightgvariant of theStepwise
Adaptation of Weights Evolutionary Algorithinere. This means that the SAW objec-
tive function maintains a set of weights over all variabléthe constraint satisfaction
problem. The weights are increased when a variable is lef$signed by the decoder.
The fitness value of an individual is calculated by addingakehts of all unassigned
variables.

The Stepwise Adaptation of Weights Evolutionary Algorithas only a single genetic
operator: a mutation operator. The mutation operator implas a simple swap of the
values of two randomly chosen variables. It takes a singlerpand produces a single
child. In [17], other mutation operators, and a nhumber oksover operators were
tried without significant improvement of the performanceeBtepwise Adaptation of
Weights Evolutionary Algorithrases a biased ranked parent selection operator and a
replace worst survivor selection operator.

7.8.1 SAWEACharacteristics and Parameter Setup

Table 7.56 shows the characteristics table ofStepwise Adaptation of Weights Evo-
lutionary Algorithm The Stepwise Adaptation of Weights Evolutionary Algoritises

a steady state evolutionary model, a biased ranking paeéetton operator, and a re-
place worst survivor selection operator, explained in @&&p. TheStepwise Adapta-
tion of Weights Evolutionary Algorithmses a permutation of variables representation
for the decoder. It has no crossover operator and uses aesénwpp operator as a muta-
tion operator. The fithess function of tBéepwise Adaptation of Weights Evolutionary
Algorithmis the f> fithess function (see Chapter 5) with the addition of thesiep
adaptation of weights mechanism, explained in the prevseason.

Table 7.57 shows the parameter table of 8tepwise Adaptation of Weights Evolu-
tionary Algorithm The Stepwise Adaptation of Weights Evolutionary Algorithas a
population of10 individuals (Population Size), from which) parents are selected us-
ing the biased ranking parent selection operator with adfias (Ranking Bias). The
weights of the stepwise adaptation of weights mechanisnujpdated ever25 gen-
erations of the algorithm (Update Interval). Weights a@éased by adding (Aw).
SinceStepwise Adaptation of Weights Evolutionary Algorith@as no crossover oper-
ator, no crossover rate is heeded. Also, the swap mutatieratgy has no parameter.
The experiments of th&tepwise Adaptation of Weights Evolutionary Algoritare
terminated aftet 00, 000 fitness evaluations (Maximum Number of Evaluations).

7.8.2 SAWEAExperimental Results

Table 7.58 shows that th8AWEAhas aSRof 1.0 for all but two density-tightness
combinations in the solvable region. TBAWEAhas reasonabl8Rin the mushy
region as well. Table 7.59 shows that for most of the solvedggn, theSAWEAwill
find a solution in the first generation. In the mushy regioa A&Sis low as well. There
has been some discussion about whether the fitness evakiatied for calculating the
weights should be counted at all. Since the calculation effithess value is nothing

128

SAWEA

Evolutionary Model Steady State
Representation Permutation of Variableg
Obijective Function f2 with SAW mechanism
Crossover operator None

Mutation operator Swap

Parent Selection Biased Ranking
Survivor Selection Replace Worst

Other Functions Decoder /

Table 7.56: Characteristics of tiBAWEA

SAWEA
Population Size 10
Selection Size 10
Maximum Number of Evaluations 100, 000
Update Interval 25
Aw 1
Ranking Bias 1.5

Table 7.57: Parameters of t8SAWEA

more then calculating the sum of the weights for the violatgustraints or unassigned
variables in the individual, with a little extra storage,uoting this as a full fitness
evaluation seems unfair. However, if the weights are catedl for violated constraints,
a list of violated constraints has to be stored, while if theighits are calculated for
unassigned variables, the decoded candidate solutioroHaes $tored. When the re-
calculation of a sum argument is to be maintained therefine,space complexity
of the algorithm is increased by the extra storage spaceedeefiince none of the
measures used measures the space complexity of an algovitardecided that to
reflect this extra complexity, the computational complexit the algorithm should
be proportionally increased. Therefore we decided to cthunte-calculation of the
weights for all individuals in the population as a fitnesslexton. This allows for
no “tricks” to reduce the computational complexity of thgaithm at the cost of the
space complexity of the algorithm. Also, by counting all éi¢s evaluations equally,
different values for the update interval parameter havedfaoten the efficiency of the
algorithm as shorter update interval parameter valuedtiesuore fithess evaluations
than longer ones. Since each fithess evaluation iISHRWEAuses a number of conflict
checks as well, this also has an effect on@@measure. Overall, we believe that this
allows a fairer comparison with the other algorithms in thesntory. For those who are
interested in thddESandCC measures which do not count the fitness evaluations used
for re-calculating the fitness values of the individualshet weight updates, subtract
one divided by the update interval parameter fithness evahsand conflict checks
from theAESandCC measures for a rough estimate. Table 7.60 shows th&AMEEA

129

uses manyC even for solving the CSP instances in the solvable regiarceSionflict
checks are only used in the objective function of B#VEAthis can only be explained
by the fact that the decoding of an individual is expensive.

The UIC plots for the SAWEAIn Figure 7.23 show that it searches through a large
portion of the search space, even though that search sphwétésl by the use of the
permutation representation. TMBF/MCE plots in 7.24 show that the behaviour of
the MBF and theMCE is very different during the run. The reason for this is thle di
ference between the SAW objective function with its stepwésglaptation of weights
mechanism and the way tiMCE is calculated. Weights in the SAW objective function
can only increase which results in, increasing fithess gatidi¢he individuals during
the run of theSAWEA The MCE shows a more erratic behaviour. This is because the
relationship between the decoder and the fitness value afdhedual. The evolution-
ary part of theSAWE Aevolves permutations for the decoder to use, but a smallgehan
in the individual can lead to a large difference in the fitneslie of the individual
after it has been decoded. The champion error, even wheagaercan therefore be
very different from one generation to the next. Overall hesvewe see a downward
trend in theMCE during the run, even though there is much oscillation in tloésp
For density-tightness combination (0.1,0.9), MBF/MCE plot shows that thé1CE
oscillates between champion individuals which at one watehave a fithess value of
one and at the next interval a fitness value of two. Which ofdhedividuals has the
best fithess value depends on the weights of the variabléstbainassigned. The
oscillations in the otheMBF/MCE plots are caused by this behaviour as well.

130

pyP2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.828
0.5 1.0 1.0 1.0 1.0 1.0 0.96 032 0.396 —
0.6 1.0 1.0 1.0 1.0 0.772 0.64 — — —
0.7 1.0 1.0 0.904 0.664 — — — — —
0.8 1.0 1.0 0.6 — — — — — —
0.9 0.92 0.72 — — — — — — —
Table 7.58:SRof the SAWEA
;P2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 10 10 10 10 10 10 10 10 10
0.2 10 10 10 10 10 10 10 10 10
0.3 10 10 10 10 10 10 10 12 19
0.4 10 10 10 10 11 18 72 695 3547
0.5 10 10 11 15 72 699 6481 2393 —
0.6 10 10 22 108 9511 3326 — — —
0.7 10 22 1389 5975 — — — — —
0.8 12 336 2134 — — — — — —
0.9 o6 849 — — — — — — —
Table 7.59:AESof the SAWEA
;P2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 5219 5249 5298 5325 5359 5401 5450 5483 5518
0.2 5274 5347 5446 5514 5514 5702 5813 5902 5982
0.3 5328 5462 5611 5764 5764 5977 6185 6502 7775
0.4 5416 5632 5830 5983 5983 T457 16701 126318 645733
0.5 5511 5775 6067 6854 6854 126795 1-10° 438562 —
0.6 5631 5929 8044 22583 2-10° 603370 — — —
0.7 5802 8106 246762 1-10° — — — — —
0.8 6213 60680 412326 — — — — — —
0.9 13679 173181 — — — — — — —

Table 7.60:CC of the SAWEA

131

- o
(0.1,0.9) (0.2,0.9) . (0.3,0.8)
o o
B R R R R TR
(0.4,0.7) (0.5,0.6) (0.6,0.6)
o o
e
o o
(0.7,0.5) (0.8,0.5) (0.9,0.4)
o e
I 3 k]
% oo 2 oo % oo
g 40000 § 40000 5 a0 g
Figure 7.23.UIC of the SAWEA
y

mean best ftness

(0.370.8)

20000 30000 40000 5000060000

70000

0000 50000 100000 o

0000 20000 30000 4000050000 0000 10000

w0000 7000080000

000

20000 3000000050000

000700000000

&

[R——

(0.5,0.6)

(0.6,0.6)

10000 20000 30000 40000 50000 60000 70000

000090000 100000

o

000 20000 000040000 50000 90000 100000

o000 70000 80000

(0.7,0.5)

(0.870.5)

crampion e

T

(0.9,0.4)

10000 20000 30000 40000 50000 60000 70000
evalatons

11
0000 90000 100006

11
0000 20000 0000 40000 50000 60000 70000 80000 90000 100000
evaatons

0000

0%

2000 3000 4000050000 0000 200000

0000 70000 60000,

Figure 7.24:MBF andMCE of the SAWEA

132

Chapter 8

Comparison of the Evolutionary
Algorithms in the Inventory

This chapter contains a comparison of the performance aétbkitionary algorithms
in the inventory given in Chapter 7. In the first section thefgrenance of the algo-
rithms is compared on the effectivity and efficiency measi8& AES andCC. The
second section compares the relative performance of toeigs in theSRAESand
SRCC planes. Statistical analysis on the effectivity meassiRds used to rank the
performance of the algorithms in the third section. A préatiany conclusion based on
the comparison is presented in the final section of the chapte

8.1 Comparison on Effectivity and Efficiency
Measures

The performance of the algorithms in the inventory is coragalong the same lines
as was done in Chapter 6. The performance of all algorithrsansmarised in three
tables, one for each performance measure:SRethe AES and theCC. The table

for the SRmeasure is shown in Table 8.1. The table for A&&Smeasure is shown in
Table 8.2. The table for theC measure is shown in Table 8.3. In each table, for each
density-tightness combination, the best value is showmid-face.

Table 8.1 shows that tHeSEAhas the best avera@Rof all algorithms in the inventory.
For density-tightness combination (0.1,0.9), HieAl, theHEA3 theESPEA and the
LSEAsolved all CSP instances in all runs. TAeEA], the HPEA and theSAWEA
had aSRof 0.989, 0.98, and0.92 respectively. These algorithms were able to solve the
CSP instances for this density-tightness combination arlpeall runs. For density-
tightness combination (0.2,0.9), th&EAhas the besBR 0.988. TheHEA3had the
second besBRwith 0.984. The other algorithms had a significantly lon&R For
density-tightness combination (0.3,0.85EAsolved the CSP instances in the most

133

(0.1, (0.2, (0.3, (0.4, (0.5, (0.6, (0.7, (0.8, (0.9,

09) 09) 08 07 06) 06 05) 05 04)
HEAL 1.0 0892 0556 0572 0.504 042 04 0.428 0.504
HEA2 0.764 0.188 0.068 0.08 0.072 0.056 0.04 0.064 0.076
HEA3 1.0 0984 0688 0.712 0.692 044 0.588 0.488 0.76
ArcEAL1 0.988 0.688 0.368 0.384 0.312 0.284 0.22 024 0.3
ArcEA2 0.708 0.12 0.016 0.02 0.016 0.024 0.008 0.008 0.012
ArcEA3 0.692 0.128 0.024 0.032 0.012 0.028 0.012 0.004 0.008
CoeEA 00 00 00 00 00 00 00 00 0.0
ESPEA 1.0 0.676 0.388 0.436 0.436 0.404 0.328 0.468 0.432
HPEA 098 0.564 0.256 0.228 0.188 0.188 0.152 0.204 0.156
LSEA 1.0 0988 0.812 0.808 0.924 0.752 0.776 0.796 0.936
MIDEA 0.22 0004 0.0 0004 00 0004 00 00 0.0
SAWEA 092 0.72 0.6 0664 0772 0.64 032 0.396 0.828

Table 8.1: Comparison tab&R

runs with aSRof 0.812, all other algorithms had a low&Rwith HEA3 having the
second bessRof 0.688. The other density-tightness combinations in the mushipreg
show a comparabl8Rdistribution, although sometimétEA3had the second highest
SRwhile for other density-tightness combinations 8®WEAhad the second highest
SR Overall, theSRof HEA3and SAWEAare fairly close to each other but not as high

asLSEA

The comparison tables for tidESandCC measures (Tables 8.2 and 8.3) do not show
such a clear-cut advantage of one algorithm. Not only ardifferences between the
AESandCC measures more varied, different algorithms throughountbshy region
use lesAESandCC. Overall, theArcEA2has the lowesAESandCC, however, thé&sR

of the ArcEAZ2is relatively low, making both measures less accurate. I3EAwith

the highesSRhas the most accurafeESandCC measures.

From all three tables it is clear that t@meEAhas the worst performance of all algo-
rithms in the inventory. If fails to solve a single CSP ingtain the mushy region in all

its runs. TheMIDEA also has poor performance. It has a IB®Rthroughout the mushy
region and solves the CSP instances in the mushy region only $mall number of
runs and then only id out of 9 density-tightness combinations. For t8€ measure,
note that both th& SPEAand theLSEAuse a lot more conflict checks than the other al-
gorithms. Compared to tHeEA2, another algorithm with higC values, theeSPEA
uses, on average, betwe2d9 ((0.1,0.9)) t057.68 ((0.9,0.4)) times as many conflict
checks to find a solution. ThHeSEAuses even more conflict checks, on average, be-
tween2.23 ((0.1,0.9)) to575.74 ((0.5,0.6)) times as many. Although both tREPEA

and theLSEAhave an above avera@R this comes at the price of a higiC.

134

(0.1, (0.2, (0.3, (0.4, (0.5, (0.6, (0.7, (0.8, (0.9,
09) 09) 08) 07) 06) 06) 05 05) 04)

HEAl1 37 335 3931 1448 3387 5704 1951 7603 2789
HEA2 5862 14268 13660 21876 10727 13596 14444 13596 16609
HEA3 26 419 1635 1404 2382 988 969 1258 1563
ArcEA1 279 3467 2008 4403 962 2099 2116 778 5067
ArcEA2 2804 8269 362 186 494 186 218 1953 250
ArceEA3 2036 4056 648 2906 173 8060 2720 290 1225
CoeEA undef. undef. undef. undef. undef. undef. undef. undef.efund
ESPEA 997 6604 4982 6280 7928 5581 8599 5332 8365
HPEA 2727 15222 23212 20118 20224 22063 21258 20629 20945
LSEA 13 540 9825 5935 10124 12080 11562 11422 4097
MIDEA 413 550 undef. 940 undef. 6635 undef. undef. undef.
SAWEA 56 849 2134 5975 9511 3326 6481 2393 3547

Table 8.2: Comparison tabkES

8.2 Comparison on the Effectivity-Efficiency
Plane

The tables in the previous section show that looking aBReAES andCC separately
does not provide us with a complete picture. We already éxgdbthat there is a re-
lationship between th8Rmeasure and thAESand theCC measures in that th8R
influences the accuracy of tiESandCC measures. In addition to this relationship,
there exists another relationship between the effectaity efficiency measures. Ide-
ally, an algorithm should have both a good effectiatyda good efficiency, i.e., a high
SRand a lowAESandCC. From the tables in the previous section it is clear that this
is not the case, theSEAhas the best overaBRof all algorithms in the inventory but

a highAESandCC.

To compare the effectivity-efficiency relationship of eadforithm we use plots with

on the z-axis theSRof the algorithm and on thg-axis either theAES or the CC
performance. In total two sets of nine plots, one for eaclsidgtightness combination

in the mushy region are used, one set for 3RAESrelationship and one for theR

CC relationship. TheéSRmeasure already has a range betweénand 1.0, but we
normalise theAESand CC measures to this range as well. Figure 8.1 shows the first
set of plots for theSRAESrelationship. Figure 8.2 shows the second set of plots for
the SRCC relationship. Because of the large spread betweerCtbealues for the
algorithms we used a logarithmic scale on thaxis in the Figure 8.2. Th€oeEAhas
aSRof 0.0 for all density-tightness combinations in the mushy regind an undefined
AESand CC measure, and this algorithm is not represented in the plbit® same
applies for theMIDEA for 5 out of the9 density-tightness combinations. The plots
show the other algorithms as a dot labelled with the abbtieviaf the algorithm.

Two methods can be used to determine the order oSRRAESand theSRCC rela-

135

(0.1, (0.2, (0.3, (0.4, (0.5, (0.6, (0.7, (0.8, (0.9,
09) 09) 08 07) 06) 06) 05 05 04)

HEA1 13 167 2015 761 1721 2947 1043 4065 1502
HEA2 3980 9752 9405 15153 7481 9538 10205 8456 11885
HEA3 24 621 2489 2110 3647 1493 1472 1933 2405
ArcEA1 67 866 523 1205 261 588 569 220 1513
ArcEA2 68 352 24 15 24 254 41 51 48
ArceA3 73 252 60 354 26 1479 597 67 333
CoeEA undef. undef. undef. undef. undef. undef. undef. undef.efund
ESPEA 9918 118774 139361 225890 364466 301103 549994 383535 685535
HPEA 85 718 1255 1152 1102 1336 1535 1503 1420
LSEA 8893 300212 5-10® 3.10 4-.10° 5-10 5-10% 4-105 2.10°
MIDEA 56 74 undef. 127 undef. 897 undef. undef. undef.
SAWEA 14 173 412 1111 1732 603 1170 439 646

Table 8.3: Comparison tab@C.

tionships of the algorithms in the plots.

In the first method we partition each plots into four quadsanumbered one to four,
clockwise. The first quadrant then includes algorithms &i#Rof 0.5 or more and an
AESor CC of more than half of the maximum found. In quadrarihe algorithms with

a SRof 0.5 or more and a\ESor CC of less then half the maximum can be found.
In the third quadrant the algorithms withSRof less ther).5 and less then half the
maximumAEScan be found. In the fourth quadrant the algorithms witBRof 0.5
and anAESandCC of more then half the maximum can be found. The algorithmk wit
a bettesSRAESor SRCC relationship can thus be found in quadrar{bottom-right)
while the algorithms with a worse relationship are locatethe fourth quadrant (top-
left). Quadrants can be further subdivided for a more firsérgd determination of the
ordering. The quadrant method is slightly more complicddedhe plots in Figure 8.2
because of the logarithmic scale of thexis, resulting in quadrants that are not equal
in height.

The second method to determine the order oSRAESand theSRAESrelationships
of the algorithms involves moving a line at an angle tothaxis from the bottom-left
corner to the top-right corner of each plot. The dot of the@dathm that is first crossed
by the line is then the algorithm with the beSRAESor SRCC relationship. The
one that is crossed last is the algorithm with the worst i@iahip. The angle to the
x-axis of the plot is determined by the (relative) weight #&gblto the importance of
the performance measure. If tB&Ris equal in importance to either tieESand the
CC measure, this angle i& degrees. The angle is decreased when the importance of
the SRin increased and the angle is increased otherwise. Thedim&e described by
the following formula:y = 7% .z +q for the SRAESrelationship angy = “’Sg r+a
for the SRCC relationship wherQUSR is the relative weight of th&Rmeasurewags
the relative weight of thAESmeasurejucc the relative weight of th&€€C measure,

136

anda is used to move the line. Here we assume equal weight of thgpédormance
measuresusgr = wags = wee). Again the method is slightly more complicated by the
logarithmic scale of thg-axis in Figure 8.2 as the lines will show up in the plots as
logarithmic curves.

Using the first method to order ttf®RAESrelationship in Figure 8.1 shows that for
density-tightness combination (0.1,0.9) most algorittmas be found in the second
(bottom-right) quadrant. Only thdEA2and theMIDEA are outside this quadrant. For
density-tightness combination (0.2,0.9), tteEA the HEA3 the HEAL the SAWEA
the ArcEAY and theESPEAlie in the second quadrant. The plots for density-tightness
combinations (0.3,0.8) and (0.4,0.7) show thatltB&A theHEA3 theHEAL, and the
ESPEAIlie in the second quadrant. For density-tightness comioingt(0.5,0.6) and
(0.9,0.4), theLSEA the SAWEA and theHEA3 lie in the second quadrant while for
density-tightness combinations (0.6,0.6) and (0.7,@®)|. SEAand theHEA3ie in
the second quadrant. For the remaining density-tightnasdbination, (0.8,0.5), only
the LSEAlies in the second quadrant. Overall, both H8EAand theHEA3 have both
a highSRand a lowAES TheHPEAand theHEA2often lie in the fourth quadrant and
the ArcEA2and theArcEA3lie often in the third quadrant (bottom-left).

Using the first method to order ttf&RCC relationship in Figure 8.2 is more compli-
cated because of the logarithmic scale of thaxis. Nevertheless, the plots show a
very different relationship between tis&kand theCC than was seen in Figure 8.1. In
Figure 8.1 thd.SEAand to a lesser extend tEESPEAhad relatively lowAESwhile in
Figure 8.2 both algorithms can always be found towards thefdhe plots. Relative
to the CC of the other algorithms therefore, these two algorithmsehahighCC in
relation to a highSR Because thg-axis of the plots in Figure 8.2 is in logarithmic
scale, this difference is large, reflecting our earlier obs#ons in the previous section.

Figures 8.1 and 8.2 indicate a different relationship betwtheSRand theAESof the
algorithms then for th&Rand theAES Although theHEA3and to a lesser extend the
HEA1 and theSAWEAwere located near the bottom-left corners of both graphes, th
LSEAand theESPEAwere located in the bottom-left corner in Figure 8.1 and m th
top-left corner in Figure 8.2. This is an indication of thegaamount of (hidden) work
that theLSEAand theESPEAneed to do to attain the highRthey have. In contrast
theHEA3also has a goo8Rbut needs much less conflict checks to attain this.

The use of a moving line in the second method of determinia@tder of the relation-
ship betweelSRAESandSRCC shows us that the order can also be determined by the
ratio of theSRand theAESor CC multiplied by the ratio of the weights for these mea-
sures, as in the formula: = ;=2 - AS—;S, whereo-values determine the relative order of
the algorithms. The meaning of ther andwags variables has been explained above.
The formula signifies the rewriting of the previous formuteoirder to finda whenz
andy are known. When we assume equal importancgRio AESandCC, the values

for o in Table 8.4 for theSRAESrelationship and Table 8.5 for tf&RCC relationship
can be calculated. As in Figures 8.1 and 8.2 we used the nigedalalues of thAES

and theCC. Based on these-values, we can determine the order of the algorithms
based on the two relationships. The orders for each detigityress combination in
the mushy region for th8 RAESand theSRCC relationship are shown in Table 8.6

137

H
£
H

Average Evsuatons

ConctChecks o Solon

Conict Checks o Sokton

ConictChecks o Sokon

0.1,09 024, 0308
. ©109) L enn eny | DEHPEA . -HPEA (03.08)
o 06 st JHEA2
.AICEA2
. HPEA
. ArcEA2 Hf . .ESPEA B LSEA
-ArcEA3
. EspEAl o] ATCEAS JArCEAL . -ESPEA
. .SAWEA
MIDEA saweASEER lmipea KRN sta LAKGERS AATRRER
°5 o2 o o5 s LSEAHEA3 ‘o 0z o 3 05 HEA3 of 02 o o5 o5 T
. .HEA2 (0.4,0.7) .l .HPEA (0.5,0.6) . .HPEA (06.0.6)
HPEA
.HEA2
.HEA2 sawiSEA .LSEA
o o .ESPEA ot ATCEA3
-ESPEA SAWEA MIDEA LHEA1
[iarcens .ArCE:éAl " HEAL hEAs - G SAWEA
g . ArcEA2
MIDER) HEA3 LGATCERZ -ArcEAL Larceaz .FEA3
. .HPEA (0.7.05) . .HPEA (08.0.5) . .HPEA (09.0.4)
HEAL
w o ol HEA2
.HEA2 HEA2
* .LSEA " .LSEA o
o S/;EVSEFKEA o HEAL o .ESPEA
“ * . - AL HEAL SAWER" |
-ArcEA3 ArcEAL ArCEA2 .SAWEA . .
. : ArCEA3 .
LArCEA2 -HEA3 [AICEA3 -ArcEAL HEA3 EAICEA? HEA3
Figure 8.1: Algorithm distribution on th8RAESplane.
. A . LSEA
0109 .fEAz [SER (02,09).ESPEA (0:3,08)
.HEA2 .ESPEA
o1 ArcEA3 oo
-MIDEA "ArI'CCEAZ x 'I_::: ArcEAL
) -saffe LAICEA? "HPEA -HEA -HEA2
oo *ArcEA3 . .HEAL HEAL.HEA3
MIDEA SAWEA :
ot ATCEAL . SAWEA
ol ANCERS
. LSE . LSEA . SEA
0.4,077) (05006 (0.6,006)
o .ESPEA o .ESPEA o ESPEA
I
HEA2 .HEA2
- .HEA3 o
HPEA ArcEAL {75 HPEA \HEAL™ .SAWEA ArcEA3pea
o[AAICEA3 H MIDEA .ArcEA1 .SAWEA
MIDEA -ArcEAL -ArcEA2
- L ArCEAS s
ArcEA2 AICEAS
. LSEA . . . LSE
(0.7,05) (0.8,055) 5hEA)
.ESPEA o \ESPEA
wl HEAZ
ol TIEAZ v HEAZ HEAL wo| HPEAAICEAL ga; -HEA3
sHPEASAWEA.HEA3 HPEA -HEA3 ArCEA3 SAWEA
ees PATCEAS ArGEATHEAL o .SAWEA Pk
Arceag | TCEAL LArCEA2
s LATCEA2 1o PAICEA2 s
1wnu 02 04 08 1 ‘Ennu 02 04 08 1 kmu 02 04 06 08 1

Success Rate

Figure 8.2: Algorithm distribution on thRCC plane.

138

and 8.7 respectively.

Tables 8.6 and 8.7 show an entirely different picture for S RRAESand theSRCC
relationships. As already shown in the previous sectial-8EAand theESPEAhave
reasonably lowAESvalues for the experiments and in Table 8.6 both algorithamse
found near the top of order for all density-tightness corations. At the same time,
both algorithms also have higbC values and as a consequence can be found near the
bottom of the ordering in 8.7. At the same time, an algoritiita the SAWEAwhich

has about averageRbut both lowAESandCC is found in the top of the orderings of
both Tables 8.6 and 8.7.

A word of caution for the interpretation of these tables isgssary. Th&Rof an al-
gorithm, that is, the ability of the algorithm to solve theR”Z$s clearly more important
than the efficiency of the algorithm. Therefore, the assionghat the importance of
both the effectivityand the efficiency is equal is probably not correct. Howeverhwit
out extra guidance upon the relative importance of thesesumes, it is not possible to
set it with any degree of certainty. Furthermore, there ésithplicit assumption that
all measures upon which the calculations ofthealues are based are accurate. This is
not the case. With a loweSR the accuracy of thAESandCC measures is also lower.
Taken together, the comparison on the effectivity-efficieplane should be taken as
guidance towards an ordering of the algorithms more tharrxental fact. Taken
as such, however, they are useful in at least quantifyingelative advantages of one
algorithm over another based on the relationship betweerdifferent performance
measures. This ties in with the use of a restart strategyvolugonary algorithms
and the use of the relationship between the effectivity dedefficiency measures to
estimate the duration of the experiments and the numbeistdnte needed during the
experiments based on tisRand theAESandCC measures to attain@Rof 1.0. We
feel, however, that a further discussion of this topic (Whitvolves a number of other
factors not discussed so far) falls outside the scope ofttbsid (see [40] for more
information).

8.3 Ranking of the Evolutionary Algorithms in the In-
ventory

Although Tables 8.6 and 8.7 give an indication of a rankinthefalgorithms according
to their relative performance in trf@RAESand SRCC planes, the drawbacks to the
ranking mechanism given above make these rankings teamtdfispecially the inabil-
ity to categorically state the relative importance of thieefvity measure $R to the
effectivity measuresXESandCC) has the potential to skew the rankings.

Statistical analysis on only the effectivity measus&)(is used to rank the algorithms
more accurately. By basing the analysis on®fRmeasure only, we acknowledge that
the effectivity of an algorithm is more important than thécéncy of an algorithm.
The choice of only analysing ttf8Rmeasure is also based on the fact that this measure
takes the whole results sample into account whileAESand theCC measures are
calculated only over the successful runs of an algorithnis Thakes theSRmeasure

139

(0.1, (0.2, (0.3, (0.4, (0.5, (0.6, (0.7, (0.8, (0.9,
09) 09) 08 07 06) 06) 05) 05) 04)
HEAl1 158.43 44.62 3.28 864 3.01 162 436 1.16 3.78
HEA2 0.76 020 0.12 0.08 0.14 0.09 0.06 0.10 0.10
HEA3 22546 35.75 9.77 11.09 588 9.83 129 8.00 10.18
ArcEA1 20.76 3.02 425 191 6.56 299 221 6.36 1.24
ArcEA2 148 022 1.03 235 066 285 078 0.08 1.01
ArcEA3 1.99 048 086 0.24 1.40 0.08 0.09 028 0.14
CoeEA - - - - - - - - -
ESPEA 5.88 156 1.8 152 1.11 1.60 1.16 1.81 1.08
HPEA 2.11 056 026 025 0.12 0.19 0.20 0.20 0.16
LSEA 450.92 2785 1.92 298 185 1.37 146 1.44 4.79
MIDEA 3.12 0.11 - 0.09 - 0.01 - - -
SAWEA 96.30 1291 6.53 243 1.64 425 130 341 4.89
Table 8.4:0-values for the algorithms on tIf&RAESplane.
(0.1, (0.2, (0.3, (0.4, (0.5, (0.6, (0.7, (0.8, (0.9,
09) 09) 08) 07) 06) 06) 05 05) 04)
HEA1 763.0 1603.5 1300.8 1985.6 1261.4 651.7 1792.5 450.6 567.0
HEA2 1.9 5.8 34.1 14.0 41.5 26.9 18.3 324 10.8
HEA3 413.3 475.7 1303.1 891.4 817.3 1347.7 1867.0 1080.4 534.0
ArcEAl 146.3 238.5 3317.1 841.8 5148.8 2208.7 1807.1 4668.5 335.1
ArcEA2 103.3 102.4 3142.9 3522.1 2871.4 432.1 912.0 671.3 4225
ArcEA3 94.0 152.5 1885.8 238.8 1987.9 86.6 94.0 255.5 40.6
CoeEA - - - - - - - - -
ESPEA 1.0 1.7 13.1 5.1 5.2 6.1 4.0 5.2 1.1
HPEA 1144 235.8 961.7 522.8 461.2 643.5 621.2 580.9 185.6
LSEA 1.1 1.0 0.8 0.8 0.9 0.8 0.8 0.8 0.9
MIDEA 39.0 16.2 - 83.2 - 20.4 - - -
SAWEA 651.7 1249.4 6865.5 1578.8 1919.8 4853.6 1581.9 3860.4 2165.8

Table 8.5:0-values for the algorithms on ttf&RCC plane.

140

(0.1,
0.9)

(0.2,
0.9)

(0.3, (0.4, (05, (06, (0.7, (0.8, (0.9,
08) 07) 06) 06 05 05 04)

LSEA
HEA3
HEA1
SAWEA
ArcEAl
ESPEA
MIDEA
HPEA
ArcEA3
ArceA2
HEA2
CoeEA

HEA1
HEA3
LSEA

HEA3 HEA3 ArcEA1 HEA3 HEA3 HEA3 HEAS
SAWEA HEA1 HEA3 SAWEA HEAl1 ArcEA1 SAWEA
ArcEA1 LSEA HEA1l ArcEA1 ArcEA1 SAWEA LSEA

SAWEA HEAl1 SAWEA LSEA ArcEA2 LSEA ESPEA HEAl
ArcEA1 LSEA ArcEA2 SAWEA HEAl1 SAWEA LSEA ArcEAl
ESPEA ESPEA ArcEAl ArcEA3 ESPEA ESPEA HEAl1 ESPEA

HPEA ArcEA2 ESPEA ESPEA LSEA ArcEA2 ArcEA3 ArcEA2
ArcEA3 ArcEA3 HPEA ArcEA2 HPEA HPEA HPEA HPEA

ArcEA2 HPEA ArcEA3 HEA2 HEA2 ArcEA3 HEA2 ArcEA3

HEA2

HEA2 MIDEA HPEA ArcEA3 HEA2 ArcEA2 HEA2

MIDEA MIDEA HEA2 MIDEA MIDEA MIDEA MIDEA MIDEA
CoeEA CoeEA CoeEA CoeEA CoeEA CoeEA CoeEA CoeEA

Table 8.6: Order of the algorithms on tBRAESplane.

(0.1,
0.9)

(0.2,
0.9)

(0.3, (0.4, (05, (0.6, (0.7, (0.8, (0.9,
08) 07) 06) 06) 05 05 04)

HEALl
SAWEA
HEA3
ArceAl
HPEA
ArcEA2
ArceA3
MIDEA
HEA2
LSEA
ESPEA
CoeEA

HEA1

SAWEA ArcEA2 ArcEA1 SAWEA HEA3 ArcEA1 SAWEA

SAWEA ArcEA1 HEA1l ArcEA2 ArcEA1 ArcEA1 SAWEA HEAl

HEA3

ArcEA2 SAWEA ArcEA3 HEA3 HEA1 HEA3 HEAS

ArcEA1 ArcEA3 HEA3 SAWEA HEA1 SAWEA ArceEA2 ArcEA2
HPEA HEA3 ArcEA1 HEA1 HPEA ArcEA2 HPEA ArcEAl
ArcEA3 HEA1 HPEA HEA3 ArcEA2 HPEA HEAl1 HPEA
ArcEA2 HPEA ArceEA3 HPEA ArcEA3 ArceA3 ArcEA3 ArceEA3
MIDEA HEA2 MIDEA HEA2 HEA2 HEA2 HEA2 HEA2

HEA2

ESPEA HEA2 ESPEA MIDEA ESPEA ESPEA ESPEA

ESPEA LSEA ESPEA LSEA ESPEA LSEA LSEA LSEA

LSEA

MIDEA LSEA MIDEA LSEA MIDEA MIDEA MIDEA

CoeEA CoeEA CoeEA CoeEA CoeEA CoeEA CoeEA CoeEA

Table 8.7: Order of the algorithms on tB&RCC place.

141

intrinsically more accurate.

The following symbols are used to denote the relative peréorce of two algorithms:
A; > A, indicates that algorithm; has a higheSRthan algorithmA,, A, 2 A,
indicates that algorithmd; has higher or similaSRthan algorithmA,, A; = A,
indicates that algorithml; has approximately similé8Rthan algorithmA,, andA4; >
A, indicates that algorithmi; has far higheSRthan algorithmA,. The symbols are
transitive in an ordering of more than two algorithms.

The statistical analysis uses the two santplest to compare the performance of two
algorithms. Only theSRmeasure will be considered for the statistical analysise Th
same three hypotheses are used for the two satvipls as were used in Chapter 6:

HO :§R41 = S7R42 (81)
H,, :SRy, # SRy, (8.2)
H,, SRy, > SRy, (8.3)

where A; stands for the first algorithm and; for the second. For a full analysis,
tests for all algorithm combinations have to be done. Wecgedhe number of-tests
needed by first ordering the algorithms based tocSReesults from Table 8.1 and then
re-ordering the algorithms them when necessary. Evemtuhk following ranking
was found:

LSEA> HEA3> HEA1> ESPEA> ...
... > ArcEA1> SAWEA> HPEA > HEA2 > . ..
... > ArcEA2~ ArcEA3>> MIDEA > CoeEA (8.4)

The results of the-tests for every algorithm pair in the rankingl, in total, are given
in Table 8.8. At-test for every density-tightness combination in the muggyon was
done. The-test results for every algorithm pair are shown in threedinT he first gives
the p-value for thet-test onhg andh,, , the second gives thevalue for thet-test on
ho andh,,. The interpretation of the twp-values is given on the third line, using the
symbols=, when theSRresults of both algorithms are equal,when theSRresults
of algorithm A; are better than those of algorithAy, and < when theSRresults of
algorithm A; are worse than those of algorith#y. The symbols> and < are used
when the difference between tB&results are similar but better or worse for algorithm
Ay than for algorithmA, respectively. The-values are interpreted as follows: when
the p-value of at-test is low, say belovd.5, than the possibility ofy being correct
is also low, and therefore the possibility of the altermatiwpothesis, eithel,, or
ha,, being correct is high. The opposite is true when ghelue is high. Therefore,
when thep-value of at-test is high, there is no significant difference betweenSRe
results of the two compared algorithms. When it is low theresgnificant difference
between theSRresults of the algorithm. For the secohitest, betweerh, andh,,, a

142

low p-value means that thHeRresults of the first algorithm are significantly better than
the SRresults of the second algorithm. Nédest is possible when there are no results
for both algorithms (&8Rof 0.0). When both algorithms solve all CSP instances in
all runs, there is no difference between ®BRresults of the two algorithms, and no
p-value can be calculated. In both cases the absence-géhuie is interpreted with an
= symbol.

Thet-test results in Table 8.8 for each algorithm pair is diseddselow:

LSEA > HEA3 The LSEAhas betteSRresults than th&lEA3for density-tightness
combinations (0.3,0.8) to (0.9,0.4). Both algorithms sdhall CSP instances in
all runs for density-tightness combination (0.1,0.9). #&ensity-tightness com-
bination (0.2,0.9) the difference between the two algamglis not as large, there
is a0.70 probability of theSRresults of the two algorithms being equal and a
0.65 probability of theSRresults of thd SEAbeing better than th8Rresults of
theHEA3

HEA3 > HEA1 Both theHEA3and theHEA1solved all CSP instances in all runs for
density-tightness combination (0.1,0.9). For all othengily-tightness combi-
nations with the exception of (0.6,0.6) thlEA3 has bettelSRresults than the
HEAL For density-tightness combination (0.6,0.6), the prdiiglof the HEA3
having equaBRresults than thélEA1is 0.65, the probability of theHEA3hav-
ing betterSRresults for that density-tightness combination.is7.

HEA1 > ESPEA Both theHEAl1and theESPEAsolved all CSP instances in all runs
for density-tightness combination (0.1,0.9). For all ettensity-tightness com-
binations with the exception of (0.6,0.6), tHEA1has betteBRresults than the
ESPEAFor density-tightness combination (0.6,0.6), the prdtiglof the HEAL
having equalSRresults tharESPEAis 0.72 while the probability of theHEAL
having betteSRresults than th&SPEAis 0.64.

ESPEAZ ArcEAl TheESPEAhas betteSRresults than thércEA1for all density-
tightness combinations in the mushy region except for ¢082,and (0.3,0.8),
where the probability of thE SPEAhaving equabRresults with theArcEALis
0.77 and0.65 respectively while the probability of tleESPEAhaving bettelSR
results is0.29 and0.68 respectively.

ArcEA1 > SAWEA The ArcEA1 has betteiSRresults than th&&AWEAfor density-
tightness combinations (0.1,0.9) to (0.3,0.8) but w@&xesults for all other
density-tightness combinations. The probabilities fer bletterSRresults in the
first three density-tightness combinations are howevdrédrighan the probabil-
ities for the worseSRresults in the other density-tightness combinations. Also
when theArcEA1was compared with thelPEA it showed clearly betteBR
results for all density-tightness combinations (not shawthe table). This indi-
cates that the position where tAecEALis ranked is correct although for some
density-tightness combinations in the mushy regiorSA&/EAs actually better
than theArcEAL

143

(0.1, (0.2, (0.3, (0.4, (0.5, (0.6, (0.7, (0.8, (0.9,

09) 09) 08) 0.7) 0.6) 06) 05) 0.5 0.4)

LSEA> HEA3 - 070 0.0 001 0.0 00 00 00 0.0

- 0.35 00 0.01 00 00 00 0.0 0.0

= pe > > > > > > >

HEA3 > HEA1 - 00 00 00 00 065 00 0.18 0.0
- 00 00 00 00 033 00 0.09 0.05

= > > > > P > > >
HEAlZ> ESPEA - 00 00 00 013 072 0.09 0.37 0.11
- 0.0 00 0.0 006 0.36 005 0.82 0.05

= > > > > pe > < >

ESPEA> ArcEA1 0.08 0.77 0.65 024 0.0 0.0 0.01 0.0 0.0
0.04 061 032 0.12 0.0 00 00 0.0 0.0

> = z > > > > > >

ArcEA1> SAWEA 0.0 0.0 0.0 0.0 004 00 0.12 019 0.0
00 00 00 10 098 1.0 094 091 1.0

> > > < < < < < <

SAWEA> HPEA 0.0 00 0.01 00 00 00 0.0 0.02 0.0
.0 10 10 00 00 00 00 0.01 0.0

< < < > > > > > >

HPEA>HEA2 00 00 00 00 00 00 00 0.0 0.01
00 00 00 00 00 00 00 00 0.0

> > > > > > > > >

HEA2 > ArcEA2 0.16 0.04 0.0 0.0 0.0 0.07 0.02 0.0 0.0
0.08 0.02 0.0 00 0.0 0.03 0.01 00 0.0

> > > > > > > > >

ArcEA2-~ ArceA3 0.70 0.79 0.52 040 0.70 0.78 0.65 0.56 0.65
0.35 0.61 0.74 0.80 0.35 0.61 0.67 0.28 0.33

Z 2 < < 2 < = 2 =z

ArcEA3> MIDEA 0.0 0.0 0.01 0.02 0.08 0.09 0.08 0.32 0.16
0.0 00 0.01 0.01 0.04 0.06 0.04 0.16 0.08

> > > > > > > > >

MIDEA > CoeEA 0.0 0.0 - 0.32 - 0.16 - - -
0.0 0.16 - 0.16 - 0.08 - - -

> > = > = > = = =

Table 8.8:t-test results for the ranking of the EAs in the inventory.

144

SAWEA > HPEA The SAWEAhas betteSRresults than thelPEAfor density-tight-
ness combination (0.4,0.7) to (0.9,0(8)9, 0.4) but worseSRresults for density-
tightness combinations (0.1,0.9) to (0.3,0.8). WhenSAW&VEAwas compared
with theHEA2it showed betteERresults for all density-tightness combinations
(not shown in the table), indicating that its position in tla@king is correct,
even though for some density-tightness combinations irmthshy region, the
HPEA actually has betteBRresults than th6&AWEA The differences between
the ArcEA1, theSAWEAand theHPEAare more complex than can be expressed
through statistical tests between two algorithms. For sdemsity-tightness
combinations one algorithm has the betBRresults while for other density-
tightness combinations another algorithm performs belsé ranking given for
these three algorithms therefore is less accurate thahdasther algorithms. It
is however the best interpretation that can be given usiesgtimeasures.

HPEA > HEA2 TheHPEAhas betteSRresults than th&lEA2for all density-tight-
ness combinations in the mushy region.

HEA2 > ArcEA2 The HEA2 has betteiSRresults than thé\rcEA2 for all density-
tightness combinations in the mushy region.

ArceA2 = ArcEA3 The difference between th8Rresults of theArcEA2 and the
ArcEA3are small for all density-tightness combinations in the Inyusegion.
For density-tightness combinations (0.1,0.9), (0.2,0@),0.6), (0.8,0.5), and
(0.9,0.4), the probability of thelPEAhaving betteiSRresults than th&lEA2is
higher than for the other density-tightness combinatiafvs. conclude that the
SRresults over the whole mushy region for tAecEA2 and theArcEA3were
approximately equal, even though there were local diffeeen This result does
not come as a surprise since the only difference betweemihalgorithms is
the adaptability of the arc-crossover operator inAheEA3

ArcEA3 > MIDEA TheArcEA3has betteBRresults then th&1IDEA for all density-
tightness combinations in the mushy region.

MIDEA > CoeEA For 5 density-tightness combinations in the mushy region, both
the MIDEA and theCoeEAfailed to solve any of the CSP instances in all their
runs. Not-test can be performed on these results. For the other gditgitness
combinations, the th®IDEA clearly outperformed the th€oeEA as at least
the MIDEA was able to solve some CSP instances in some of the runs.

The ranking given in equation 8.4 corresponds closely twtieewe found in section
8.1 when based on tlf&#Rmeasure alone. It differs from the rankings we got in section
8.2 mostly because those were based on the relationshipedietheSRAESand the
SRCC. The ranking given in equation 8.4 however is more accuheate the one given

in section 8.1 because through thtests it is based on the whole sample of runs and
not just on the average of all runs.

145

8.4 Preliminary Conclusion

The comparison above, as well as the ranking, allows us ® gipreliminary con-
clusion about what we have discovered about evolutiona@grihms for solving con-
straint satisfaction problems so far. As was to be expestade algorithms performed
consistently better than others. The ranking of the algor#tin the previous section is
a reliable indication which algorithms solve more CSP insés in more runs. It does
not tell us everything however, for a complete picture tHeciehcy measuresAES
andCC) have to be considered as well. Common among most algoritfighsin the
ranking is that they are lower in the ranking when compareti&SRAESand espe-
cially in theSRCC plane. This suggests that algorithms which are good atrsp@SP
instances also need to do a lot of work. In some cases, mutisoork is hidden.

Some algorithms performed poorly, notably éDEA and theCoeEA This in spite
of the good performance reported in the papers in which thigwithms were pro-
posed. One reason for this lack of performance could lie énfélct that in this thesis
a different CSP test-set was used. We, however, believeathaod algorithm should
perform well on any reasonable test-set of CSP instancedjef that is supported by
the comparable performance of the other algorithms.

The comparison and the ranking also tell us about the effawtiss of the underly-
ing techniques, irrespective of the algorithm which usesWe found that the co-
evolutionary approach, used in thiPEA and theCoeEA did not perform well. The
co-evolutionary approach necessitates the maintenanweogiopulations of individ-
uals simultaneously throughout the run. This divides thedlalle amount of fitness
evaluations over the two populations and also uses cortfietlcs for both populations.
To offset this investment, the combination of both popoladiin the co-evolutionary
algorithm has to increase performance sufficiently to makeorth while. The co-
evolutionary algorithms in the inventory did not show thilthough there is an el-
ement of danger of basing conclusions on examples, becdube oelatively poor
performance of the co-evolutionary algorithms in the ineeyy we believe it is safe
to conclude that the co-evolutionary approach is not theteeklnique for solving the
constraint satisfaction problem .

Generalising the other techniques used, we believe thatladr algorithms in the in-
ventory enhanced the performance of the evolutionary dlgorwith the application
of some sort of heuristic or local-search technique. Froerctdmparison in Chapter 6
it should be clear why the authors of the algorithms in themtery have decided to do
so. ThelEA itself does not have enough search power to the problem wéhsonable
amount of effort. Although théEA is found to be good at maintaining diversity in
the population and thus searches through a large enoughrpoftthe search space, it
lacks the depth of search displayed by HWEAWRto find solution fast enough. It is
only reasonable that the depth-first search of an iterateal-kearch technique should
be combined with the diversity maintaining ability (or ba#afirst search) in an evo-
lutionary algorithm as this could improve the performantthe resulting algorithm to
supersede both separate algorithms.

A good example of this approach can be found in the threeomssif theHeuristicEA

146

where two heuristics were used in two different genetic afpes. In the comparison
given above, we see that this setup works very well. The btiesiin the genetic
operators are used to find good individuals, in effect ddivegdepth-first search, while
the evolutionary mechanism is used to maintain diversityhépopulation in order to
avoid convergence toward a local optimum. In order to getdg@sults however, a
delicate balance between the two mechanisms has to be found.

The three versions of thArcEA are also an example of this approach. In these al-
gorithms, progressively more complicated local-searchr&ues are introduced, un-
fortunately with progressively less good results. Theedéhce betweeArcEAland
HEALis small. The different method use for calculating the fitndses not seem to
improve the performance however and the performance oAthEALl seems to be
mostly dependent on the asexual heuristic operator Al The exchange of the
asexual heuristic operator with the arc genetic operatoes dot increase the perfor-
mance, even though iRrcEA3 the static arc crossover operator is made dynamic and
both arc crossover operators include an intelligent canson method of the individ-
ual. We performed a number of parameter adjustment expetatier this algorithm
but found no way of improving the performance from the onegjtherefore we must
conclude that the additions of thecEA algorithms are not sufficient to ensure better
performance. Note, however, that the additions ofAheEA algorithms focus on di-
recting the search on solving constraints that are hardsattsfy while, in our test-set,
the tightness of the constraints is approximately equal. aQest-set where there is
variance between the tightness constraints in the the GSé&hice, thé&rcEAmay well
have an edge over the other algorithms in the inventory.

Both theESPEAand theLSEAare the most explicit in incorporating a local-search
technique. Both algorithms introduce a third operator efihrm of a repair operator.
There is a drawback in doing this that has to be recognisediuse both operators are
applied after the genetic operators, there is the podgibiliundoing (at least some of)
the work of the genetic operators. This is most clear inES®EA where a simple
repair rule is used to re-label some of the variables in th&idual to values that do
not conflict with the constraints. In tHeSEA although more complicated, the same
thing happens because it searches for individuals with amman length consistent
compound label, removing the other values from the domdsafehe variables. The
local-search techniques in both tBSPEAand theLSEAare very strong, in that the
possibility of undoing changes made by the (other) gengt@ators is large. Because
of this, they can render the genetic operators superfluonstian we will investigate
further in the next chapter. Of note here is that both loealrsh techniques used in
the ESPEAand theLSEAcan not be tweaked and both use a lot of conflict checks, i.e.,
hidden work.

The SAWEAIs different from the other algorithms in that it takes thesindirect ap-
proach to implementing a local-search technique and ugesvitiutionary part of the
algorithm only as a way to supply the permutation for decod@kis division of labour
has its advantages: the decoder only searches throughahlke \wearch-space, dis-
carding domain values that are inconsistent with domainesblready labelled. This
reduces the search space and makes the algorithm morergffidmvever, the(SAWEA

147

also relegates the evolutionary search process to findiitagoéel permutations for the
decoder and the relation between the fitness value of anich@divand the genotype of
the individual is less clear as it is obscured by the decddevertheless, the addition
of a local-search technique in the decoder of SW&VEAS essential for increasing the
performance of the algorithm.

All'in all, we found that if one wants to solve constraint s&tction problems with
evolutionary algorithms, the addition of a local-searathtéque to the algorithm, in
order to give it the ability to find good individuals duringethun, is important, and
from the ranking found in the previous section, the bestetacadd the local-search
technique would be in either the genetic algorithms, as sihoytheHeuristicEA or in

a third operator that acts as a repair operator, as iE8EAor theLSEA An outlier

so far, but still performing well, is thEAWEAwhich adds a local-search technique in
a decoder.

For further study in the thesis we want to reduce the numbeifgafrithms to a more
manageable amount, concentrating on the algorithms wéthoést performance. The
algorithms chosen for further study are found through a gss®f elimination. First
and most obvious we eliminate tMdDEA and theCoeEA Both algorithms have poor
performance in the mushy region of the test-8&teEAbeing unable to solve the CSP
instance in any of its runs aMIDEA unable to solve them in five of the nine density-
tightness combinations in the mushy region. Next we elitein@rsions of the same
algorithm with poorer performance, so for tHeuristicEAwe only consideHEA3and
for ArcEAwe only consideArcEAL The difference between thEA3and theArcEAL
however is small, both share the asexual heuristic opefiator the HeuristicEA The
performance of théA\rcEALlis also consistently lower than that of thREEA3 so we
eliminateArcEAL1 The difference between tIi@AWEAand theHPEAIs not so clear-
cut, however, when we look at the rankings based ofsfRAESand theSRCC plane,
we find that theSAWEAhas is consistently higher in the ranking than HREA for
both the effectivity-efficiency plane comparisons, so weilateHPEA as well. For
the rest of the thesis we therefore consider only the folhgwWiour algorithms (in order
of the ranking given in equation 8.4):

1. theLSEA

2. theHEAS

3. theESPEAand
4. theSAWEA

148

Chapter 9

De-Evolutionarising
Evolutionary Algorithms,
Memetic Overkill, and the
Superior Evolutionary
Algorithm

This chapter describes the notiondaf-evolutionarisingvolutionary algorithms to find
out if they are susceptible to what we tememetic overkill Of the four best perform-
ing evolutionary algorithms in the inventory, orBAWEAIs found not to suffer from

memetic overkill. This algorithm is then adjusted to coastthe superior evolutionary
algorithm for solving the constraint satisfaction problbynintroducing four variants.
None of the variants was found to suffer from memetic overRihe best performing

variant is selected as the superior performing evolutipaggorithm.

9.1 De-evolutionarising Evolutionary
Algorithms

In Chapter 8 we found that the four algorithms with the besfqgmance all include
a heuristic or a local-search technique. The power of theisteuand local-search
technique and the way they are used, both influence the anobumyprovement of
the performance. Here, we investigate the influence of thkiggnary components of
these algorithms on their performance. This is done by rémgathe evolution from
the algorithms, a process we tetia-evolutionarisinghe algorithm. The influence of
the evolutionary component is determined by comparing #gréopmance of the orig-

149

inal algorithm with the de-evolutionarised variant. Teidally speaking the question
is how to de-evolutionarise the algorithms. To answer thisstjon, we consider the
essential features of the evolutionary algorithm for whitcholds that after remov-
ing these features, the algorithm would not be evolution@here are three essential
features that make an algorithm evolutionary:

1. a population of candidate solutions;
2. variation operators (e.g., crossover and mutation); and

3. natural selection (i.e., selection based on the fitneas afdividual).

Although all three features are closely related, the first are in part dependent on
each other, because without a population of candidateisofytthe crossover opera-
tor can not be used. Furthermore, examples exist of evolatjoalgorithms without
these features. In evolutionary strategies ([7, 80]) examexist that do not maintain
a population of candidate solutions. These examples hawpalagtion of only one
individual. Evolutionary programming ([39, 37]) does nai/i crossover operators, or
any other form of recombination, although they use a mutatigerator.

Taking these considerations into account, we de-evolatise evolutionary algorithms
by removing first natural selection and second the populghy setting the population
size to one). When an evolutionary algorithm includes a awssoperator, this is
removed together with the population.

As for natural selection, recall that there are two selectiteps in the general evo-
lutionary algorithm framework: parent selection and swviselection. For either of

them we say that it represents natural selection if a fithesgd bias is incorporated,
favouring better candidates. Note, that an evolutionaggrithm does not need to have
natural selection in both steps. For instance, generatgmreetic algorithms use only
parent selection (and all children survive), while evaotry strategies use only sur-
vivor selection (and parents are selected uniform randprilgwever, an evolutionary

algorithm must have fitness-bias in at least one of theses stépeither parent selec-

tion nor survivor selection are performed by using fitneiss-fe.g., by uniform random

selection) then no natural selection is done and random iwalktained.

Considering the role of the population, the common evoh#iyg computation wisdom
states that population size of one is a singularity, i.és, & special case of the general
scheme, for ‘real’ evolution more individuals are needed.

In practice wede-evolutionarisghe evolutionary algorithms in two steps and create
two new variants for each algorithm. In the first variant we usiform random se-
lection for both parent and survivor selection, therebytahwing off natural selection.

In the second variant we switch off natural selectéomd use a population size of one
(and consequently cease to use crossover when necessattyg. fbllowing overview
we denote these variants B8, EA-se|] EA-sel-pop

Based on the observations in the previous chapter we det@mdrise only the best
performing algorithms in the inventory. In order of the rangkgiven in the previous

150

LSEA LSEA-sel LSEA-sel-pop
(p1,p2) SR AES cC SR AES CC SR AES CC

(0.1,0.9) 1.0 13 8893 1.0 13 8893 1.0 9 4387
(0.2,0.9) 0.988 540 3002120.988 540 3002121.0 154 87068
(0.3,0.8) 0.812 9825 47143030.812 9825 47143031.0 1058 568152
(0.4,0.7) 0.808 5935 26415890.808 5935 26415891.0 1024 533308
(0.5,0.6) 0.924 10124 43071450.924 10124 43071451.0 910 461629
(0.6,0.6) 0.752 12080 45730460.752 12080 45730461.0 1360 781702
(0.7,0.5) 0.776 11562 46739160.776 11562 46739161.0 1618 861174
(0.8,0.5) 0.796 11422 42795120.796 11422 42795121.0 1377 794020
(0.9,0.4) 0.936 4097 16897600.936 4097 16897601.0 738 381452

Table 9.1: Comparison of tHeSEA LSEAsel, and_SEAsel-pop.

chapter, the following algorithms were de-evolutionatisthe LSEA the HEAS3, the
ESPEA and theSAWEA The results of the experiments are shown in Tables 9.1, 9.2,
9.3, and 9.4. We experimented only on the density-tightoeswinations in the mushy
region of the test-set and the tables include $iIRRAES andCC measures. The first
column indicates the density-tightness combinations fhictv the results are given.
The results in the second to fourth column of each table geeddrom the inventory.
The fifth to seventh column show the results of the first vamdeach algorithm (EA-
sel) and the eighth to tenth column show the results for tlcersk variant of each
algorithm (EA-sel-pop).

Table 9.1 shows no difference between 8 the AES and theCC values of the orig-
inal LSEAand theLSEAsel. This suggests that natural selection is completety-ov
ruled by the repair operator in theSEA The table also shows that the performance
of the LSEAsel-pop is better than both the origingbEAandLSEAsel. TheLSEA
sel-pop solves all CSP instances in all runs for all densifiygtness combinations in
the mushy region of the test-set and does so using (on aydeger evaluations and
fewer conflict checks. The decreaseASandCC is significant, sometimes as much
as nearly one tenth of the evaluations or conflict checks sed.uFrom the results it is
clear that the repair operator of th&EAon its own is powerful enough to solve the
CSP instances in the test-set and that natural selectiothante of a population (and
a crossover operator) actually decrease the performantteeadlgorithm. As such,
the ability of theLSEAto solve the CSP comes from the local-search technique used
while the evolutionary components of natural selectiontueduse of a population are
actually harmful to the performance of the algorithm.

Table 9.2 shows that the performance of HiEA3-sel is better than the performance
of the originalHEA3 For some density-tightness combinations in the mushynregi
of the test-set (e.g(0.6,0.6)) the theSRis more than doubled (going froMm44 to
0.956). This shows that natural selection is actually harmful ttee performance
of the HEA3 and that the local-search techniques in the heuristic tpsrare pow-
erful enough to find solutions to the CSP instance in almdstuals. The differ-

151

HEA3 HEA3-sel HEA3-sel-pop
(p1,72) SR AES CC SR AES CcC SR AES CC

(0.1,0.9) 1.0 26 23899 1.0 27 25138 1.0 7 5364
(0.2,0.9) 0.984 419 621391 1.0 221 320560 1.0 62 51241
(0.3,0.8) 0.688 1635 24892611.0 952 1435814 1.0 185 156040
(0.4,0.7) 0.712 1404 21102381.0 404 603560 0.988 140 118541
(0.5,0.6) 0.692 2382 36473670.996 717 10834810.956 99 83752
(0.6,0.6) 0.44 988 1493377 0.956 1618 24676660.948 220 187711
(0.7,0.5) 0.588 969 1472759 0.988 1960 29820260.972 202 172835
(0.8,0.5) 0.488 1258 19325410.976 3601 55386680.972 211 182419
(0.9,0.4) 0.76 1563 24049781.0 912 13934050.972 121 104850

Table 9.2: Comparison of tHeEA3 HEA3sel, andHEA3-sel-pop.

ences between theESand theCC measures of the two variants is more varied. Al-
though theAESof the HEA3-sel is less in density-tightness combinatidf<2, 0.9),
(0.3,0.8), (0.4,0.7), (0.5,0.6), and (0.9,0.4), it is increased for density-tightness
combinations(0.1,0.9), (0.6,0.6), (0.7,0.5), and(0.8,0.5). For theCC measure, in
density-tightness combinatiori8.1,0.9), (0.2,0.9), (0.3,0.8), (0.4,0.7), (0.5,0.6),
and(0.9,0.4) theHEA3sel used fewer conflict checks while for density-tightress-
binations(0.6, 0.6), (0.7,0.5), and(0.8,0.5) is increased. Although the performance
of the HEA3sel-pop is slightly lower than that of tHéEA3-sel, it is still much bet-
ter than that of the originddEA3 The reason for the slight decrease is probably the
removal of the heuristic multi-parent crossover operatbemvthe population of the
HEA3sel-pop was set to one. Still, the performance of H©A3-sel-pop is better
that that of the originaHEA3, so also in this case, we conclude that the local-search
technique used in the remaining heuristic operator is pfmvenough to solve CSP
instances on its own. Therefore, although the use of a ptpaltarough the heuristic
multi-parent operator is still useful, natural selecti@titases the performance of the
algorithm.

Table 9.3 shows a dramatic improvement of the performantiee@SPEAsel over the
original ESPEA Without natural selection, tHeESPEAis able to solve all CSP instance
in the mushy region of the test-set in all runs. Apart fromgigrtightness combina-
tion (0.1, 0.9) the efficiency measured by t@&SandCC also shows an improvement.
There is no more improvement 8Rbetween th&eSPEAsel and theeSPEAsel-pop,
but since all CSP instances in the mushy region of the tésirsesolved by both the
ESPEAsel and theeSPEAsel-pop, this is not possible. However, tBBPEAsel-pop
improved the efficiency of the algorithm even further, piolgdbecause no evaluations
and conflict checks are used to maintain the population. &lye¢he increase in per-
formance in theeSPEAsel andESPEAsel-pop variants is dramatic, which suggests
that the local-search technique used in the repair opeadtitre ESPEAIs powerful
enough to solve the CSP on its own. The use of the evolutiaw@mponents of natural
selection and the use of a population are harmful to the peaence of theeSPEA

152

ESPEA ESPEAsel ESPEAsel-pop
(p,pz) SR AES CC SR AES CC SR AES CC

(0.1,0.9) 1.0 45 14920 1.0 48 17598 1.0 18 6231
(0.2,0.9) 0.952 2404 924530 1.0 275 179191 1.0 137 80635
(0.3,0.8) 0.728 6165 2670936 1.0 629 423241 1.0 222 132072
(0.4,0.7) 0.844 6021 2785182 1.0 529 346895 1.0 170 99313
(0.5,0.6) 0.844 4839 2415945 1.0 442 297149 1.0 170 96408
(0.6,0.6) 0.8 6015 3039882 1.0 736 492493 1.0 238 152962
(0.7,0.5) 0.772 9241 4738977 1.0 839 557504 1.0 275 162950
(0.8,0.5) 0.84 9241 2497913 1.0 1218 788666 1.0 236 155603
(0.9,0.4) 0.944 3589 2085063 1.0 374 272451 1.0 161 96214

Table 9.3: Comparison of tHeSPEA ESPEAsel, andESPEAsel-pop.

SAWEA SAWEAsel SAWEAsel-pop
(p1,p2) SR AES CC SR AES CcC SR AES CC

() 0.92 56 136790.0 undef. undef.0.28 693 115256
() 0.72 849 1731811.0 165 279250.08 18709 3441713
() 0.6 2134 4123260.257 27946 53430480.08 16704 3012739
(0.4,0.7) 0.664 5975 11110190.422 11239 19556420.296 17066 2950401
(0.5,0.6) 0.772 9511 17315870.633 12422 21533960.26 18497 3169435
()
()
()
()

0.64 3326 6033700.368 7820 13715090.192 24009 4152730
0.32 6481 11702290.071 30848 54500220.14 13126 2289924
0.396 2393 4385620.284 5239 8998060.204 19084 3274588
0.828 3547 6457330.633 21519 38234960.304 10159 1809621

Table 9.4: Comparison of tfRAWEASAWEAsel, andSAWEAsel-pop.

In contrast to the first three algorithms, Table 9.4 showstti@performance of both
the SAWEAsel and th6sAWEAsel-pop decreases when natural selection and the use of
a population is removed. Both evolutionary components fitethe performance of the
SAWEAThis is especially clear for density-tightness comboratD.1, 0.9) where the
original SAWEAsolved the CSP instance in almost all runs while for bothSA&VEA
sel and theSAWEAsel-pop none (foSAWEAsel) or few (forSAWEAsel-pop) were
solved. Comparing the origin&IAWEAand theSAWEAsel, only for density-tightness
combination(0.2,0.9) was there an improvement in t&& theAES and theCC. There
is no clear reason for this improvement and we see it as a naedourrence. Overall,
however, the performance decreases from the orig#al/EAto the SAWEAsel, and
again to theSAWEAsel-pop, and we conclude that natural selection and thefuae
population is beneficial to the performance of 8#®WEAand that the power to solve
the CSP comes not only from the local-search technique ustetidecoder but also
from the evolutionary components of the algorithm.

153

9.2 Memetic Overkill

In section 8.4 we concluded that the best way to improve thipeance of an evo-
lutionary algorithm is to incorporate a heuristic or losglarch mechanism. In the
previous section however, we showed that for the best fgarithms in the inventory,
three of them increased performance when we de-evolutggththem. Obviously
great care has to be taken when incorporating a heuristiccat-search technique in
an evolutionary algorithm because when the heuristic alisearch technique is too
strong the evolutionary components of the algorithm mayallyt reduce performance.

The best examples of this are th8EAand theESPEA Both algorithms incorporate
powerful local-search techniques in a third (repair) ofmraThe results shown in
the previous section show that the local-search technigndkeir own are powerful
enough to solve the CSP instances in the test-set and th&ctinthe evolutionary
components of natural selection and the use of a populaéoredses the performance
of the algorithm.

TheHEA3differs from theLSEAand theESPEAIn that the heuristics are incorporated
in the variation operators of the algorithm itself. The hstics themselves are well-
known and commonly used but as in th8EAand theESPEA when natural selection
was removed from the algorithm, the performance of the alyorincreased. When in
addition the use of a population was removed from the algorieind consequently the
use of the (multi-parent) crossover operator as well, thitopmance of the algorithm
decreased somewhat but was still superior to the origigardéhm. As with theLSEA
and theESPEAthe evolutionary components of natural selection, ande¢eser extend
the use of a population decreases the performance &{EAS

Only theSAWEAshowed a decrease in performance when natural selectichande
of a population is removed from the algorithm. This leadsh®donclusion that in the
SAWEA_these evolutionary components still have a positive efiache performance
of the algorithm.

The effect of the evolutionary components having a negafifext on the performance
of the algorithm we calmemetic overkill The term is derived from the term used
to describe evolutionary algorithms incorporating heigisr local-search techniques:
memetic algorithms. As said before, the incorporation afrtstic or local-search tech-
nigues in evolutionary algorithms in order to improve thgérformance is common
place. However, when the incorporated techniques are werbal, their incorporation
in an evolutionary algorithm can actually hamper the penfamce of these techniques,
resulting in memetic overkill.

Although the consequences of memetic overkill and the wdyegiing whether it
occurs are explained above, the reason for it to occur is\Wetbelieve that there are
two interrelated reasons for memetic overkill to occur: weey in which the local-
search techniques are used, and the power of the localstegimique itself.

In the best examples of memetic overkill, thEEAand theESPEA the local-search
technique is incorporated in a third (repair) operator.sTdperator is applied after the
variation operators of the algorithms and is thereforevadid to over-rule the (quite)

154

random choices of these variation operators. As such, ieesechance that the re-
pair operator will undo some of the changes that the vanatiperators have made.
Because the local-search technique makes its choicesrtindederministic, their ap-
plication after the variation operators makes the searshra@ndom, in effect making
the search less diverse. In this respect, the local-seantinigues provide a more
depth-first search while the evolutionary components dfinahtselection and the use
of a population provide a more breadth-first search. InLtBEAand theESPEA the
constant struggle of the local-search techniques to do tndipt search (in order to
find a solution fast) with the evolutionary components to doeadth-first search (in
order to maintain diversity) leads to a lower performancehefalgorithm as a whole.
When the breadth-first search of the evolutionary componsntsmoved, therefore,
the performance is improved.

This is closely related to the power of the local-searchrepke, for if the local-search

technique is not powerful enough to find the solution of thebfem on its own, the

breadth-first search of the evolutionary components all@watigorithm more avenues
for the local-search technique to solve the problem. Tha@ikhincrease the overall
performance of the algorithm. The power of the local-sedecihnique on its own,

independent of the way it is incorporated in the algoritham be enough to lead to
memetic overkill. TheHEA3is a clear example of this. In tH¢EA3 the heuristics are

incorporated in the variation operators of the algorithatre way in which the tech-

niques are incorporated does not pose a problem. The hesitis¢émselves, however,
are so capable of finding a solution, that the evolutionammanents attempts to do
a breadth-first search (that is, to maintain diversity) caduthe performance of the al-
gorithm. We believe that the randomising effect of the etiohary components harms
the performance because of the different avenues the gilgwrinvestigates ultimately
either do not lead to a solution of the problem, or use up so/roéthe available search
steps that the algorithm is terminated before it can find atswl.

So, how to reconcile the incorporation of a heuristic or lesarch technique with
memetic overkill? Apparently, the heuristic or local-s#atechnique must be placed
in such away that it can not undo too many (random) changé®aftriation operators,
and, it must not be overly powerful in its guidance toward/sa the problem (in this
case, the CSP). In short, the focus that the depth-first Isexra heuristic or local-
search technique provides must be balanced with the diyensbreadth-first search
that the evolutionary components provide.

An algorithm wherein this balance has been achieved iSSIN&/EA Although the
SAWEAdoes not have as good a performance as. 8ieA theHEA3 and theESPEA

it does not suffer from memetic overkill. We believe that teason for this is that the
SAWEAconsists of two parts: the local-search decoder and theitooary permuta-
tion searcher to supply the decoder. Although the perfoomaf theSAWEAdepends
on both parts of the algorithm, they are independent in tielidcal-search technique in
the decoder is not directly incorporated in the evolutign@art of the algorithm. Also,
the local-search technique used in the decoder is not polarbugh to solve the CSP
on its own. The two parts of th8AWEAalgorithm are connected through the step-
wise adaptation of weights fitness function, which focudbesevolutionary part of

155

Evolution

With Without
Heuristics Weak Good Poor
Strong Inferiour Good

Table 9.5: Performance of algorithms that incorporate wetiong, or no heuristics
and evolution.

the SAWEAtowards finding better permutations for the decoder thrahglcandidate
solutions that the decoder provides. The result of thisasttie local-search technique
used in the decoder is balanced against the evolutionatyp#re algorithm, neither
has the upper hand and both can work together to achieve artpgiformance.

We can generalise the relative performance of algorithnsed@&n whether they in-
corporate either weak or strong heuristics and evolutionatr Table 9.5 shows the
four possible combinations and they relative performanggsurprisingly, algorithms
that incorporate weak heuristics and no evolution have & pedormance. The de-
evolutionarised variants of thHeSEA the HEA3 and theESPEAshow that when an
algorithm incorporates a strong heuristic but no evoluti@performance is (or rather,
can be) good. When an algorithm combines strong heuristitsavblution however,
the performance is inferior to the algorithm which does nobrporate evolution. The
SAWEAonN the other hand showed that an algorithm incorporatingkveearistic and
evolution can still have good performance.

A strange situation can arise when one wants to increaseetii@mance of an evolu-
tionary algorithm by incorporating either more and morelesearch techniques or in-
corporating more and more powerful local-search techrsgute the algorithm. There
is a point in this process where incorporating more, or maeeasful local-search
techniques actually makes the evolutionary componentieflgorithm have a neg-
ative effect on the performance. At this stage one is befteromtinuing without the
evolutionary components, i.e., using the algorithm as a fiarated local-search algo-
rithm instead of an evolutionary algorithm. Because in tidsign process one starts of
with a simple evolutionary algorithm and progressively ettishes it with local-search
techniques, the effect described above is also known asttine souffect (see also
[68]). It is historically ironic to find out that when resebers started to incorporate
more, or more powerful heuristics in their evolutionaryalthms as way of boosting
their performance, they would have been, in the end, befteriithout the evolutionary
components of their evolutionary algorithms.

9.3 Adjustments to make the Superior EA

Since theLSEA the ESPEA and theHEA3 all suffer from memetic overkill, further
tweaking of these algorithms in order to improve their perfance as evolutionary
algorithms seems pointless. Although BBAWEAhad the poorest performance of the

156

four algorithms tested, it still is the best candidate touatljn order to construct a
superior performance evolutionary algorithm, the mainl gdahis thesis. There are
several ways of doing this. The most obvious method is tce@we the power of the
local-search technique in the decoder. However, incrgatsia power of the local-
search technique, for example by incorporating a backimgcalgorithm, makes the
SAWEAvulnerable to memetic overkill, so this is not a viable optidVe already tried
to increase the performance of tSBWEAby making adjustments to the evolutionary
part of the algorithm in [17] without much success. Now, wefopfocussing on using
information gained during the run of the algorithm to impeahe performance. We
hope that this increases the performance of the algoriththrowi increasing the risk of
memetic overkill.

In order to describe how we want to improve the performandb@SAWEAwe have

to describe in more detail how the greedy local-search igalerof the decoder works.
The decoder in th8AWEAakes a permutation evolved by the evolutionary part of the
algorithm and uses a greedy algorithm to convert this infmoasibly partial, solution
of the CSP instance to solve. This is done by iteratively lladzea variable in the
permutation, in order, with a value from its domain. The edkitaken from the domain
set of that variable. In the origin8IAWEAthe domain set is ordered by the value of the
domain value in ascending order. For example, the testseet im this thesis includes
CSP instances with a uniform domain size 0f the the domain set used by tBAWEA

is: {1,2,3,4,5,6,7,8,9,10}. As a result, the first time a variable in the permutation
is labelled by the decoder, it is labelled with the value

The greedy algorithm in the decoder itself is clearly not pdul enough to solve a

complex CSP instance, i.e., a CSP instance in the mushyrregMhen the greedy

algorithm has to label a variable for which all domain valirethe domain set violates

a constraint relevant to an already labelled variableaités it unlabelled. The number
of unlabelled variables of a decoded individual is then westhe basis for the fithess
value of that individual.

The variants of th&66AWEArecognise that the ordering of the elements of the domain
sets is chosen quite arbitrarily. Prior knowledge about howrder the elements of
the domain sets, however, is easy to obtain, although thisegt a certain number of
conflict checks. This cost, however, will be incurred onlgenat the initialisation of
the algorithm. The idea is to use the restrictiveness of aeved order the domain set
of a variable. This is calculated by counting the number afst@int violations when
that value is checked against all other values of all othealikes. This is analogous to
counting the number of times that a certain label is in th@sebtmpound labels of all
constraints of a CSP instance. By excluding double counthmgnumber of conflict
checks needed can be decreased. If the label is in more aisit is more restrictive
than if it is not.

We investigate two domain set orderings: one where the sarteeordered in ascending
restrictiveness; and one where the values are ordered cendisg restrictiveness.
The idea behind the first ordering is that values which are testricted are better
candidates for labelling that variable. The idea behing#wond ordering is that values
which are more restricted should be used earlier in the ke@ne could say that the

157

SAWEAT1 SAWEA risel SAWEA rl-sel-pop
(p1,p2) SR AES CC SR AES CcC SR AES CC
(0.1,0.9) 0.948 654 1049011.0 836 1326761.0 851 140990
(0.2,0.9) 0.956 3716 7438560.996 10559 19497750.744 24149 4408818
(0.3,0.8) 0.92 7201 13595340.936 13750 24611210.6 24282 4341539
(0.4,0.7) 1.0 4861 8725890.92 8650 15086640.648 22563 3972954
(0.5,0.6) 1.0 5945 10588571.0 7859 13635490.82 20587 3590547
(0.6,0.6) 1.0 6474 11567920.996 8972 15544200.708 25492 4457152
(0.7,0.5) 1.0 7325 13021190.988 10185 17780850.684 27640 4835898
(0.8,0.5) 1.0 5882 10394371.0 11068 19249340.72 24612 4297115
(0.9,0.4) 1.0 4292 7619931.0 4471 7888150.932 17540 3115641

Table 9.6: Comparison of tHRAWEA r1 SAWEA risel, andSAWEA risel-pop.

first ordering is an easiest-first ordering while the secortiing is a hardest-first
ordering. Apart from the original ordering of the domainssete also included a test
ordering, in which the domain sets were ordered randomlyota four variants will
be considered:

1. ascending domain set ordering by value;

2. random domain set ordering;

3. ascending domain set ordering based on restrictiveaeds;
4.

descending domain set ordering based on restrictiveness

Note that the first two orderings are problem independentevthée last two orderings
are problem dependent.

We added another alteration to the origiS8WEA This involves intermittently re-
ordering the values in the domain sets during the run of therdhm. At intervals
equal to the update interval for the weights of the stepwilsgtation of weights mech-
anism, the domain sets of the variables that remained uiddhie the individual with
the best fitness value are rotated. Rotating a domain setssntlat the first value
(element) in the domain set replaces the last value in theatoset and that all other
values in the domain set replace the one preceding it. Imessthe first domain value
in the domain set becomes the last, the second the first, amal. Other re-orderings
of the domain sets were tried as well but the naive rotatindpofiain sets had the best
results. Rotating domain sets explicitly uses informatiamed during the run of the
algorithm, namely which variables so far have been diffitmlabel using the current
domain sets ordering. The idea is that by using this infoienathe performance of
the algorithm will be improved.

Combining the rotation method with the four domain set ardgswe get four variants:
SAWEA rldynamically rotates domain sets ordered in ascending drdealue;

158

SAWEA r2 SAWEA r2sel SAWEA r2-sel-pop
(p1,p2) SR AES CC SR AES CC SR AES CcC
(0.1,0.9) 1.0 64 9665 1.0 103 164321.0 294 48093
(0.2,0.9) 0.988 1750 3507890.992 5646 10436250.752 23471 4338731
(0.3,0.8) 0.956 3986 7639030.952 9801 17613840.624 25697 4623096
(0.4,0.7) 0.976 3598 6520450.972 5088 8973870.688 20651 3639388
(0.5,0.6) 1.0 3166 5570261.0 3859 6698030.868 19695 3396530
(0.6,0.6) 1.0 4024 7151220.992 5298 9214810.732 21208 3661156
(0.7,0.5) 1.0 4878 8642491.0 7153 12499320.7 20746 3610806
(0.8,0.5) 1.0 5762 10120821.0 7139 12402970.712 21344 3701840
(0.9,0.4) 1.0 2333 4080161.0 2609 4618360.94 15529 2741701

Table 9.7: Comparison of tHRAWEA r2 SAWEA r2sel, andSAWEA r2sel-pop.

SAWEA r3 SAWEA r3sel SAWEA r3sel-pop
(p1,b2) SR AES CC SR AES CC SR AES CcC
(0.1,0.9) 1.0 106 220261.0 233 426411.0 644 113599
(0.2,0.9) 1.0 2263 4626300.996 6020 11243970.76 25278 4664481
(0.3,0.8) 0.992 5476 10455480.992 8890 16035120.62 31127 5560629
(0.4,0.7) 0.96 5208 9485320.96 6163 10944120.752 21072 3727604
(0.5,0.6) 1.0 3549 6303590.988 5283 9241500.824 21214 3686307
(0.6,0.6) 1.0 5727 10077680.996 6546 11420490.692 22902 3998333
(0.7,0.5) 1.0 8155 14501300.996 7732 13550250.66 24453 4274086
(0.8,0.5) 1.0 6090 10622790.996 8364 14532610.724 21930 3832569
(0.9,0.4) 1.0 2833 5046221.0 2333 4160260.888 16717 2960015

Table 9.8: Comparison of tHRAWEA r3SAWEA r3sel, andSAWEA r3sel-pop.

SAWEA r4 SAWEA r4sel SAWEA r4-sel-pop
(;m,p2) SR AES CC SR AES CC SR AES CcC
(0.1,0.9) 1.0 52 12193 1.0 87 18209 1.0 191 35730
(0.2,0.9) 0.964 1925 3895640.996 5597 10465140.708 21787 4034458
(0.3,0.8) 1.0 3495 6742480.992 7360 13361690.652 25496 4558643
(0.4,0.7) 0.96 4169 7587860.956 5157 9100490.704 23412 4098368
(0.5,0.6) 1.0 2944 5238721.0 3369 5862910.868 19864 3462682
(0.6,0.6) 1.0 2951 5311290.992 5661 9904330.712 22056 3853155
(0.7,0.5) 1.0 4424 7892531.0 5281 9270720.736 21837 3810733
(0.8,0.5) 1.0 5434 9627421.0 6319 11028680.772 22875 3966539
(0.9,0.4) 1.0 2324 4164411.0 1780 3192680.92 13545 2398367

Table 9.9: Comparison of tteRAWEA r4 SAWEA rdsel, andSAWEA r4sel-pop.

159

(0.1, (0.2, (0.3, (0.4, (0.5, (0.6, (0.7, (0.8, (0.9,
0.9) 0.9) 0.8) 0.7) 0.6) 0.6) 0.5) 0.5) 0.4)

SAWEA rl< SAWEAr2 - 0.01 1.0 0.0 - - - - -
- 099 05 1.0 - - - - -
= < = < = = = = =

SAWEA T rl< SAWEAr3 - 0.0 0.01 0.06 - - - - -
- 1.0 0.99 097 - - - - -
= < < < = = = = =

SAWEA rl< SAWEAr4 - 0.38 0.0 0.06 - - - - -
- 0.81 1.0 097 - - - - -
= < < < = = = = =

SAWEA 2> SAWEAr3 - 0.08 0.01 0.31 - - - - -
- 0.096 0.99 0.16 - - - - -
= > < > = = = = =

SAWEA r2z> SAWEAr4 - 0.08 0.0 0.31 - - - - -
- 004 1.0 0.16 - - - - -
= > < > = = = = =

SAWEA r3= SAWEATr4 - 0.0 0.16 1.0 - - - - -
- 00 092 05 - - - - -
= > < = = = = = =

Table 9.10: ¢-test results for the rankinGAWEA r1 SAWEA r2 SAWEA r3 and
SAWEA rfon SR

SAWEA radynamically rotates domain sets ordered randomly;
SAWEA r3dynamically rotates domain sets ordered in ascendingatatness; and

SAWEA rddynamically rotates domain sets ordered in descendingat@stness.

We used the same test-set as used before for our experimetitese four variants.
We also de-evolutionarised each variant, introducing teeedolutionarised variants
for each variant, one where natural selection is removed oae where both natural
selection and the population are removed. As before, we tieese variantssel and
-sel-pop The results of these experiments are shown in Tables 9.69 8, and 9.9.

Tables 9.6, 9.7, 9.8, and 9.9 show that all four variants efSAWEAhave higher
SRthan the originaSAWEA The biggest improvement was seen for density-tightness
combinationg0.7,0.5) and(0.8, 0.5) where theSRwent from0.32 and0.396 respec-
tively to 1.0 for all four variants. The efficiency of the four variants heer was lower
than the originaSAWEA both theAESand theCC are higher. The big increase 8R
however outweighs the relatively small increase ofAieSandCC.

To answer the question of which variant performed best wemeb a statistical anal-
ysis of the results througtitests. Because th&Rresults of the experiments are so
close together we analyse tA&ESandCC results as well as th8Rresults of the ex-
periments. Table 9.10 shows the analysis of$igesults, Table 9.11 the analysis of

160

(0.1, (0.2, (0.3, (0.4, (0.5, (0.6, (0.7, (0.8, (0.9,
0.9) 0.9) 0.8) 0.7) 0.6) 0.6) 0.5) 0.5) 0.4)

SAWEA rl> SAWEAr2 0.0 0.0 0.0 0.05 0.0 0.0 0.0 0.86 0.0
0.0 00 0.0 0.02 00 00 0.0 043 0.0
> > > > > > > = >
SAWEA r1> SAWEATr3 0.0 0.0 0.1 046 00 0.4 027 0.75 0.0
0.0 00 0.05 077 0.0 0.2 0.86 0.63 0.0
> > > < > > < = >
SAWEA rl> SAWEAr4 0.0 0.0 0.0 039 0.0 0.0 0.0 047 0.0
00 00 0.0 019 00 00 0.0 024 0.0
> > > > > > > pe >
SAWEA r2< SAWEA 3 0.02 0.14 0.04 0.03 0.39 0.03 0.0 0.67 0.09
0.99 093 0.98 0.99 0.81 098 1.0 0.66 0.96
< < < < < < < < <
SAWEA r2> SAWEA T4 0.41 0.70 0.51 0.32 0.56 0.01 0.37 0.67 0.98

02 0.65 026 084 028 0.01 0.19 0.33 0.49
> s 2 < 2 > > 2 2
SAWEA 3> SAWEAT4 0.0 0.3 0.0l 0.17 0.15 0.0 0.0 0.37 0.11
00 0.5 0.0 008 007 0.0 00 019 0.05

> > > > > > > > >

Table 9.11: ¢-test results for the rankinGAWEA r1 SAWEA r2 SAWEA r3 and
SAWEA rdon AES

the AESresults, and Table 9.12 the analysis of @@ results. Based on this analysis a
ranking for each of the three measures can be given.SRmaeasure, in this respect,
has to be maximised, while tieESandCC measures have to be minimised.

The ranking for the6SAWEAvariants based on tt&Rmeasure is shown in equation 9.1.
In Table 9.10 however, it is seen that fbout of the9 density-tightness combinations
in the mushy region, th8Rresults of the four variants are equal. For thesensity-
tightness combinations all four variants solve all CSPanseés in all runs. Therefore,
the difference upon which tHgRranking is based is calculated ovedensity-tightness
combinations only. OveralSAWEA r2showed the bes$Rof all four variants while
SAWEA raandSAWEA rdad about equédR SAWEA rihad the lowesERof all four
variants.

SAWEATr2 > SAWEAT3 = SAWEAT4 > SAWEA Tl (9.1)

Table 9.11 shows that theESresults of the four variants had more variance over all
density-tightness combinations in the mushy region. Thé&irgy of the four variants
based on théAESmeasure is found in equation 9.2. As before, the best peifigrm
algorithm is shown to the left of the ranking but as &teS(as theCC) measure is to be
minimised the comparative signs between the algorithmseseysed. ThGEAWEA r4

161

(0.1, (0.2, (0.3, (0.4, (0.5, (0.6, (0.7, (0.8, (0.9,
0.9) 0.9) 0.8) 0.7) 0.6) 0.6) 0.5) 0.5) 0.4)

SAWEA T rl> SAWEATr2 0.0 0.0 0.0 0.06 0.0 0.0 0.0 0.82 0.0
0.0 00 00 0.03 00 00 0.0 041 0.0
> > > > > > > < >
SAWEA r1> SAWEAT3 0.0 0.0 0.12 04 00 0.34 027 0.84 0.0
0.0 0.0 0.06 0.8 0.0 0.17 0.87 0.58 0.0
> > > > > > < < >
SAWEA T rl> SAWEATr4 0.0 00 00 045 00 0.0 0.0 049 0.0
0.0 00 00 023 00 00 00 024 0.0
> > > pe > > > pe >
SAWEA r2< SAWEATr3 0.0 0.11 0.04 0.03 0.35 0.04 0.0 0.71 0.06
1.0 094 0.98 0.99 0.82 0.98 1.0 0.64 0.97
< < < < < < < < <
SAWEA r2< SAWEA T4 0.21 0.67 0.56 0.31 0.63 0.02 0.41 0.72 0.88

0.9 0.66 0.28 0.85 0.32 0.01 0.21 0.36 0.56
< < > < > < < > >

SAWEA r3> SAWEATr4 0.0 0.29 0.01 0.16 0.15 0.0 0.0 0.44 0.12
0.0 0.14 0.01 0.08 0.08 0.0 0.0 0.22 0.06
> > > > > > > = >

~

Table 9.12: ¢-test results for the rankinGAWEA r1 SAWEA r2 SAWEA r3 and
SAWEA r4on CC.

algorithm used less than or similar amount®&Sthan theSAWEA rZalgorithm. The
SAWEA r2algorithm was more efficient than tf®AWEA r3algorithm which in turn
used less than or similar amountsA Sthan theSAWEA rlalgorithm.

SAWEATr4 < SAWEAT2 < SAWEA T3 < SAWEA Tl (9.2)
The ranking based on teéC measure is shown in equation 9.3. Based on the analysis
shown in Table 9.12, the ranking is very similar to thESranking shown in equation
9.2 except for th&€€C measure th&AWEA r2andSAWEA rdalgorithms are reversed.

SAWEATr2 < SAWEA 14 < SAWEAr3 < SAWEATrl (9.3)
Based on the statistical analysis we can conclude thaBAWEA r2is the best per-
forming variant of SAWEA Although it was ranked second on tA&ESmeasure, it
was ranked first on th€C measure and more importantly, first on tBRmeasure.

The fact thatSAWEA rlwas ranked last on all three measures demonstrates that the
original domain sets ordering (in ascending order by valse)ot the best ordering
to use and that the decision to reorder the elements of thaidosets resulted in an

162

(p1,P2) LSEA ESPEA HEA3 SAWEA r2

(0.1,09) 1.0 1.0 1.0 1.0
(0.2,0.9) 0.988 0.984 0.952 0.988
(0.3,0.8) 0.812 0.688 0.728 0.956
(0.4,0.7) 0.808 0712 0.844 0.976
(0.5,0.6) 0.924 0.692 0.844 1.0
(0.6,0.6) 0.752 0.44 0.8 1.0
(0.7,05) 0.776 0.588 0.772 1.0
(0.8,0.5) 0.796 0.488 0.84 1.0
(0.9,0.4) 0.936 0.76 0.944 1.0

Table 9.13: Comparison of ti#Rof theLSEA ESPEAHEAS and theSAWEA r2

increased performance. Comparing the ordering based apdtréctiveness of a value
in the domain set of a variable (BAWEA r3and SAWEA r} the orderings show that
ordering the domain set in descending restrictivenesgasead the performance more
the ordering the domain set in ascending restrictivenesapgdears that re-labelling
hardest-first outperforms easiest-first. In general, hewewxdering the domain sets
randomly outperformed all other variants. Although swsing, this domain set or-
dering is bias-free and does not use conflict checks to coraa twrdering (as do the
orderings iNSAWEA r3and SAWEA r4 and we recommend this ordering for further
use.

The SAWEA r2is then the superior evolutionary algorithm. Comparing $fiof the
LSEA ESPEAand theHEA3and theSAWEA r2n Table 9.13 shows that tHRAWEA r2
has a superior performance when these algorithms are retaletionarised. Also, the
SAWEA r2does not suffer from memetic overkill, which the other thaégorithm do
suffer from. A further boon is that tH@AWEA r2s a variant that does not need problem
dependent information to achieve its good performance.

163

164

Chapter 10

Conclusions

The main motivation for writing this thesis is our belief tiier many problems evolu-

tionary computation can provide a viable alternative teeo#lgorithms. In this thesis
we test if this also holds for the constraint satisfactioobpem. The test we use is to
construct a superior evolutionary algorithm and comparpeatformance to alternative
methods for solving the constraint satisfaction problem.

An evolutionary algorithm is not the most obvious methoddlve the constraint sat-
isfaction problem since it does not contain a built-in objecfunction to optimise.
Because of the many applications based on the problem hovibegoroblem has re-
ceived a lot of attention from the evolutionary computati@mmunity. A large num-
ber of evolutionary algorithms for solving the constraiatisfaction problem have been
proposed in the last two decades.

Comparing the performance of these algorithms based gatlite was hampered be-
cause of the different test-sets used, some of which weralfaube deficient in some
respects. Additionally, different ways to measure the grenince of the algorithms
were used further obscuring the relative performance oélperithms.

In this thesis we offer a solution to these problems by thesttantion of a new test-
set using the latest random constraint satisfaction pnoljenerator and explicitly
defining the measures on which the performance of the ewvolaty algorithms are
compared. A representative subset of the algorithms pexpos literature was re-
implemented in a uniform manner using a basic experimamtgiatform thus making
a fair comparison possible.

The relative performance of the algorithms was compareddas the defined mea-
sures, statistical analysis of the measurements and efiffggerformance measures
were compared relative to each other as well. Further exgstation on the four
best performing algorithms revealed that three of thenesadf from memetic overkill.
Memetic overkill occurs when an evolutionary algorithmangorating a strong heuris-
tic or local-search technique has inferior performancéecalgorithm without the evo-
lutionary components. As three out of the four best perfoglgorithms suffer from

165

memetic overkill, constructing the superior evolutionatgorithm by combining the
effective components from these algorithms is of no usegsinwould only resultin a
new algorithm suffering from memetic overkill.

Instead the superior evolutionary algorithm was consgaifiiom the one algorithm not
suffering from memetic overkill. Because the incorponatid more or more powerful
heuristics would probably lead to this algorithm also stifig from memetic overkill,
the decision was made to instead use information gainedglthie run to enhance the
performance of the algorithm. Earlier investigation of #hgorithm has already shown
that modifications to the evolutionary components do natease the performance of
the algorithm.

From the four proposed variants of the algorithm, one wasdoto have superior
performance. The algorithm uses randomly ordered domemets and rotation to
label variables in the decoder part of the algorithm. Thertlgm is calledSAWEA r2

and was found not to suffer from memetic overkill and haveesigp performance to
the evolutionary algorithms previously investigated.

What remains is to compare the performance of this algoritfittmaiternative methods
to solving the constraint satisfaction problem to see if above mentioned belief is
justified.

10.1 Evolutionary and Classical Algorithms

The performance of th8AWEA r2is compared to thélill Climber with Restart Al-
gorithm (HCAWR from Chapter 5, and th€hronological Backtracking Algorithm
(CBA), and theForward Checking with Conflict-Directed Backjumping Algom (FC-
CDBA) from Chapter 3. ThélCAWRIs an iterated local-search algorithm while both
the CBA and theFCCDBAare classical algorithms. THeBA and theFCCDBAare
both complete algorithms and because the constructedeesiom Chapter 4 includes
only solvable instances, tfg#Rperformance measure will always bé for these algo-
rithms. Also note that because t68Aand theFCCDBAare deterministic algorithms,
only one run for each CSP instance in the test-set is negessiditional runs will
show the same results. Té&Sperformance measure, although in some measure ap-
plicable to theHCAWR is not applicable to the classical algorithms. This leavdy
the CC measure to compare the performance of the four algorithms.

Table 10.1 shows the results from the experiments withSSR&/EA r2 the HCAWR
the CBA and theFCCDBAon the mushy region of the test-set. Only B&WEA r2
has arSRof less thanl..0 for density-tightness combinatioi8.2, 0.9), (0.3, 0.8), and
(0.4,0.7), all other algorithms, and for theBAand theFCCDBAwe knew this, solve
all the CSP instances in all their runs. TBRof the SAWEA rzhowever is very close to
1.0, only 3, 11, and6 runs out of a total 0250 were unsuccessful for density-tightness
combinationg0.2,0.9), (0.3,0.8), and(0.4,0.7) respectively.

For theCC performance measure we find that ®8WEA rds more efficient than the
HCAWRDbut less than thECCDBA For density-tightness combinati@f.1, 0.9), the

166

SAWEA r2 HCAWR CBA FCCDBA

(p1,D2) SR CcC SR CcC SR CcC SR CC
(0.1,0.9) 1.0 9665 1.0 234242 1.0 3800605 1.0 930
(0.2,0.9) 0.988 350789 1.0 1267015 1.0 335166 1.0 3913
(0.3,0.8) 0.956 763903 1.0 2087947 1.0 33117 1.0 2186
(0.4,0.7) 0.976 652045 1.0 2260634 1.0 42559 1.0 4772
(0.5,0.6) 1.0 557026 1.0 2237419 1.0 23625 1.0 3503
(0.6,0.6) 1.0 715122 1.0 2741567 1.0 44615 1.0 5287
(0.7,0.5) 1.0 864249 1.0 3640630 1.0 35607 1.0 4822
(0.8,0.5) 1.0 1012082 1.0 2722763 1.0 28895 1.0 5121
(0.9,0.4) 1.0 408016 1.0 2465975 1.0 15248 1.0 3439

Table 10.1: Comparison of tHRAWEA r2the HCAWR the CBA, and the=CCDBA

SAWEA r2is more efficient than th€BA, but for the other density-tightness combi-
nations this is reversed. Note here that 8feof the SAWEA r2can be increased by
increasing the maximum number of evaluations allowed a@radttively by running
the SAWEA r2multiple times. Given the disparity between t8€ of the SAWEA r2
and theHCAWR the SAWEA rcould be applied several times before the nun®er
of the HCAWRwould be exhausted. However, the difference betweerCt®f the
SAWEA r2and the classical algorithms significant, tRECDBA in particular being
more efficient by a large margin.

So are evolutionary algorithms a viable alternative to o#tigorithms for solving the
CSP? Yes, and no. THRAWEA r2does have almost the sarB®as classical algo-
rithms, and by allowing longer runs, we believe that it caaiatanSRof 1.0 for all
density-tightness combinations in the mushy region of éise$et. However, although
the SAWEA r2is more efficient than thelCAWR it is far less efficient than thEC-
CDBA Of note here is that were tI®AWEA rds the best performing algorithm of its
class, theHCAWRIs probably not. Better (read more efficient) iterated leszdrch
algorithms do exist. The conclusion therefore must be thgetting a solution fast
(efficient), theSAWEA r2 and in general an evolutionary algorithmrist a viable
alternative.

So far in the thesis we have concentrated our comparison thfade to solve the CSP
purely on performance. Within a scientific context this medense. However, from the
standpoint of a user, other factors besides performanchketinégof importance. In that
context, evolutionary algorithms have two things in thawdur: general applicability
and ease of design.

Although all evolutionary algorithms in this thesis weresifically designed to solve
the CSP, they are usually also applicable to other relatebl@ms. TheSAWEA for

example, has been used to solve the satisfiability problemntla® graph colouring
problem and has shown good performance there. It has alscshesn to be useful in
solving data mining problems, much less related to the caimstsatisfaction problem.
The classical algorithms in this thesis however are lesicgtye to solve other prob-

167

lems than the ones for which they were designed, althougbdki techniques used
in them might still be useful.

In general, evolutionary algorithms are also easy to inegnt design. ThEAWEA
although more difficult than an off-the-shelf evolutionalgorithm like thelEA, is
still relatively easy to design. Although evolutionary adighms have a fair amount
of parameters to fine-tune, some guidelines for settingetpesameters are available,
while overall, the evolutionary paradigm used in the algdponis is quite robust for all
but the most outlandish parameter settings. In the endugonlhas the tendency to
find a solution to a problem eventually, as can be observedtiare. And although
the CBAIs also easy to design (and implement), the length of theduseade for the
FCCDBA(given in Chapter 3) clearly indicates that it is not. The@ase in efficiency
of the FCCDBAthen comes from more research a-priori into solving the lerab For
the user unwilling to invest in this, evolutionary algorith are an alternative with the
additional benefit that they can be applied to a wider vaiiéfyroblems.

Thus, for the user interested primarily in finding a solutiora problem and unwilling
to invest much effort in trying to understand the intricacd it, evolutionary algo-
rithmsare a viable alternative. ThEAWEA r2Zhen is an illustration that evolutionary
algorithms are up to this task.

10.2 Main Contributions of the Thesis

In the course of the investigation presented in this thésésfollowing main contribu-
tions to the scientific community were made:

e a methodology for constructing a test-set of CSP instartedered especially
for comparing the performance of iterated local-searcbrélyns, evolutionary
algorithms in particular;

e a comprehensive inventory of eight evolutionary algorishfor solving the con-
straint satisfaction problem including full descripticofthe algorithms and ex-
perimental results for accessing their performance.

e a methodology for comparing and ranking the performancevolugionary al-
gorithms using traditional and statistical methods, andgarison of the relative
performance in the effectivity-efficiency plane;

¢ offering the notion of memetic overkill and a methodology iftentifying if an
algorithm suffers from memetic overkill by de-evolutioisamg it;

e aplatform for experimental research into evolutionanpalttyms for solving the
constraint satisfaction problem including a uniform impkntation of a com-
prehensive inventory of evolutionary algorithms; and

¢ a well-founded conclusion on a superior performing evoheiry algorithm for
solving the randomly generated binary constraint satisfag@roblem.

168

10.3 Future Research

Although we hope that the contributions made in this théstsause of the solid ex-
perimental basis on which they are founded, will be usefurésearchers, they also
pose a number of new avenues for future research.

Memetic overkill is probably not only a problem for evolutary algorithms solving
the constraint satisfaction problem. It has to be expedtatitoccurs for evolutionary
algorithms solving other problems as well. Further redearo the extent of memetic
overkill happening in evolutionary algorithms for othepptems might therefore pro-
vide interesting results.

No research was done on the performance of the evolutiohgoyithms when the size
of the CSP instances was increased. These scale-up exp&siwié provide valuable
insight in how, for example, thEAWEA r2can handle an increase in problem size.
Classical algorithms encounter a performance barrier thighncrease of combinato-
rial complexity. It is possible that evolutionary algornitlk are less affected by this and
that they will outperform classical algorithms in scaleaxperiments.

And finally, the constraint satisfaction problems solvedtsy algorithms were ‘artifi-
cial’, in that they were all generated by a random CSP geoerigbr scientific research
this works best, but in real-life, problems often contaimustures that make them dif-
ferent from randomly generated ones. AlthoughS#VEA rzhas good performance
on randomly generated CSP instances, comparing its peafaxenon real-life prob-
lems might provide insight in how the algorithm can handksthkinds of problems.

169

170

Bibliography

[1] E. Aarts and J. KorstSimulated Annealing and Boltzmann Machines: A Stochas-
tic Approach to Combinatorial Optimization and Neural Cartipg. Wiley, July
1990.

[2] D. Achlioptas, L.M. Kirousis, E. Kranakis, D. Krizanc, /4. Molloy, and Y.C.
Stamatiou. Random constraint satisfaction a more accpietae. In G. Smolka,
editor, Principles and Practice of Constraint Programming — CP®éges 107—
120. Springer Verlag, 1997.

[3] D. Applegate, W. Cook, and A. Rohe. Chained lin-kernighfar large traveling
salesman problems. Technical Report 99887, Forschurnigsiasiur Diskrete
Mathematik, University of Bonn, Germany, 1999.

[4] W. Atmar. The inevitability of evolutionary inventiorlJnpublished Manuscript,
1979.

[5] W. Atmar. Notes on the simulation of evolutionEEE Transactions on Neural
Networks 5(1):130-147, 1994.

[6] F. Bacchus and P. van Beek. On the conversion betweerbimamy and binary
constraint satisfaction problems. Rroceedings of the 15th International Con-
ference on Atrtificial Intelligence — ICAI9§ages 311-318, Madison, Wisconsin,
July 1998. Morgan Kaufmann.

[7] T. Back. Evolutionary Algorithms in Theory and PracticéDxford University
Press, New York, NY, 1996.

[8] T.Back, D. Fogel, and Z. Michalewicz, editotdandbook of Evolutionary Com-
putation New York, 1997. Institute of Physics Publishing Ltd, Boisind Oxford
University Press.

[9] Th. Back, editor. Proceedings of the 7th International Conference on Genetic
Algorithms San Francisco, CA, 1997. Morgan Kaufmann Publishers, Inc.

[10] E.B. Baum. Iterated descent: A better algorithm forllgearch in combinatorial
optimisation problems. Manuscript, Caltech, Pasadeng,1086.

171

[11] E.B. Baum. Toward practical “neural” computation famnsbinatorial optimisa-
tion problems. In J. Denker, editddeural Networks for ComputingdIP Con-
ference Proceedings, pages 53—64, 1986.

[12] J. Baxter. Local optima avoidance in depot locatidlournal of the Operation
Research Society2:815-819, 1981.

[13] L. Booker. Improving search in genetic algorithms. Genetic Algorithms and
Simulated Annealingpages 61-73. Morgan Kaufmann Publisher, Inc., 1987.

[14] J. Bowen and G. Dozier. Solving constraint satisfatfwoblems using a ge-
netic/systematic search hybrid that realizes when to duoit..J. Eshelman, ed-
itor, Proceedings of the 6th International Conference on Genglgorithms —
ICGA95 pages 122-129. Morgan Kaufmann Publishers, Inc., 1995.

[15] P. Cheeseman, B. Kenefsky, and W.M. Taylor. Where théyreard problems
are. InProceedings on the International Joint Conference on Aiéfilntelli-
gence — IJCAI9]1pages 331-337, 1991.

[16] S.A. Cook. The complexity of theorem-proving procesiirinThe complexity of
theorem-proving procedurgpages 151-158, Shaker Heights, Ohio, 1971.

[17] B.G.W. Craenen and A.E. Eiben. Stepwise adaptationeiflats with refinement
and decay on constraint satisfaction problems. In L. Speet@soodman, A. Wu,
W.B. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pd#esvl. Garzon,
and E. Burke, editorgroceedings of the Genetic and Evolutionary Computation
Conference — GECCO200pages 291-298, San Francisco, CA, 2001. Morgan
Kaufmann, Inc.

[18] B.G.W. Craenen, A.E. Eiben, and E. Marchiori. Solvingnstraint satisfac-
tion problems with heuristic-based evolutionary algarith InProceedings of
the Congress on Evolutionary Computation 2000 — CEC2080es 1571-1577.
IEEE Computer Society Press, July 2000.

[19] B.G.W. Craenen, A.E. Eiben, E. Marchiori, and A. Stesglh Combining lo-
cal search and fitness function adaptation in a geneticittigofor solving bi-
nary constraint satisfaction problems. In D. Whitley, D. @#rg, E. Carit-Paz,
L. Spector, I. Parmee, and H.-G. Beyer, editétmceedings of the Genetic and
Evolutionary Computation Conference — GECCO20Q8¥ge 381. Morgan Kauf-
mann Publishers, Inc., 2000.

[20] J.M. Crawford and L.D. Anton. Experimental results & trossover point in
satisfiability problems. In R. Fikes and W. Lehnert, edité®*®ceedings of the
11th National Conference on Atrtificial Intelligencpages 21-27, Menlo Park,
California, 1993. AAAI Press.

[21] C. Darwin. The Origin of Species by Means of Natural Selection or theé&tre
vation of Favoured Races in the Struggle for Lif@hn Murray, London, 1859.

172

[22] R. Dechter. On the expressiveness of networks withdrdeariables. In T. Di-
etterich and W. Swartout, editorBroceedings of the 8th National Conference
on Artificial Intelligence pages 556562, Hynes Convention Centre, 1990. MIT
Press.

[23] R. Dechter and J. Pearl. Tree clustering for constraétivorks.Artificial Intelli-
gence 38(3):353-366, 1989.

[24] G. Dozier, J. Bowen, and D. Bahler. Solving small andéaconstraint satisfac-
tion problems using a heuristic-based micro-genetic &@lyor In ICEC94 [50],
pages 306—-311.

[25] G. Dozier, J. Bowen, and D. Bahler. Solving randomly gyated constraint sat-
isfaction problems using a micro-evolutionary hybrid teablves a population
of hill-climbers. InProceedings of the 2nd IEEE Conference on Evolutionary
Computation — ICEC95ages 614—619. IEEE Computer Society Press, 1995.

[26] G. Dozier, J. Bowen, and A. Homaifar. Solving consttaatisfaction problems
using hybrid evolutionary searchTransactions on Evolutionary Computatjon
2(1):23-33, 1998.

[27] A.E. Eiben. Evolutionary algorithms and constraintisfaction: Definition, sur-
vey, methodology, and research directions. In L. KalleNBudts, and A. Rogers,
editors, Theoretical Aspects of Evolutionary Computitatural Computing Se-
ries, pages 13-58. Springer, 2001.

[28] A.E. Eiben, P-E. Rag, and Zs. Ruttkay. Heuristic genetic algorithms for con-
strained problems, part i: Principles. Technical RepofBE, Vrije Universiteit
Amsterdam, 1993.

[29] A.E. Eiben, P-E. Rag, and Zs. Ruttkay. Solving constraint satisfaction pnolsle
using genetic algorithms. In ICEC94 [50], pages 542-547.

[30] A.E. Eiben, P.-E. Ragd, and Zs. Ruttkay. Constrained problems. In L. Chambers,
editor, Practical Handbook of Genetic Algorithmpages 307—-365. CRC Press,
1995.

[31] A.E. Eiben and Zs. Ruttkay. Self-adaptivity for coétt satisfaction: Learning
penalty functions. In ICEC96 [51], pages 258—261.

[32] A.E. Eiben and J.E. Smithlntroduction to Evolutionary ComputingSpringer,
2003. ISBN 3-540-40184-9.

[33] A.E. Eiben and J.K. van der Hauw. Adaptive penalitiesdeolutionary graph-
coloring. In J.-K. Hao, E. Lutton, E. Ronald, M. Schoenawerd D. Snyers,
editors,Artificial Evolution '97 — AE97 volume 1363 ofecture Notes on Com-
puter Sciencepages 95-106. Springer-Verlag, Berlin, 1998.

[34] A.E. Eiben, J.K. van der Hauw, and J.I. van Hemert. Gragdbring with adaptive
evolutionary algorithmsJournal of Heuristics4(1):25-46, 1998.

173

[35] A.E. Eiben and J.I. van Hemert. SAW-ing EAs: Adapting fitieess function for
solving constrained problems. In D. Corne, M. Dorigo, andkver, editors,
New Ideas in Optimizatiqmpages 389—402. McGraw-Hill, 1999.

[36] T.C. Fogarty. Varying the probability of mutation ingtgenetic algorithm. In
Schaffer [78], pages 104-109.

[37] D.B. Fogel.Evolutionary ComputationlEEE Computer Society Press, 1995.

[38] D.B. Fogel. Evolutionary Computation: The Fossil Recorwviley-IEEE Press,
1st edition, 1998.

[39] L.J. Fogel, A.J. Owens, and M.J. Waldtificial Intelligence through Simulated
Evolution John Wiley & Sons, 1966.

[40] A.Fukunaga. Restart scheduling for genetic algorghin A.E. Eiben, Th. Bck,
M. Schoenauer, and H.-P. Schwefel, editétmceedings of the 5th Conference
on Parallel Problem Solving from Nature — PPSN3®lume 1498 oflLecture
Notes in Computer Sciengeages 357—366. Springer-Verlag, Berlin, 1998.

[41] S. Golomb and L. Baumert. Backtrack programmingC.M, 12(4):516-524,
1965.

[42] J. Gottlieb, E. Marchiori, and C. Rossi. Evolutionatg@ithms for the satisfia-
bility problem. Journal of Evolutionary Computatioi0(1):35-50, 2002.

[43] J.J. Grefenstette. Optimisation of control paranteter genetic algorithmsEEE
Transactions on Systems, Man and Cybernefi6§1):122-128, 1986.

[44] H. Handa, N. Baba, O. Katai, T. Sawaragi, and T. HoriudBenetic algorithm
involving coevolution mechanism to search for effectiveetéec information. In
ICEC97 [52], pages 709-714.

[45] H. Handa, C.O. Katai, N. Baba, and T. Sawaragi. Solviogstraint satisfaction
problems by using coevolutionary genetic algorithmsPioceedings of the 5th
IEEE Conference on Evolutionary Computation — ICECP&ges 21-26. |IEEE
Computer Society Press, 1998.

[46] R. Haralick and G. Elliot. Increasing tree search ey for constraint-
satisfaction problemgArtificial Intelligence 14(3):263—-313, 1980.

[47] A. Hoffman. Arguments on Evolution: A Paleontologist’'s Perspecti@xford
University Press, New York, 1988.

[48] J.H. Holland.Adaptation in Natural and Artificial System&niversity of Michi-
gan Press, Ann Harbor, 1975.

[49] J. Huxley. The evolutionary process. In J. Huxley, AHardey, and E.B. Ford,
editors,Evolution as a Procespages 9—33. Collier Books, New York, 1963.

174

[50] Proceedings of the 1st IEEE Conference on Evolutionary Goatipn IEEE
Computer Society Press, 1994.

[51] Proceedings of the 3rd IEEE Conference on Evolutionary Qdatpn —
ICEC96 IEEE Computer Society Press, 1996.

[52] Proceedings of the 4th Conference on Evolutionary Comjuutat ICEC97
IEEE Society Press, 1997.

[53] D.S. Johnson. Local optimisation and the travelingsalan problem. I#®ro-
ceedings of the 17th Colloquium on Automata, Languages,Raagramming
volume 443 oflLNCS pages 446-461, Berlin, 1990. Springer Verlag.

[54] D.S. Johnson and L.A. McGeoch. The travelling salesprablem: A case study
in local optimization. In E.H.L. Aarst and J.K. Lenstra, teds, Local Search in
Combinatorial Optimizationpages 215-310. John Wiley & Sons, Chichester,
England, 1997.

[55] G. Kondrak and P. van Beek. A theoretical evaluationedésted backtracking
algorithms.Artificial Intelligence 89(1-2):365—-387, 1989.

[56] E. Maclintyre, P. Prosser, B.M. Smith, and T. Walsh. Ranaonstraint satisfac-
tion: theory meets practice. In M. Maher and J.-F. PugetpegliPrinciples and
Practice of Constraint Programming — CP9Bages 325-339. Springer Verlag,
1998.

[57] E. Marchiori. Combining constraint processing andejenalgorithms for con-
straint satisfaction problems. InéBk [9], pages 330-337.

[58] E.Marchiori. Genetic, iterated and multistart locaasch for the maximum clique
problem. InApplications of Evolutionary Computingolume 2279 ofLNCS
pages 112-121. Springer, 2002.

[59] E. Marchiori and A. Steenbeek. A genetic local seardodthm for random
binary constraint satisfaction problem. Rroceedings of the 14th Annual Sym-
posium on Applied Computingages 463—-469, 2000.

[60] O. Martin and S.W. Otto. Combining simulated annealimigh local search
heuristics.Annals of Operations Resear®B:57—-75, 1996.

[61] O.Martin, S.W. Otto, and E.W. Felten. Large-step mar&iains for the traveling
salesman problenComplex System5(3):299-251, 1991.

[62] E. Mayr. Toward a New Philosophy of Biology: Observation of an Evohist
Belknap Press, Cambridge, 1988.

[63] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Tejland E. Teller. Equation
of state calculations by fast computing machinésurnal of Chemical Physics
21(6):1087-1092, 1953.

175

[64] Z. Michalewicz and M. Schoenauer. Evolutionary altfunis for constrained
parameter optimization problemdournal of Evolutionary Computatiod(1):1—
32, 1996.

[65] D. Mitchell, B. Selman, and H. Levesque. Hard and easyridutions of SAT
problems. InProceedings of the 10th International Conference on Aiifin-
telligence — ICAI-92pages 459-465, San Jose, CA, 1992.

[66] P. Morris. The breakout method for escaping from localima. InProceedings
of the 11th International Conference on Atrtificial Inteligce — ICAI-93 pages
40-45. AAAI Press/MIT Press, 1993.

[67] H. Muhlenbein. How genetic algorithms really work: |. mutatimd hillclimb-
ing. In R. Manner and B. Manderick, editof8roceedings of the 2nd Conference
on Parallel Problem Solving from Nature — PPSNPages 15-25. Elsevier Sci-
ence Press, 1992.

[68] B. Paechter, T. Fogarty, E. Burke, A. Cumming, and B. IRag. Stone soup. In
Edmund K. Burke and Wilhelm Erben, editoPractice and Theory of Automated
Timetabling Il — Third International Conference, PATATOBOvolume 2079 of
Lecture Notes in Computer Sciengages 103-106, Konstanz, Germany, 2001.
Springer-Verlag.

[69] E.M. Palmer. Graphical Evolution. An introduction to the theory of ramdo
graphs. Wiley-Interscience Series in Discrete Mathematics. Joliley\& Sons,
Ltd., Chichester, 1985.

[70] J. Paredis. Coevolutionary constraint satisfactiony. Davidor, H.-P. Schwefel,
and R. Manner, editorsProceedings of the 3rd Conference on Parallel Problem
Solving from Nature — PPSN9¥%olume 886 ofLecture Notes in Computer Sci-
ence pages 46-55. Springer Verlag, 1994.

[71] J. Paredis. Co-evolutionary computatidtificial Life, 2(4):355-375, 1995.

[72] J. Paredis. Coevolving cellular automata: Be awardeféd queen. In&ck [9],
pages 393-400.

[73] P. Prosser. Hybrid algorithms for the constraint $atison problem.Computa-
tional Intelligence 9(3):268-299, 1993.

[74] M.-C. Riff Rojas. Using the knowledge of the constramgtwork to design an
evolutionary algorithm that solves csp. In ICEC96 [51], pag79-284.

[75] M.-C. Riff Rojas. Evolutionary search guided by the staint network to solve
csp. In ICEC97 [52], pages 337-348.

[76] M.-C. Riff Rojas. A network-based adaptive evolutiopalgorithm for constraint
satisfaction problemsMeta-heuristics: Advances and Trends in Local Search
Paradigms for Optimizatiorpages 325-339, 1998.

176

[77] F. Rossi, C. Petrie, and V. Dhar. On the equivalence ofstrain satisfaction
problems. In L.C. Aiello, editoProceedings of the 9th European Conference on
Artificial Intelligence (ECAI'90) pages 550-556, Stockholm, 1990. Pitman.

[78] J.D. Schaffer, editoProceedings of the 3rd International Conference on Genetic
Algorithms San Mateo, California, 1989. Morgan Kaufmann Publistrer, |

[79] J.D. Schaffer, R.A. Caruana, L.J. Eshelman, and R. Dasstudy of control
parameters affecting online performance of genetic algms for function opti-
mization. In Schaffer [78], pages 51-61.

[80] H.-P. SchwefelEvolution and Optimum Seekingohn Wiley & Sons, New York,
NY, 1995.

[81] B.M. Smith. Phase transition and the mushy region inst@int satisfaction
problems. In A.G. Cohn, editoRroceedings of the 11th European Conference
on Artificial Intelligence pages 100-104. Wiley, 1994.

[82] B.M. Smith and M.E. Dyer. Locating the phase transitinrbinary constraint
satisfaction problemgArtificial Intelligence 81(12):155-181, 1996.

[83] E. Tsang.Foundations of Constraint SatisfactioAcademic Press, 1993.

[84] J.K. van der Hauw. Evaluating and improving steadyestolutionary algo-
rithms on constraint satisfaction problems. Master'sithdseiden University,
1996.

[85] P. van Hentenryck, V. Saraswat, and Y. Deville. Constrarocessing in cc(fd).
In A. Podelski, editorConstraint Programming: Basics and Trend3pringer
Verlag, Berlin, 1995.

[86] L. van Valen. A new evolutionary lawEvolutionary Theory(1):1-30, 1973.

[87] D. Whitley. The genitor algorithm and selection pregsuiVhy rank-based allo-
cation of reproductive trials is best. In Schaffer [78], egd16-123.

[88] D.E. Wooldridge. The Mechanical Man: The Physical Basis of Intelligent Life
McGraw-Hill, New York, 1968.

177

Index

N-queens problem, 2
constraints, 2
construction of constraint, 13
formal definition, 12
objective, 2
solution, 2

«-3 Parent Selection Operator, 87

k-compound label, 10

o-values, 139

p-value, 71

t-test, 71

AES 58

ArcEA 86

Arc Evolutionary Algorithm86
characteristics, 89
experimental results, 90
parameters, 89

CBA 26

MCE, 60

CoeEA 98

Co-evolutionary Algorithm98
characteristics, 98
experimental results, 100
parameters, 99

ESPEA 103

characteristics, 77
experimental results, 77
parameters, 77

HPEA 109

Host-Parasite Evolutionary Algorithnd 09
characteristics, 110
experimental results, 112
parameters, 112

IEA, 52

Intuitive Evolutionary Algorithm52

LSEA 115

Local Search Evolutionary AlgorithmM 15
characteristics, 117
experimental results, 118
parameters, 117

MBF, 59

MIDEA, 121

Micro-genetic Iterative Descent Evolution-

ary Algorithm 121

characteristics, 123
experimental results, 124
parameters, 123

RSA 47

Random Search Algorithm7

SAWEA127

Eliminate-Split-Propagate Evolutionary Afstepwise Adaptation of Weights Evolution-

gorithm, 103
characteristics, 104
experimental results, 105
parameters, 104
repair operator, 104
repair rule, 104

FCCDBA 27
HCAWR 48

Hill Climber with Restart Algorithm48

HeuristicEA 75
Heuristic Evolutionary Algorithm75

ary Algorithm 127
characteristics, 128
experimental results, 130
parameters, 128

SR 58
UIC, 59

accumulated awards, 121
adjusted average tightness, 39
adjusted density, 39

adjusted number of solutions, 38

178

algorithm computational, 17
brute-force, 47 computational effort, 17
classical, 25 NP-complete, 19
complete, 25, 32, 48 polynomial, 17
iterated local-search, 45 polynomial time, 17
neighbourhood search, 49 quickly reducible, 19

non-deterministic, 31 space, 17

sound, 25, 32 complexity measures, 9
allele, 52 complexity parameters, 31
Arc Crossover Operator, 86 compound label, 10, 31
Arc Mutation Operator, 87 arity of, 10
Arc Objective Function, 86 projection of, 10

arity, 12 variable set of, 10
Asexual Heuristic Operator, 76 confidence interval, 38
average number of evaluations to solutiogonflict, 11

58 conflict check, 30
average tightness, 32 computational effort, 30
conflict checks, 57
conflict checks to solution, 59
consistency, 28
consistency checks, 26

backjumping, 28
conflict-directed, 28
backtracking, 26

depth-first, 26 constrained optimisation problem
BCSP, 14 optimisation function, 1
behaviour, 58 constrained optimising problem, 1
bias-parameter, 55 constrained problem
biased ranking selection, 55 general, 1
binary constraint, 13 two classes, 1
binary constraint satisfaction problem, 2¢onstraint, 10
14 arity of, 10
binary representation, 53 non-restrictive, 11
binary vector, 53 restrictive, 11
satisfied, 11
candidate solution, 45, 51, 52 variable relevant to, 11
cbafull, 26 violated, 11
central limit theorem, 38 Constraint Dynamic Adaptive Crossover
chained local optimisation, 45 Operator, 87
children, 51 constraint processing, 103
chromosome, 52 eliminate, 103
classical algorithm elimination phase, 103

efficiency, 30 split, 103
co-evolutionary approach, 146 split phase, 103
comparison, 57, 133 constraint satisfaction problem, 1

performance, 133
competition, 50
complexity, 17

algorithm, 17

k-compound label, 10

arity, 12

arity of a compound label, 10
arity of a constraint, 10

average tightness, 19

binary, 2, 14

binary constraint, 13

complexity measures, 9, 20

compound label, 10, 31

conflict, 11

constraint, 10

density, 19

discrete, 3

domain of a variable, 9

example, 12

formal definition, 9, 11

generator, 3

generators, 9, 20, 31
complexity parameters, 31
model E, 22
model F’, 22, 32
models, 22
non-deterministic, 31
parameter vector, 32

hardness, 32

instance, 31

label, 9

methods for solving, 25

mushy region, 33

non-restrictive constraint, 11

NP-complete, 19, 25

parameter space, 33
considerations, 34
regions, 33

parameter vector, 20

phase-transition, 33

projection of a compound label, 10

randomly generated, 3

representation, 9, 15
conflict graph, 17
conflict matrix, 15
constraint graph, 16
constraint matrix, 15
graph, 16
matrix, 15

restrictive constraint, 11

satisfied constraint, 11

solution, 12

solvers, 25

test-set, 5, 21, 31, 35

formula correction, 37
hardness, 36
instance selection, 37
mushy region, 36
parameter adjustment, 37
parameter setup, 35
parameters, 32
representative, 32
sample sizing, 37
tightness, 19
transition line, 33
transition point, 33
translation, 14
dual graph, 14
hidden variable, 14
uniform domain size, 3
variable relevant to constraint, 11
variable set of a compound label, 10
violated constraint, 11
convergence, 49
COPR, 1
corrected number of solutions, 38
correlation coefficient, 42
CSP, 1,12

Darwinian evolution, 4
de-evolutionarising, 149

decision problem, 17

dependency propagation, 103

discrete constraint satisfaction problem, 3
domain of a variable, 9

domain set, 27, 115

effectiveness, 58
effectivity, 135
effectivity-efficiency plane, 135
efficiency, 58, 135
elitist, 56
encounter, 98
environmental pressure, 51
error evaluation, 86
evolution, 50
evolution paradigm, 50
evolutionary algorithm, 4, 45, 51, 52
canonical, 52
fitness, 4

180

individual, 4

objective function, 4

population, 4

selection, 4

variation operators, 4
evolutionary algorithms

applicability, 167

Darwinian evolution, 4

ease of design, 167
evolutionary computation, 2, 4, 51

dialects, 51

robust optimiser, 2
evolutionary process, 51
evolutionary programming, 4, 51
evolutionary strategies, 4, 51

families, 122

fccdbafull, 27

fitness, 4, 51, 53

fitness value, 51-53

five houses puzzle, 103

flawed variable, 21

FOP, 1

formula correction, 37

forward checking, 27

function optimisation problem, 1

gene, 52
generation, 51, 52
generators, 31

complexity parameters, 31

model &, 22

model F', 22

modelF', 32

models, 22

parameter vector, 32
genetic algorithm, 53
genetic algorithms, 4, 51
genetic operators, 52, 56
genetic programming, 4, 51

hardness, 32, 36

heuristic, 45, 46, 75
embedded, 45
value, 75
variable, 75

hidden work, 59

individual, 4, 51, 52

instance, 31

instance selection, 37

iterated descent, 45

iterated Lin-Kernighan, 45

iterated local-search, 45

Iterated Local-Search Algorithm, 45

label, 9
large-step Markov chains, 45
linear congruential generators, 31
linear ranking selection, 54
local minimum, 47
local optimum, 49, 65
LS crossover operator, 115
LS mutation operator, 115
LS objective function, 115
LS repair operator, 115
arc-consistency, 116
delete, 116
extend, 116
extract, 116
improve, 116
initialisation, 115
repair, 116

mean best fitness, 59

mean champion error, 60

memetic overkill, 154, 165
meta-heuristic, 45

Monte Carlo method, 47

move operator, 45

Multi-Parent Heuristic Operator, 76
multiple-point heuristic operator, 121
mushy region, 33, 36

mutation, 50, 51

natural selection, 51
neighbourhood search, 46
neo-Darwinian paradigm, 50
non-deterministic, 31

generators, 31
non-deterministic generators, 31
NP-complete, 25

181

objective function, 4, 46, 51, 53 selection pressure, 46

objective value, 53 shrinking domains, 27
offspring, 51 simulated annealing, 46
optimisation function, 1 single-point heuristic operator, 121
optimisation problem, 17 solution, 12
ordered set of values, 53 statistical analysis, 139
steady state, 56
parameter adjustment, 37 stone soup, 156
parents, 51 stop-condition, 52
performance measures, 57 success rate, 58
performance properties, 58 accuracy, 58
phase-transition, 33 super-position, 109, 110
population, 4, 51, 53 survival of the fittest, 51
offspring, 51 survivor selection
parent, 51 replace worst
premature convergence, 65 elitist, 56
probability method, 21 survivor selection operator, 56

pseudo-random number generator, 31 swap mutation operator, 128

pseudo-random number sequence, 31
test-set, 5, 21, 31, 35, 165

random numbers, 31 parameter setup, 35
pseudo, 31 parameters, 32
sequence, 31 representative, 32
truly, 31 transcription, 110

random-seed, 31 transition line, 33

ranking mechanism, 139 Turing Machine, 19

ranking multiplier, 55 non-deterministic, 19

ratio method, 21
recombination, 51
recurrence formula, 31
regions, 33

relevant, 11

representation, 9, 15, 51, 53
reproduction, 50

restart interval, 65

uniform domain size, 3
uniform method, 21

uniform random crossover, 56
uniform random mutation, 56
unique individuals checked, 59
update interval, 127

restart strategy, 49 z:lrlijaet;|2252
naive, 49 conflict set of, 28
o domain of, 9
sample sizing, 37 variation operators, 4, 51, 52
satisfied, 11 i
violated, 11

SAW objective function, 127
SAW weights, 128
scanning mechanism, 76
search space, 45

selection, 4, 50, 51
selection operator, 45, 53

182

