
VRIJE UNIVERSITEIT

Solving
Constraint Satisfaction Problems

with
Evolutionary Algorithms

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus

prof.dr. T. Sminia,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de faculteit der Exacte Wetenschappen

op donderdag 24 november 2005 om 13.45 uur
in de aula van de universiteit,

De Boelelaan 1105

door

Bartolomeus Gerardus Wilhelmus Craenen

geboren te Den Helder

promotor: prof.dr. A.E. Eiben

To family, friends, and books . . .

Samenvatting

Het oplossen van Constraint Satisfaction problemen door evolutionaire algorit-
men.

Constraint Satisfactionproblemen worden gedefiniëerd door variabelen, domeinwaar-
den die aan deze variabelen toegekend kunnen worden en beperkingen (constraints)
die bepalen welke domeinwaarden aan welke variabelen toegekend mogen worden.
Een oplossing voor eenConstraint Satisfactionprobleem bestaat uit de toekenning van
domeinwaarden aan alle variabelen op zodanige wijze dat geen van de beperkingen
geschonden wordt.

Evolutionaire algoritmen zijn modellen die, met behulp vande rekenkracht van een
computer, problemen oplossen aan de hand van de Darwinistische evolutieleer. Evolu-
tionaire algoritmen behoren tot de klasse van non-deterministische algoritmen en on-
twikkelen een oplossing van een probleem uit een willekeurig bepaalde initïele popu-
latie van partïele oplossingen, gebruikmakende van natuurlijke selectieen kansbepaal-
de reproductie en mutatie. Het is onze stelling dat evolutionaire algoritmen voor alle
probleemtypen een alternatieve oplossingsmethode zijn. Voor een aantal probleem-
typen is dit al aangetoond. In dit proefschrift wordt getoetst of dat ook voorConstraint
Satisfactionproblemen het geval is. We doen dit door een evolutionair algoritme te on-
twerpen dat in effectiviteit en efficiëntie superieur is aan alle tot dusver gepubliceerde
evolutionaire algoritmen. De effectiviteit is gedefiniëerd als het oplossend vermogen
van het algoritme terwijl de efficiëntie de benodigde hoeveelheid werk tot het vin-
den van een oplossing tot uitdrukking brengt. Door de effectiviteit en de efficïentie te
vergelijken met alternatieve oplossingsmethoden kan onzestelling gestaafd worden.

Uit onze bevindingen blijkt dat qua effectiviteit ons evolutionaire algoritme vergelijk-
baar is met alternatieve oplossingsmethoden, maar het qua effici ëntie minder goede re-
sultaten laat zien. Gezien deze resultaten luidt de eindconclusie van het proefschrift dan
ook dat wanneer alleen de effectiviteit van evolutionaire algoritmen van belang is, evo-
lutionaire algoritmen een vergelijkbare alternatieve oplossingsmethode kunnen zijn.
Als echter ook de efficiëntie van evolutionaire algoritmen in ogenschouw genomen
wordt, is dit in mindere mate het geval. Behalve pure prestatie kunnen echter ook an-
dere eigenschappen bij de beoordeling een rol spelen. Zo zijn evolutionaire algoritmen
eenvoudig te ontwerpen en kunnen ze met weinig aanpassingenook op andere prob-
leemtypen toegepast worden. Daar staat tegenover dat evolutionaire algoritmen, als
onderdeel van de klasse van non-deterministische algoritmen, niet compleet zijn en als

1

zodanig het vinden van een oplossing niet kunnen garanderen.

In dit proefschrift wordt een aantal bijdragen gepresenteerd die de directe toepassing
binnen dit onderzoek ontstijgen en de wetenschap in het algemeen en het experimenteel
onderzoek naar evolutionaire algoritmen in het bijzonder,ten goede komen. Dit zijn:

• een methodologie voor het construeren van een test-set vanConstraint Satisfac-
tion problemen, specifiek voor het experimenteel onderling vergelijken van de
prestaties van non-deterministische algoritmen in het algemeen en evolutionaire
algoritmen in het bijzonder;

• een overzicht van acht eerder gepubliceerde algoritmen voor het oplossen van
Constraint Satisfactionproblemen, inclusief volledige beschrijving van de ge-
bruikte technieken alsmede experimentele resulaten voor het bepalen van hun
relatieve prestaties;

• een methodologie voor het vergelijken en rangordenen van deprestaties van evo-
lutionaire algoritmen, gebruikmakende van eerder gedefiniëerde meetmethoden,
relatieve vergelijkingen in het effectiviteit-efficiëntie vlak en statistische analyse;

• de notie van hetmemetic overkill-effect, en een methodologie voor het vast-
stellen vanmemetic overkillin evolutionary algoritmen door de-evolutie van het
algoritme;

• een software platform voor experimenteel onderzoek naar evolutionaire algorit-
men waarin de algoritmen uit het overzicht op een uniforme manier zijn gëımple-
menteerd.

• de vaststelling van het best presterende evolutionare algoritme voor het oplossen
vanConstraint Satisfactionproblemen.

2

Table of Contents

Samenvatting 1

1 Introduction 1

1.1 Constraint Satisfaction Problems 2

1.2 Evolutionary Algorithms . 4

1.3 Motivation and Main Goal . 5

1.4 Technical Objectives of the Thesis 5

1.5 Overview of the Thesis . 6

2 The Theory of CSPs 9

2.1 A Definition of the CSP . 9

2.2 Binary CSPs . 13

2.3 Representing CSPs . 15

2.3.1 Matrix Representation . 15

2.3.2 Graph Representations . 16

2.4 CSP Complexity . 17

2.5 Generating Random Binary Constraint Satisfaction Problems 20

3 Classical Algorithms 25

3.1 TheChronological Backtracking Algorithm. 26

3.2 TheForward Checking with Conflict-Directed Backjumping Algorithm 27

3.3 Performance Measures for Classical Algorithms 30

4 Generating the Test-set 31

4.1 Test-set Parameters . 32

4.2 Constructing a Test-set in 4 steps 36

3

4.2.1 Step 1: Parameter Adjustment 38

4.2.2 Step 2: Sample Sizing . 40

4.2.3 Step 3: Formula Correction 41

4.2.4 Step 4: CSP Instance Selection 43

5 ILS and EAs 45

5.1 theRSAand theHCAWR . 47

5.1.1 TheRandom Search Algorithm. 47

5.1.2 TheHill Climber with Restart Algorithm 48

5.2 Evolutionary Algorithms . 50

5.2.1 TheIntuitive Evolutionary Algorithm 52

6 Performance Measures and Experimentation 57

6.1 Performance Measures . 57

6.1.1 Success Rate . 58

6.1.2 Average Number of Evaluations to Solution58

6.1.3 Conflict Checks . 59

6.1.4 Unique Individuals Checked 59

6.1.5 Mean Best Fitness and Mean Champion Error 59

6.2 Experimentation . 60

6.2.1 Results of theRandom Search Algorithm. 60

6.2.2 Results of theHill Climber with Restart Algorithm 65

6.2.3 Results of theIntuitive Evolutionary Algorithm. 68

6.3 Comparison . 71

7 EAs for Solving the CSP 75

7.1 Heuristic Evolutionary Algorithm 75

7.1.1 HeuristicEACharacteristics and Parameter Setup 77

7.1.2 HeuristicEAExperimental Results 77

7.2 Arc Evolutionary Algorithm. 86

7.2.1 ArcEACharacteristics and Parameter Setup 88

7.2.2 ArcEAExperimental Results 89

7.3 Co-evolutionary Algorithm. 98

7.3.1 CoeEACharacteristics and Parameter Setup 98

7.3.2 CoeEAExperimental Results 99

4

7.4 Eliminate-Split-Propagate Evolutionary Algorithm. 103

7.4.1 ESPEACharacteristics and Parameter Setup 104

7.4.2 ESPEAExperimental Results 105

7.5 Host-Parasite Evolutionary Algorithm. 109

7.5.1 HPEACharacteristics and Parameter Setup 110

7.5.2 HPEAExperimental Results 112

7.6 Local Search Evolutionary Algorithm. 115

7.6.1 LSEACharacteristics and Parameter Setup 117

7.6.2 LSEAExperimental Results 118

7.7 Micro-genetic Iterative Descent Evolutionary Algorithm. 121

7.7.1 MIDEA Characteristics and Parameter Setup 122

7.7.2 MIDEA Experimental Results 123

7.8 Stepwise Adaptation of Weights Evolutionary Algorithm. 127

7.8.1 SAWEACharacteristics and Parameter Setup 128

7.8.2 SAWEAExperimental Results 128

8 Comparison of the EAs in the Inventory 133

8.1 Comparison on Effectivity and Efficiency Measures 133

8.2 Comparison on the Effectivity-Efficiency Plane 135

8.3 Ranking of the EAs in the Inventory 139

8.4 Preliminary Conclusion . 146

9 De-Evolutionarising EAs, Memetic Overkill, and the Superior EA 149

9.1 De-evolutionarising EAs . 149

9.2 Memetic Overkill . 154

9.3 Adjustments to make the Superior EA 156

10 Conclusions 165

10.1 Evolutionary and Classical Algorithms 166

10.2 Main Contributions of the Thesis 168

10.3 Future Research . 169

Bibliography 170

Index 178

5

6

List of Figures

1.1 A solution of the8-queens problem. 3

2.1 Construction of thecx4=4,x5
constraint. 13

2.2 The constraint graph of the4-queens problem. 18

2.3 The conflict graph of the4-queens problem. 18

4.1 Transition lines for combinations ofn andm found using Smith’s for-
mula. 34

4.2 Overview of the parameter setup of the test-set withn = 10 andm = 10. 35

4.3 Scatter plot ofx′
e andx, excluding(p1, p2) = (0.1, 0.9). 41

5.1 Biased ranking multiplier plotted againstrandom-values forbias ∈
{1.0(linear), 1.2, 1.5, 1.7, 2}. 55

6.1 UIC of theRandom Search Algorithm. 64

6.2 MBF andMCE of theRandom Search Algorithm. 64

6.3 UIC of theHill Climber with Restart Algorithm. 67

6.4 MBF andMCE of theHill Climber with Restart Algorithm. 67

6.5 UIC of theIntuitive Evolutionary Algorithm. 70

6.6 MBF andMCE of theIntuitive Evolutionary Algorithm. 70

7.1 UIC of theHEA1. 81

7.2 MBF andMCE of theHEA1. 81

7.3 UIC of theHEA2. 83

7.4 MBF andMCE of theHEA2. 83

7.5 UIC of theHEA3. 85

7.6 MBF andMCE of theHEA3. 85

7

7.7 UIC of theArcEA1. 93

7.8 MBF andMCE of theArcEA1. 93

7.9 UIC of theArcEA2. 95

7.10 MBF andMCE of theArcEA2. 95

7.11 UIC of theArcEA3. 97

7.12 MBF andMCE of theArcEA3. 97

7.13 UIC of theCoeEA. 102

7.14 MBF andMCE of theCoeEA. 102

7.15 UIC of theESPEA. 108

7.16 MBF andMCE of theESPEA. 108

7.17 UIC of theHPEA. 114

7.18 MBF andMCE of theHPEA. 114

7.19 UIC of theLSEA. 120

7.20 MBF andMCE of theLSEA. 120

7.21 UIC of theMIDEA. 126

7.22 MBF andMCE of theMIDEA. 126

7.23 UIC of theSAWEA. 132

7.24 MBF andMCE of theSAWEA. 132

8.1 Algorithm distribution on theSR-AESplane. 138

8.2 Algorithm distribution on theSR-CC plane. 138

8

List of Tables

1.1 Problems having an objective function, constraints. orboth. 1

2.1 Constraint matrix of the4-queens problem. 16

2.2 Conflict matrix of constraintcx2,x3
of the4-queens problem. 16

2.3 BCSP generator models. 21

4.1 x′
e calculated using the actual density (p′1) values. 39

4.2 Statistical analysis ofx andx′
e for the samples of1000 CSP instances

in the mushy region. 40

4.3 Statistical analysis ofx andx′′
e for the samples in the mushy region. . 42

4.4 Mean and standard deviation of the sub-samples in the mushy region. 43

5.1 Characteristics of theIntuitive Evolutionary Algorithm. 56

6.1 Parameters of theRSA. 61

6.2 SRof theRandom Search Algorithm. 63

6.3 AESof theRandom Search Algorithm. 63

6.4 CC of theRandom Search Algorithm. 63

6.5 Parameters of theHCAWR. 65

6.6 SRof theHill Climber with Restart Algorithm. 66

6.7 AESof theHill Climber with Restart Algorithm. 66

6.8 CC of theHill Climber with Restart Algorithm. 66

6.9 Parameters of theIEA. 68

6.10 SRof theIntuitive Evolutionary Algorithm. 69

6.11 AESof theIntuitive Evolutionary Algorithm. 69

6.12 CC of theIntuitive Evolutionary Algorithm. 69

6.13 Comparison of theRSA, theHCAWRand theIEA in the mushy region. 72

9

6.14 Two samplet-Tests of theHCAWRand theIEA. 73

7.1 Characteristics of theHEA1. 78

7.2 Parameters of theHEA1. 78

7.3 Characteristics of theHEA2. 78

7.4 Parameters of theHEA2. 78

7.5 Characteristics of theHEA3. 79

7.6 Parameters of theHEA3. 79

7.7 SRof theHEA1. 80

7.8 AESof theHEA1. 80

7.9 CC of theHEA1. 80

7.10 SRof theHEA2. 82

7.11 AESof theHEA2. 82

7.12 CC of theHEA2. 82

7.13 SRof theHEA3. 84

7.14 AESof theHEA3. 84

7.15 CC of theHEA3. 84

7.16 Characteristics of theArcEA1. 88

7.17 Parameters of theArcEA1. 88

7.18 Characteristics of theArcEA2. 89

7.19 Parameters of theArcEA2. 89

7.20 Characteristics of theArcEA3. 90

7.21 Parameters of theArcEA3. 90

7.22 SRof theArcEA1. 92

7.23 AESof theArcEA1. 92

7.24 CC of theArcEA1. 92

7.25 SRof theArcEA2. 94

7.26 AESof theArcEA2. 94

7.27 CC of theArcEA2. 94

7.28 SRof theArcEA3. 96

7.29 AESof theArcEA3. 96

7.30 CC of theArcEA3. 96

7.31 Characteristics of theCoeEA. 99

7.32 Parameters of theCoeEA. 99

10

7.33 SRof theCoeEA. 101

7.34 AESof theCoeEA. 101

7.35 CC of theCoeEA. 101

7.36 Characteristics of theESPEA. 105

7.37 Parameters of theESPEA. 105

7.38 SRof theESPEA. 107

7.39 AESof theESPEA. 107

7.40 CC of theESPEA. 107

7.41 Characteristics of theHPEA. 111

7.42 Parameters of theHPEA. 111

7.43 SRof theHPEA. 113

7.44 AESof theHPEA. 113

7.45 CC of theHPEA. 113

7.46 Characteristics of theLSEA. 117

7.47 Parameters of theLSEA. 117

7.48 SRof theLSEA. 119

7.49 AESof theLSEA. 119

7.50 CC of theLSEA. 119

7.51 Characteristics of theMIDEA. 123

7.52 Parameters of theMIDEA. 123

7.53 SRof theMIDEA. 125

7.54 AESof theMIDEA. 125

7.55 CC of theMIDEA. 125

7.56 Characteristics of theSAWEA. 129

7.57 Parameters of theSAWEA. 129

7.58 SRof theSAWEA. 131

7.59 AESof theSAWEA. 131

7.60 CC of theSAWEA. 131

8.1 Comparison tableSR. 134

8.2 Comparison tableAES. 135

8.3 Comparison tableCC. 136

8.4 o-values for the algorithms on theSR-AESplane. 140

8.5 o-values for the algorithms on theSR-CC plane. 140

11

8.6 Order of the algorithms on theSR-AESplane. 141

8.7 Order of the algorithms on theSR-CC place. 141

8.8 t-test results for the ranking of the EAs in the inventory. 144

9.1 Comparison of theLSEA, LSEA-sel, andLSEA-sel-pop. 151

9.2 Comparison of theHEA3, HEA3-sel, andHEA3-sel-pop. 152

9.3 Comparison of theESPEA, ESPEA-sel, andESPEA-sel-pop. 153

9.4 Comparison of theSAWEA, SAWEA-sel, andSAWEA-sel-pop. 153

9.5 Performance of algorithms that incorporate weak, strong, or no heuris-
tics and evolution. 156

9.6 Comparison of theSAWEA r1, SAWEA r1-sel, andSAWEA r1-sel-pop. 158

9.7 Comparison of theSAWEA r2, SAWEA r2-sel, andSAWEA r2-sel-pop. 159

9.8 Comparison of theSAWEA r3, SAWEA r3-sel, andSAWEA r3-sel-pop. 159

9.9 Comparison of theSAWEA r4, SAWEA r4-sel, andSAWEA r4-sel-pop. 159

9.10 t-test results for the rankingSAWEA r1, SAWEA r2, SAWEA r3, and
SAWEA r4onSR. 160

9.11 t-test results for the rankingSAWEA r1, SAWEA r2, SAWEA r3, and
SAWEA r4onAES. 161

9.12 t-test results for the rankingSAWEA r1, SAWEA r2, SAWEA r3, and
SAWEA r4onCC. 162

9.13 Comparison of theSRof theLSEA, ESPEA, HEA3, and theSAWEA r2. 163

10.1 Comparison of theSAWEA r2, theHCAWR, theCBA, and theFCCDBA. 167

12

List of Algorithms

Algorithm 2.1: The modelF random binary CSP generator 22

Algorithm 3.1: TheChronological Backtracking Algorithm. 26

Algorithm 3.2: TheForward Checking with Conflict-Directed Backjumping
Algorithm . 28

Algorithm 5.1: TheIterated Local Search Algorithm. 45

Algorithm 5.2: TheRandom Search Algorithm. 48

Algorithm 5.3: TheHill Climber with Restart Algorithm 50

Algorithm 5.4: TheIntuitive Evolutionary Algorithm 52

13

14

Chapter 1

Introduction

Every day life is filled with limitations; constraints. A daystill has only24 hours and
it is impossible to be in more than one place at the same time. Coping with constraints
is therefore something that is inherent to coping with life itself. As a result, it should
come as no surprise that solving constrained problems in oneshape or another is also
an inherent part of science. Whatever the origin of the constraints, be it physical, social
or or otherwise, a constrained problem is only solved if all constraints are satisfied.

Constrained problems can be divided into two classes: Constrained Optimising Prob-
lems (COPs) and constraint satisfaction problems (CSPs) [27]. The difference between
these classes is that in the first an optimal solution that satisfies all constraints should
be found, while in the second class any solution will do.

These two classes are closely related. The difference between the two is that, in ad-
dition to constraints, constrained optimisation problemsalso define an optimisation
function, often expressing the cost of getting to a solution. When all solutions of the
constraint satisfaction problem can be found, they can be ordered using this function.
By selecting the optimal solution, the constrained optimising problem is also solved. It
is for this reason that the constraint satisfaction problemis often seen as a sub-class of
the constrained optimising problem.

In Table 1.1, the relationship between problems having an objective function, con-
straints or both is shown ([32]). FOP stands for Function Optimisation Problem. Prob-
lems without an objective function and constraints remain undefined in this context.

Constraints
Yes No

Objective Yes COP FOP
Function No CSP undefined

Table 1.1: Problems having an objective function, constraints. or both.

1

In Evolutionary Computation, constrained problems were studied right from the begin-
ning. This came about by the realisation that evolution has shown itself to be a robust
optimiser in constrained environments. If evolution in thecomplex environment of na-
ture can find an optimal solution, surely an evolutionary algorithm should be able to do
the same in a computational environment of lesser complexity. Unfortunately, the early
results were disappointing. The operators used at that timewere blind to constraints
and overall efficiency was low. This sparked an interest in designing specific genetic
operators, representations and fitness functions that can handle constrained problems.

1.1 Constraint Satisfaction Problems

A commonly used example of a constraint satisfaction problem is theN -queens prob-
lem. TheN -queens problem features a chess-board ofN ×N squares usingN queens
as pieces. As in chess, queens threaten other pieces horizontally, vertically and diago-
nally. The objective of the game is to placeall queens on the board so that they do not
threaten each other. Figure 1.1 shows a solution of the8-queens problem.

The N -queens problem is a constraint satisfaction problem because it restricts the
placement of the queens to non-threatened squares and all solutions of the problem
are equally valid. The constraints defined by theN -queens problem are:

1. No two queens may be placed in the same row;

2. No two queens may be placed in the same column;

3. No two queens may be placed diagonally from each other.

Some definitions of theN -queens problem include a fourth constraint that two queens
may not occupy the same square on the game-board even though this is implied by the
constraints given above.

Many constraint satisfaction problems have been identified, in fact the number of dif-
ferent constraint satisfaction problems that can be studied is infinite. A general mathe-
matical description will be formulated to describe all constraint satisfaction problems.
A study of all possible constraint satisfaction problems isoutside the scope of this
thesis however. We restrict the current investigation as follows:

1. Only binary constraint satisfaction problems are studied in this thesis. A bi-
nary constraint satisfaction problem defines constraints as a relationship between
only two entities. TheN -queens problem is an example of a binary constraint
satisfaction problem. All constraints define a relationship between two queens.
Theoretically, all non-binary constraint satisfaction problems can be transformed
into a binary constraint satisfaction problem [83].

2. Only constraint satisfaction problems with equal domains for each variable are
studied in this thesis. Again, theN -queens problem is a good example of such a

2

0Z0L0Z0Z 8Z0Z0ZQZ0 70Z0Z0Z0L 6ZQZ0Z0Z0 50Z0Z0ZQZ 4L0Z0Z0Z0 30ZQZ0Z0Z 2Z0Z0L0Z0 1

a b c d e f g h

Figure 1.1: A solution of the8-queens problem.

problem. The game-board of theN -queens problem is a square. All queens have
the same number of locations they can be placed at. The locations themselves are
also discrete: there are only a finite number of possibilities. A constraint satis-
faction problem with both restrictions is called a constraint satisfaction problem
with discrete uniform domain sizes. Any constraint satisfaction problem with
non-uniform domain sizes can be transformed to a uniform domain size con-
straint satisfaction problem and a continuous constraint satisfaction problem can
be approximated by a discrete constraint satisfaction problem, theoretically with
infinite accuracy.

3. Onlyrandomly generatedconstraint satisfaction problems will be studied in this
thesis. We only use randomly generated constraint satisfaction problems because
of two reasons:

(a) A thorough investigation on the constraint satisfaction problem necessitates
the use of a large number of problem instances with varying but specific
complexity parameters. The best way to obtain these probleminstances is
to use a constraint satisfaction problem generator.

(b) An accurate investigation on the constraint satisfaction problem necessi-
tates the use of problem instances with the least amount of bias or unknown
properties or irregularities. The best way to obtain these problem instances
is to generate them randomly.

Alternatives to using constraint satisfaction problem instances generated ran-
domly by a problem generator is using problem instances constructed by hand
or problem instances derived from constraint satisfactionproblems occurring in

3

the real world. Both alternatives however are either not capable of providing
enough problem instances or are not able to provide problem instances without
bias, irregularities or unknown properties.

1.2 Evolutionary Algorithms

Evolutionary algorithms are the subject of a research field called Evolutionary Com-
putation. Although the term was invented as recently as 1990, the field has a history
that spans over four decades [38]. In the 1950s and ’60s, manyindependent efforts
were devoted to simulate evolution on a computer but only four avenues of investiga-
tion have survived as main disciplines in the field: evolutionary strategies, evolutionary
programming, genetic algorithms, and genetic programming. The differences between
these four disciplines are characterised by the typical application areas, data represen-
tations, the methods for producing random variance in the population, and the method
employed for selecting parents and offspring.

Evolutionary algorithms incorporate the metaphor of Darwinian evolution. In ”The
Origin of Species by Means of Natural Selection or the Preservation of Favoured Races
in the Struggle for Life” [21], C. Darwin described evolution as a two-step process of
random variation and selection. A population of individuals is exposed to an environ-
ment and responds with a collection of behaviours. Some of these behaviours are better
suited to meet the demands of the environment than others, selection then tends to elim-
inate those individuals that demonstrate inappropriate behaviours. The survivors then
reproduce and their traits are passed on to their offspring.Replication of the individuals
is never without error, nor can the individual’s traits remain free of random mutations.
Introduction of random variation in turn leads to novel traits. Over successive genera-
tions, increasingly more appropriate behaviours accumulate within evolving ancestral
families [62, 5].

Evolutionary algorithms capture evolution by modelling italgorithmically and simulat-
ing it on a computer. The most elementary of models takes a population of individuals
and randomly varies all individuals according to rules expressed in what are called vari-
ation operators. Then, based on an objective function, eachindividual in the population
is assigned a value expressing how close it is to some solution of the problem that is
investigated. This value is called the fitness of the individual. Based on these fitness
values a selection of individuals is used in the next iteration of the problem.

Evolutionary algorithms offer a powerful alternative to a wide variety of traditional
problem-solving techniques. Because the relationship between the algorithm and the
problem is captured in the objective (fitness) function, they usually do not require any
in-depth mathematical understanding of the problem itself. Evolutionary algorithms
are also capable of efficiently handling problems with many variables or that have
frequently and unpredictably moving objectives. Evolutionary algorithms, because of
their stochasticity, are very robust and can cope well with noisy, inaccurate and incom-
plete data. Furthermore, they are relatively easy to hybridise with other techniques and
adapt well to changing priorities in the problem by simply changing the weights in

4

the objective function. Because evolutionary algorithms are modular, the evolutionary
mechanism is separate from the problem representation, they can be transferred from
problem to problem and are therefore relatively cheap and quick to implement. The
open design of an evolutionary algorithm allows for the incorporation of arbitrary con-
straints, simultaneous multiple objectives and the mixingof continuous and discrete
parameters.

1.3 Motivation and Main Goal

The main motivation for writing this thesis is that we believe that for many problems,
evolutionary computation can provide a viable alternativeto other algorithms. Other
studies have already shown that this is true for a number of problems. In this thesis we
investigate if this is the case for the constraint satisfaction problems.

We intend to test the viability of using evolutionary computation to solve the constraint
satisfaction problem by constructing the best possible evolutionary algorithm for solv-
ing this problem and comparing its performance to alternative techniques. This then is
the main goal of the thesis.

We choose the constraint satisfaction problem because solving these kinds of problems
is especially challenging for evolutionary algorithms. The constraint satisfaction prob-
lem is hard to solve for evolutionary algorithms because of the absence of an objective
function to optimise. Moreover, some very effective and efficient classical algorithms
have been found for solving them, so there is strong competition.

In the last two decades much effort was put in solving constraint satisfaction problems
with evolutionary algorithms. This resulted in a large number of evolutionary algo-
rithms, some of which are closely related to each other. We intend to base the design of
the superior evolutionary algorithm on these earlier introduced algorithms, by includ-
ing an inventory of these algorithms and the techniques theyuse and comparing and
analysing their performance.

Unfortunately, the evolutionary algorithms were run on different constraint satisfac-
tion problem test-sets, making comparison between them difficult. Moreover, some of
these test-sets were found to be deficient in some way. Constraint satisfaction prob-
lem research also made important progress during this period, especially in generating
random constraint satisfaction problem test-sets and in complexity measures. A thor-
ough investigation into the viability of evolutionary algorithms for solving constraint
satisfaction problems has to take this into account as well.

1.4 Technical Objectives of the Thesis

From the main goal the following technical objectives for the thesis can be derived:

1. Construct and analyse a test-set of constraint satisfaction problem instances for
evolutionary algorithms to solve. The test-set, the generator models and the

5

classical algorithms used to generate the test-set will be made available for other
researchers.

2. Provide a comprehensive inventory of evolutionary algorithms for solving con-
straint satisfaction problems. To reduce the influence of different programming
languages and programming styles, all algorithms in the inventory will be re-
implemented in a single library. This library will also be made available.

3. Compare the performance of the evolutionary algorithms in the inventory to each
other. The comparison will be based on a number of both traditional and new
measures.

4. Identify which algorithms have the best performance and identify which tech-
niques in these algorithms cause better performance. Determine the balance be-
tween the techniques used and the evolutionary components of these algorithms.

5. Increase the performance of an existing evolutionary algorithm by designing a
variant which uses the lessons learned and compare the performance of this al-
gorithm with the performance of classical algorithms. The variant is included in
the library as well.

The most important contribution to the scientific communitymade by this thesis will
be the superior evolutionary algorithm for solving the constraint satisfaction problem.
The superior performance of this algorithm is based on a solid justification using a
comprehensive experimental methodology that is also of value to the community. This
methodology spans the whole experimental track; using a newly constructed test-set of
constraint satisfaction problem instances, traditional and new performance measures
that are explicitly defined, an inventory identifying effective algorithms over less ef-
fective ones, and different methods for comparing the performance of evolutionary
algorithms. Some parts of the methodology are specific for the constraint satisfaction
problem but with some alteration can be generalised for use with related problems
like the satisfiability problem or graph colouring. Other parts, however, are useful for
the scientific community in general; especially the new performance measures and the
methodology for analysing the performance of the algorithms.

1.5 Overview of the Thesis

The thesis in structured in the following way.

In the next chapter, the constraint satisfaction problem isdefined. These definitions will
be used throughout the rest of the thesis. Using this definition, a number of complex-
ity measures are defined. The chapter is concluded with a description of six random
constraint satisfaction problem instance generators.

In Chapter 3 two classical algorithms for solving the constraint satisfaction problem
will be described. These algorithms will be used to calculate the complexity of gener-
ated constraint satisfaction problem instances. They willalso be used for a comparison
of the performance of the evolutionary algorithms later on in the thesis.

6

In Chapter 4 the constraint satisfaction problem test-set is generated. The method used
for generating the test-set is described in detail. The test-set is used throughout the rest
of the thesis.

Chapter 5 introduces evolutionary algorithms as a part of the iterated local-search class
of algorithms. Two other iterated local-search algorithmsare also introduced: the Ran-
dom Search algorithm and the Hill Climber algorithm. A canonical evolutionary algo-
rithm for solving the constraint satisfaction problem is introduced as well: theIntuitive
Evolutionary Algorithm.

Chapter 6 introduces the performance measures used to compare the algorithms in the
thesis. The measures are then used to compare the performance of the three algorithms
introduced in Chapter 5. The comparison is based on experiments using the test-set
generated in Chapter 4.

An inventory of eight evolutionary algorithms for solving the constraint satisfaction
problem is presented in Chapter 7. Each section of the inventory describes a single
algorithm and includes parameter and characteristics tables for easy reference. The
results of experiments are shown and discussed as well. The experiments use the test-
set generated in Chapter 4.

Chapter 8 contains a comparison of the results of the experiments from Chapter 7.
The results are compared separately for each performance measure, relative in the
effectivity-efficiency plane, and ranked by statistical analysis. The comparison and
ranking are used as a basis for drawing some preliminary conclusions.

Chapter 9 discusses the relative importance of the evolutionary components of natural
selection and population of the four best performing algorithms selected through com-
parison in Chapter 8. Three of the four algorithms are found to suffer from memetic
overkill. The remaining algorithm is adjusted to create thesuperior evolutionary algo-
rithm. It too is checked to see if it suffers from memetic overkill.

The conclusion chapter of the thesis summarises the work done in the thesis and iden-
tifies the main contributions it makes to the scientific community. The performance of
the superior evolutionary algorithm is compared to the performance of the alternative
techniques introduced in Chapters 3 and 5. This rounds off the main goal of the thesis
and checks whether our belief in evolutionary algorithms asdescribed in the motivation
for writing the thesis is correct.

7

8

Chapter 2

The Theory of Constraint
Satisfaction Problems

In this chapter a formal definition of the constraint satisfaction problem is given. This
definition is used throughout the rest of the thesis. Also introduced are complexity
measures of the constraint satisfaction problem as well as ways of representing the
constraint satisfaction problem in both matrices and graphs. Finally, different methods
for generating binary constraint satisfaction problem instances randomly are described.
Throughout the chapter, theN -queens problem is used as an example.

2.1 A Definition of the Constraint Satisfaction Problem

The introduction chapter of this thesis introduced the constraint satisfaction problem in-
formally as a set of variables and a set of constraints between these variables. Variables
are only assigned values from their respective domains and asolution of the constraint
satisfaction problem was defined as the assignment of a valueto all variables in such
a way that no constraint would be violated. This section restates this definition more
formally, based for a large part on the definition given in E. Tsang’s standard work:
“Foundations of Constraint Satisfaction”[83].

Each variable in a constraint satisfaction problem has a domain of possible values, and
can only be assigned a value from that domain.

Definition 2.1 (Domain of a variable)
The domain of a variable is a set of all possible values that can be assigned to that
variable. Ifx is a variable, thenDx is used to denote its domain.

Assigning a value to a variable is called labelling a variable. The number of variables
and the size of the domains of these variables are parametersof the constraint satisfac-
tion problem.

9

Definition 2.2 (Label)
Given a variablex with domainDx. A label〈x, v〉 is then a variable-value pair repre-
senting the assignment ofv ∈ Dx to x.

Labelling a number of variables with values simultaneouslyis done by a compound
label.

Definition 2.3 (Compound label)
Given variablesxi with domainsDxi

, with i = 1, . . . , n, a compound labelL =
(〈x1, v1〉 . . . 〈xn, vn〉) is then the simultaneous assignment of valuesvi ∈ Dxi

to a
(possibly empty) finite set of variables. A compound label restricts labelling of a vari-
able to only a single value:〈xi, vi〉 ∈ L ∧ 〈xi, vj〉 ∈ L ⇒ vj = vi.

The parenthesis notation for compound labels is used to distinguish them from a set of
labels, note also that the labels in a compound label are not separated by commas.

To denote how many variables are labelled by a compound labelwe introduce thek-
compound label.

Definition 2.4 (k-compound label)
A k-compound labelis a compound label which assigns values tok variables simul-
taneously.k is called thearity of the compound label.

Definition 2.5 (Variable set of a compound label)
The variable set of a compound labelis the set of all variables that appear in the
compound label.

S(〈x1,v1〉〈x2,v2〉...〈xk,vk〉) = {x1, x2, . . . , xk}

A compound label with smaller arity can be projected on a compound label with larger
arity if all labels in the smaller compound label are part of the larger compound label.

Definition 2.6 (Projection of a compound label)
Given compound labelL and variable setS, theprojection of L to S is L ↾ S where
〈x, v〉 ∈ L ↾ S if and only if x ∈ S and〈x, v〉 ∈ L.

Constraints define relationships between sets of variablesin a CSP.

Definition 2.7 (Constraint, variable set of a constraint)
Given compound labelsL andL′, a constraintc is a set of compound labels where
∀L,L′ ∈ c : SL = SL′ , ∀L ∈ c : SL ⊆ S, ∀L′ ∈ c : SL′ ⊆ S and∀L ∈ c : Sc = SL.

The size of the variable set over which a constraint is definedis called thearity of a
constraint.

Definition 2.8 (Arity of a constraint)
Given a constraintc, with variable setS, the arity of c is equal to the size ofS:
arity(c) = |Sc|.

10

If a variable is in the variable set of a constraint, it is saidto be relevant to the constraint.

Definition 2.9 (Relevant variable to a constraint)
Given a constraintc, defined over variable setS, then variablex is relevant to c if
x ∈ Sc.

A constraint is either violated or satisfied by a compound label. Violating a constraint
is the opposite ofsatisfyinga constraint. Although it is unnecessary to defineviolates
explicitly, the term is commonly used in literature and the definition is added for con-
venience.

Definition 2.10 (Satisfies)
Given constraintc, defined over variable setS and compound labelL with variable set
SL. If Sc = SL thenL satisfiesc if and only if L is an element ofc:

satisfies(L, c) ⇔ L ∈ c

If Sc $ SL thenL satisfiesc if and only if the projection ofL to Sc is an element ofc:

satisfies(L, c) ⇔ L ↾ Sc ∈ C

Definition 2.11 (Violates)
A compound labelL violatesconstraintc when it does not satisfy it:

violates(L, c) < satisfies(L, c)

A compound label that violates a constraint is called aconflict.

The maximum number of compound labels that a constraintc can hold is the product
of the domain sizes of all variablesx ∈ Sc, whereSc is the variable set ofc.

If a constraint contains the maximum number of compound labels it is callednon-
restrictive, as all possible compound labels satisfy the constraint. A constraint that
does not contain the maximum number of compound labels is consequently called a
restrictiveconstraint.

Using the definitions above the constraint satisfaction problem can be defined.

Definition 2.12 (Constraint Satisfaction Problem (CSP))
A constraint satisfaction problem is a triple:〈X,D,C〉, where:

X = a finite set ofvariables{x1, x2, . . . , x|X|};

11

D = a function which maps every variable inX to a finite set of objects of arbitrary
type:

D : X → finite set of objects (of any type)

TakeDx as the set of object mapped fromx by D. These objects are called
possiblevaluesof x and the setDx thedomain of x;

C = a finite (possible empty) set of restrictiveconstraints on an arbitrary subset of
variables inX. In other words,C is a set of sets of compound labels.

We will use CSP to abbreviate constraint satisfaction problem.

We assume that two constraints in a CSP can not share the same variable set: if
〈X,D,C〉 is a CSP then∀c1, c2 ∈ C : Sc1

6= Sc2
.

The arity of a constraint satisfaction problem is the maximum arity of its constraints.

Definition 2.13 (Arity of a CSP)
Given constraint satisfaction problem〈X,D,C〉, thearity of that constraint satisfac-
tion problem is defined as:

arity(〈X,D,C〉) = max{arity(c)|c ∈ C}

A solution of a constraint satisfaction problem is ak-compound label, wherek = |X|,
that satisfies all constraints of the constraint satisfaction problem.

Definition 2.14 (Solution of a CSP)
Given a constraint satisfaction problem〈X,D,C〉 and a compound labelL with SL ⊆
X thenL is asolution of 〈X,D,C〉 when∀c ∈ C : satisfies(L, c).

To illustrate the definitions above, we return to the8-queens example from the intro-
duction chapter. The set of variables of the8-queens problem is the set of the queens:
X = {x1, x2, . . . , x8}. As there can not be more than one queen per column on the
chessboard, each of the eight variables can take one of the eight rows as its value. Like
in chess, the rows are labelled from 1 to 8. The domains of all variables are then de-
fined as:Dx1

= Dx2
= . . . = Dx8

= {1, 2, 3, 4, 5, 6, 7, 8}. The8-queens problem has
then two overall restrictions:

r1: No two queens may be placed in the same row:∀i, j : i 6= j ⇒ xi 6= xj with
1 ≤ i, j ≤ 8; and

r2: No two queens may be placed diagonally from each other:∀i, j : i 6= j ⇒ |i−j| 6=
|xi − xj | again with1 ≤ i, j ≤ 8.

12

0Z0ZqZ0Z 8Z0Z0l0Z0 70Z0ZqZ0Z 6Z0Z0Z0Z0 50Z0L0Z0Z 4Z0Z0Z0Z0 30Z0ZqZ0Z 2Z0Z0l0Z0 1

a b c d e f g h

Figure 2.1: Construction of thecx4=4,x5
constraint.

It is possible to combine these two restrictions into a single constraint. This constraint
has the same variable set as the8-queens problem itself. However, constructing this
constraint would involve solving the8-queens problem, as by definition it would con-
tain all solutions of the problem. Instead we construct constraints per variable-pair,
e.g., variablesx4 andx5. We denote this constraint ascx4,x5

. We start the construction
by placing a queen on row4. Figure 2.1 shows this board. The black queens show the
possible positions that queenx5 may be placed on.

We define constraintcx4=4,x5
as:

cx4=4,x5
= {(〈x4, 4〉〈x5, 1〉), (〈x4, 4〉〈x5, 2〉),

(〈x4, 4〉〈x5, 6〉), (〈x4, 4〉〈x5, 7〉), (〈x4, 4〉〈x5, 8〉)}.

The remaining combinations of thecx4,x5
constraint can be constructed by placing the

(white) queen at the other7 positions and merging the resultant compound label sets
with the set already given. Repeating this for all8 · (8−1) = 56 variable combinations
of the8-queens CSP fully defines the problem without actually solving it.

2.2 Binary Constraint Satisfaction Problems

Although the variable setSc of constraintc can hold an arbitrary large number of
variables, research in the constraint satisfaction problem usually limits the number of
variables inSc to two. A constraint with a variable set of only two variablesis called a
binary constraint.

13

Definition 2.15 (Binary Constraint)
A constraintc is a binary constraint if and only if the set of variables of the constraint
S only contains two variables:|Sc| = 2.

A constraint satisfaction problem made up entirely out of binary constraints has an arity
of two and is called a binary constraint satisfaction problem.

Definition 2.16 (Binary CSP)
A binary constraint satisfaction problem is a CSP with only binary constraints.

We will use BCSP to abbreviate binary constraint satisfaction problem.

Although the restriction to binary constraints appears to be a serious limitation to the
constraint satisfaction problem, E. Tsang showed that every CSP can be transformed
to an equivalent BCSP [83]. Two methods of translating constraint satisfaction prob-
lems of arbitrary arity to binary constraints satisfactionproblems have been proposed:
the dual graph translation by R. Dechter and J. Pearl ([23]) and the hidden variable
translation by R. Dechter([22]).

In the dual graph translation, the constraints of the original problem become variables
in the new representation. These variables represent the constraints and are referred
to asc-variables. The domain of each c-variable is the set of compound labels of the
original constraint. There is a binary constraint between two c-variables if and only if
the original constraints share some variables. The binary constraints prohibit pairs of
tuples in which shared variables receive different values.

In the hidden variable translation, the set of variables includes all of the variables of
the original problem (their domains remain unchanged) plusa new set of “hidden” or
h-variables. For each constraint in the original problem we add an h-variable. The
domains of these variables consists of a unique identifier for every tuple in the con-
straint they represent. The new representation contains only binary constraints. They
are constructed as follows. For every h-variable we impose abinary constraint between
it and each of the variables in the set of variables of the original constraint. Say thatxh

(the hidden variable) andxi (the original variable) are thus constrained. Every value
of xh corresponds to a tuple of values for the variables in the set of variables of the
original constraint and thus defines a unique value forxi. Hence the binary constraint
betweenxh andxi consists of a unique value forxi for every value ofxh. Note that the
constraint is not functional in the other direction as a value for xi may be compatible
with many values ifxi.

F. Bacchus and P. van Beek discussed both methods in [6]. There they posed the hy-
pothesis that the choice of the transformation method has a large impact on the perfor-
mance of the algorithm used to solve the resulting BCSPs. Because we can translate
the CSP into the BCSP, from now on we will continue the discussion with BCSPs,
although most of the discussion can also be generalised to CSPs.

14

2.3 Representing Constraint Satisfaction Problems

Sometimes it is useful to represent the constraint satisfaction problem in a way other
than through the mathematical definitions above. There are two ways of doing this.
The first uses matrices, the second graphs. Both ways of representing the constraint
satisfaction problem have their advantages and disadvantages.

2.3.1 Matrix Representation

The matrix representation of a constraint satisfaction problem uses two types of matri-
ces to define the problem. The first is called the constraint matrix and it is used to show
which variables are in the variable set of each constraint.

Definition 2.17 (Constraint Matrix)
A constraint matrix R of a binary constraint satisfaction problem〈X,D,C〉 is a|C|×
|X| matrix, such that:

R(c, x) =

{

1 if x ∈ Sc,

0 otherwise.

with c ∈ C andx ∈ X.

The second matrix type required by the matrix representation is called the conflict ma-
trix. Each constraint in the constraint satisfaction problem has its own conflict matrix.
The conflict matrix shows the compound labels in the constraint by a zero in the ma-
trix. The compound labels not in the constraint are shown with a one in the matrix.
As a matrix is a two dimensional representation, it is only used for binary constraints,
although ternary constraints can be depicted using a cube.

Definition 2.18 (Conflict Matrix)
Given a binary constraint satisfaction problem〈X,D,C〉. A conflict matrix Mx,y

c of
a constraintc ∈ C for variablesx ∈ X andy ∈ X is then a|Dx| × |Dy| matrix, such
that:

Mx,y
c (p, q) =

{

0 if satisfies((〈x, dp〉, 〈y, dq〉), c),
1 otherwise.

with x ∈ Sc, y ∈ Sc, c ∈ C, 1 ≤ p ≤ |Dx|, 1 ≤ q ≤ |Dy|, dp ∈ Dx, anddq ∈ Dy and
the domains numbered.

For an illustration of both matrices we turn again to theN -queens problem. In Table
2.1 the constraint matrix for the4-queens problem is represented, in 2.2 the conflict
matrix for constraintcx2,x3

is shown.

15

C�X x1 x2 x3 x4

c1 1 1 0 0
c2 1 0 1 0
c3 1 0 0 1
c4 0 1 1 0
c5 0 1 0 1
c6 0 0 1 1

Table 2.1: Constraint matrix of the4-queens problem.

x2�
x3 1 2 3 4

1 1 1 0 0
2 1 1 1 0
3 0 1 1 1
4 0 0 1 1

Table 2.2: Conflict matrix of constraintcx2,x3
of the4-queens problem.

The combination of the constraint matrix for a constraint satisfaction problem and the
conflict matrices for the constraints in the constraint matrix fully defines the constraint
satisfaction problem. However, this representation can belengthy for large number of
constraints. Because of its close relationship with arraysin computer languages how-
ever, it is commonly used in computer implementations of theconstraint satisfaction
problem.

2.3.2 Graph Representations

Two graph representations exist for CSPs . The first graph representation is called the
constraint graph. It is used primarily to show which constraints are relevant to the
variables of the CSP. In the graph, conflict matrices are usedto show more restricted
constraints from lesser ones. Because conflict matrices aredefined for binary CSPs
only, the constraint graph including the conflict matrices can only be used for binary
CSP as well. Without the conflict matrices, the constraint graph can be defined for CSP
with arbitrary arity by redefining the edges of the graph.

Definition 2.19 (Constraint Graph)
A constraint Graph of a binary constraint satisfaction problem〈X,D,C〉 is a graph
G〈X,D,C〉 = 〈V,E〉 whereV is a set of vertices andE is a set of edges that are defined
as follows: Every variablex ∈ X is mapped to a vertexvx ∈ V and each constraint
c ∈ C for which x ∈ Sc, y ∈ Sc, andx, y ∈ X is mapped to an edge such that
〈vx, vy〉 ∈ E if and only if (〈x, d〉, 〈y, d′〉) ∋ c for somed ∈ Dx andd′ ∈ Dy. Every
edge is assigned its constraint’s conflict matrixMx,y

c .

16

The second graph representation of a BCSP is called the conflict graph. It is commonly
used to show which variables are more restrictive than others. Each variable is repre-
sented as a set of vertices, one for each domain value of the variable. A vertex of one
variable is connected by an edge to a vertex of another variable when the compound
label representing these labels is not in the constraint relevant to the two variables.
Because of the large number of vertices in the graph, the conflict graph is less informa-
tive about which constraints are relevant to which variables of the BCSP. Usually, the
constraint graph and the conflict graph are used in conjunction with each other.

Definition 2.20 (Conflict Graph)
A conflict graph of a binary constraint satisfaction problem〈X,D,C〉 is a hypergraph
∏

〈X,D,C〉 = 〈V,E〉 whereV is a set of vertices andE is a set of edges that are defined
as follows: Every valuedi ∈ Dx from every variable’s (x ∈ X) domain is mapped to
a vertexvi ∈ V and each compound label that occurs in a constraintc ∈ C is mapped
to an edge such that〈vx, vy〉 ∈ E with x, y ∈ X only if both x ∈ Sc andy ∈ Sc and
(〈x, vx〉, 〈y, vy〉) ∋ c.

For an illustration of the constraint graph and the conflict graph we return to the4-
queens problem. Figure 2.2 shows the constraint graph of the4-queens problem and
Figure 2.3 the conflict graph.

2.4 Constraint Satisfaction Problem Complexity

The difficulty of solving a problem class is expressed by the complexity of the best al-
gorithm that was found for solving the problem-class. The complexity of an algorithm
is the cost of using the algorithm to solve one of the problems. The cost is measured
as the time units (computational complexity), the storage space (space complexity), or
whatever units are relevant, needed by the algorithm to solve the problem. The study
of the amount of computational effort that is needed in orderto perform certain kinds
of computation is the study of computational complexity. The complexity of an algo-
rithm is measured by expressing the running time of an algorithm as a function of some
measure of the amount of data that is needed to describe the problem to the algorithm.

The general rule is that if the running time of an algorithm isat most a polynomial
function of the amount of data then the problem iseasy, otherwise it ishard. Showing
that a problem is easy is done by providing an algorithm that solves it in at most poly-
nomial time. Showing that a problem is hard is not as easy as ithas to be proved that
no algorithm can be found that will solve it in polynomial time. The fact that a com-
putational problem is hard does not mean that every instanceof the problem has to be
hard. The problem is hard because no algorithm can be devisedfor which a guarantee
can be given that it will solveall instances in polynomial time.

A problem can be phrased to be adecision problemor anoptimisation problem. A
decision problem only provides a yes or no answer to a problemwhile a optimisation
problem provides the optimal answer to a problem. Any optimisation problem can be

17

X

21

34
XMX ,X3 =()1

0101

0 1 0 1

0101

0 01 1

M 1,X =()4

1 0 0 1

0 1 0 0

0 0 1 0

0 1 1 0

MX1,X2 =()1 1 0 0

1 1 1 0

0 1 1 1

0 0 1 1 MX2,X =()4

1 0 1 0

0 1 0 1

1 0 1 0

1010

MX2,X =()3

1 1 0 0

1 1 1 0

0 1 1 1

0 1 10

MX3,X =()4

1 1 0 0

1 1 1 0

0 1 1 1

0 0 1 1

X X

X

Figure 2.2: The constraint graph of the4-queens problem.

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

X X

XX

1 2

34

Figure 2.3: The conflict graph of the4-queens problem.

18

solved by repeatedly solving a decision problem. We can think of a decision prob-
lem as asking if a given word (the input string) does or does not belong to a certain
language. The language constitutes all words for which the decision problem would
give a positive answer. A decision problem belongs to the classP when there is an
algorithmA such that for every instanceI of the problem, algorithmA will produce a
solution in polynomial time as a function of the size of instanceI. A decision problem
Q belongs to NP if there is an algorithmA that: associates with each word of the lan-
guage ofQ a certificateB(I) such that when the pair(I,B(I)) are input to algorithm
A, it recognises thatI belongs toQ; if I does not belong toQ then there is noB(I)
that will causeA to recogniseI as a member ofQ; operates in polynomial time. More
briefly, P is the class of problems were it is easy to find a solution whileNP is the
class of problems for which it is easy to check the correctness of a solution. Note that
P ⊂ NP and that if decision problemQ ∈ P , membership in the languageQ can be
verified with an empty certificate. The question of whether ornotP = NP is perhaps
the most important open question in the study of computational complexity.

Given decision problemsQ andQ′, Q′ is quickly reducible toQ if whenever we are
given an instanceI ′ of Q′ it can be converted to an instanceI of Q in polynomial
time, in such a way that bothI andI ′ have the same answer. A decision problem is
NP-completeif it belongs to NP and every problem in NP is quickly reducible to it.
In 1971, S. Cook described NP-complete using the theory ofTuring Machines[16]. A
full description of the proof and of a Turing Machine is beyond the scope of this thesis.
It suffices to say that the Turing Machine is used as acheckingor verifying machine
and that a Turing Machine used as such is called anon-deterministicmachine. The
name NP is derived from that name, standing fornon-deterministic polynomial. In
1990, F. Rossiet al., proved that the constraint satisfaction problem is in NP and that
all NP-complete problems are quickly reducible to it [77].

As explained above, the complexity of a CSP is directly proportional to the size of the
problem. The number of variables and the size of the domains of these variables define
the size of the CSP and can be seen as complexity measures of aninstance of the CSP.
Two other complexity measures of a CSP instance can be defined, one being an average
over yet another measure.

The first of these other complexity measures is called the density of a CSP.

Definition 2.21 (Density)
Thedensity of a binary constraint satisfaction problem is the ratio between the maxi-

mum number of constraints
(

|X|
2

)

and the actual number of constraints|C|:

p1 =
|C|

(

|X|
2

)
(2.1)

The second complexity measure is the average of one minus theratio of the maximum
number of compound labels to actual compound labels of all constraints in the BCSP.
The parameter is called theaverage tightnessof the BCSP,tightnessitself is defined
for a single constraint.

19

Definition 2.22 (Tightness)
The tightness of a constraintc over variablesx, y ∈ X of a binary constraint sat-
isfaction problem〈X,D,C〉 is one minus the ratio between the maximum number of
compound labels possible (|Dx×Dy|) and the actual number of compound labels (|c|):

p2(c) = 1 − |c|
|Dx × Dy|

Definition 2.23 (Average tightness)
Theaverage tightnessof a constraint satisfaction problem〈X,D,C〉 is the sum of the
tightness over all constraints divided by the number of constraints:

p2 =

∑

c∈C p2(c)

|C|

Unlike the number of variables and the domain sizes, the density and average tightness
measures do not relate to the input size of the CSP. They are still complexity measures
though as CSPs with more constraints (higher density) or less compound labels in their
constraints (higher average tightness) are still harder tosolve.

The four measures of the CSP allow for the definition of the parameter vector of a
CSP, which is used as a short-hand description of a CSP. Usingthe parameter vector
of a CSP assumes that the domain sizes of the variables are thesame. A CSP with these
domain sizes is said to have uniform domain sizes, or is called a uniform CSP.

Definition 2.24 (Parameter Vector of a BCSP)
The parameter vector of a BCSP 〈X,D,C〉 is a quadruple〈n,m, p1, p2〉 of four
parameters: the number of variablesn = |X|, the domain size of each variablem =
|Dx1

| = |Dx2
| = · · · = |Dxn

|, the densityp1 and the average tightnessp2.

2.5 Generating Random Binary Constraint
Satisfaction Problems

Finding more efficient algorithms to solve CSPs has been an important driving force
behind the study of CSPs. The lack of a good set of problem instances to study was
soon identified as a major obstacle in the research of CSPs. Itwas also soon realised
that an algorithm that solved particular problem instancesefficiently may have disap-
pointing performance on other problem instances. This has led to research on how
to produce sets of randomly created CSPs that qualify as a reasonable representation
of the whole class. These sets can then be used to empiricallyresearch CSP solving
algorithms.

Several models for randomly creating CSPs have been designed in the last two decades
[69, 2, 56]. These models all use a similar parameter vector like the parameter vector of

20

Model Constraints Conflicts

ModelA probability model probability model
ModelB ratio model ratio model
ModelC probability model ratio model
ModelD ratio model probability model

Table 2.3: BCSP generator models.

a BCSP to control the size and complexity of the problems theygenerate. By analysing
the performance of the algorithms on instances created withdifferent parameter set-
tings, the behaviour of the algorithms throughout the parameter space can be studied.
A set of CSP instances for empirically testing the performance of an algorithm is called
a test-set.

Generating CSP instances involves choosing which constraints to remove compound
labels from and which compound labels to remove from these constraints. There are
two methods for making these choices: theratio method and theprobability method.
In the ratio methodp1 ·

(

n
2

)

constraints are uniform randomly chosen and1 − p2 · m2

compound labels are added to them. The ratio method is sometimes called theuni-
form method, as constraints and compound labels are chosen uniform randomly. The
probability method considers every constraint and removescompound labels from it
with probabilityp1. The compound labels that are removed are chosen with probabil-
ity 1 − p2. Both methods share a method for choosing constraints and a method for
removing compound labels from the chosen constraints. Thismakes for a total of four
combinations of methods. In [69] and [56] these four combinations are designated as
modelsA, B, C, andD. How the different methods combine into these models is
shown in Table 2.3.

In [2], D. Achlioptaset al. showed that when the number of variables (n) of a randomly
generated CSP is large, almost all instances created by models A, B, C, andD become
unsolvable. The reason for this are the existence offlawed variables. A flawed variable
is a variable for which all values in its domain violate a relevant constraint.

Definition 2.25 (Flawed variable)
Given a binary constraint satisfaction problem〈X,D,C〉, a variablex ∈ X is flawed
if and only if:

∃c ∈ C : ∃x, y ∈ Sc : ∀d ∈ Dx : ∄d′ ∈ Dy : satisfies((〈x, d〉〈y, d′〉), c)

As the number of variables in CSP instances generated by models A to D increases
and the complexity parameters remain the same, the probability of introducing a flawed
variable increases, thereby also increasing the probability of generating an unsolvable
CSP instances. This as a result of this model’s two step approach for choosing con-
straints and compound labels. To overcome this unwanted behaviour, D. Achlioptas

21

et al. introduced a new model, called modelE, for generating CSPs. ModelE gen-
erates CSP instances by choosing both constraints and compound labels at the same
time.

Definition 2.26 (ModelE)
The graphCΠ is a randomn-partite graph withm nodes in each part. It is constructed
by uniformly, independently and with repetitions selecting (1−pe)

(

n
2

)

m2 edges out of
the

(

n
2

)

m2 possible ones.

Instead of using two complexity parameters; density (p1) and average tightness (p2),
modelE uses a single complexity parameter:pe. The parameter vector of modelE
is therefore defined as〈n,m, pe〉. Although parameterpe could be said to control
the average tightness of the generated CSP instances, it is not equal to the average
tightness parameter of modelsA to D (p2) as the compound labels are added with
repetition. There is a chance that some compound labels willbe added more than once.
The actual average tightness of a modelE generated CSP instance will therefore be
lower or at most equal tope.

An effect of generating CSP instances using a modelE generator is that even with
small values ofpe (e.g.pe < 0.05), all possible constraints will be restrictive. E. Mac-
Intyre et al. proposed a correction on modelE in [56] by generating CSP instances in
two phases: first generate a CSP instance using a modelE generator and then choose
1 − (p1

(

n
2

)

) constraints uniform randomly and make them non-restrictive again. This
method of generating CSP instances has become known as a model F generator. The
parameter vector of a modelF generator is〈n,m, p1, pe〉. Note that the measured aver-
age tightness of a CSP instance generator by a modelF generator is still lower than the
pe value used to generate the instance, as not only are compoundlabels chosen with
repetition but some are added again when some constraints are made non-restrictive
again in the second phase of the generation process. To generate a CSP instance by a
modelF generator with a specific average tightness value thereforenecessitates exper-
imental tweaking of thepe parameter.

The pseudo-code for a modelF CSP generator is given in algorithm 2.1. The operator
round in lines 22 and 34 is used to indicate that the result of the equation is rounded to
the next natural number. The operatorrandom is used to indicate that a uniform ran-
dom choice was made from the elements of a set, i.e.,random ∈ X (line 24 ’selects’
a variable from the set of variables uniform randomly.

Algorithm 2.1: The model F random binary CSP generator

1 funct modelF (n,m, p1, pe) ≡
2 X := ∅; D := ∅; C := ∅;
3 for x : 1 ≤ x ≤ n do
4 X := X ∪ {x};
5 Dx := ∅;
6 for dx : 1 ≤ dx ≤ m do
7 Dx := Dx ∪ {dx};
8 od
9 D := D ∪ {Dx};

22

10 od
11 for x : 1 ≤ x < n do
12 for y : x < y ≤ n do
13 cx,y := ∅;
14 for dx : 1 ≤ dx ≤ m do
15 for dy : 1 ≤ dy ≤ m do
16 cx,y := cx,y ∪ {(〈x, dx〉, 〈y, dy〉)};
17 od
18 od
19 C := C ∪ {cx,y};
20 od
21 od
22 conflicts := round(p1 · pe · n · (n − 1) · 0.5 · m · m);
23 while conflicts > 0 do
24 x := random ∈ X; y := random ∈ X;
25 while x = y do
26 y := random ∈ X;
27 od
28 if x > y
29 then tmp := x; x := y; y := tmp; fi
30 dx := random ∈ Dx; dy := random ∈ Dy;
31 C := C ∩ {(〈x, dx〉, 〈y, dy〉)};
32 conflicts −−;
33 od
34 constraints := |C| − round(p1 · n · (n − 1) · 0.5);
35 while constraints > 0 do
36 x := random ∈ X; y := random ∈ X;
37 while |cx,y| = m · m do
38 x := random ∈ X; y := random ∈ X;
39 od
40 for dx : 1 ≤ dx ≤ m do
41 for dy : 1 ≤ dy ≤ m do
42 cx,y := cx,y ∪ {(〈x, dx〉, 〈y, dy〉)};
43 od
44 od
45 constraints −−;
46 od
47 exit(BCSP 〈X,D,C〉)
48 end

23

24

Chapter 3

Classical Algorithms

In this chapter, two classical algorithms will be introduced: theChronological Back-
tracking Algorithmand theForward Checking with Conflict-Directed Backjumping Al-
gorithm.

In the previous chapter, a solution of a constraint satisfaction problem was defined as a
compound label over all variables of the problem such that all constraints are satisfied.
However, finding such a solution is only one of four variants for solving a CSP:

1. finding a solution;

2. finding all solutions:

3. proving there is no solution;

4. find a compound label with the maximum number of variables.

All four variants are proven to be NP-complete, and are of thesame order of difficulty.
The first and second variants assume that the CSP is solvable.The third assumes that it
is unsolvable and the fourth variant can be used for both solvable and unsolvable CSPs
but reverts to the first variant if it is actually solvable.

An algorithm issoundwhen if it claims to have found a solution, that compound labels
is in fact a solution to the problem. An algorithm iscompletewhen, if the problem has
a solution, the algorithm will be able to find it. For an algorithm to be both sound and
complete it has to systematically check or discard all possible solutions of a problem.
All considered classical algorithms are both sound and complete.

A sound and complete algorithm that can find a single solution(variant 1) can be used
to solve a CSP according to the three remaining variants:

1. finding all solutions (variant 2) can be done by using the algorithm to find the
first solution, removing it from the search space and iterating the process until
no more solution can be found;

25

2. proving that no solution exists (variant 3) is done when the algorithm can not
find a single solution;

3. finding the maximum compound label (variant 4) can be done by adjusting the
algorithm so that it will always remember the maximum compound label found
during the search. If a solution is found it will return the solution, and if no
solution is found, it will return the stored maximum compound label.

Most research on the CSP focusses on algorithms that find a single solution.

3.1 TheChronological Backtracking Algorithm

The first sound and complete algorithm to find a solution of a CSP was proposed in
1965 by S. Golomb and L. Baumert [41], and is called theChronological Backtracking
Algorithm(CBA). TheCBAuses the backtracking search method to find a single solu-
tion to the CSP. Based on this search method, a number of more efficient sound and
complete algorithms have been developed. In [55], G. Kondrak and P. van Beek have
placed these algorithms in a hierarchy based on the number ofvisited nodes and the
number of consistency checks.

The basic backtracking search method is in effect a depth-first search of the problem
search space. For the CSP, backtracking divides the probleminto the sub-problem
of labelling a single variable with a value that is consistent with earlier labellings. A
label is consistent with earlier labellings when it satisfies all relevant constraints to
earlier labelled variables. The backtracking search method for the CSP tries to label
the variables in order. For each variable, all labels are tried. If no more labels can
be tried for a variable, backtracking goes back (backtracks), to the previous variable.
Backtracking terminates when a solution is found or when no more labels for the first
variable can be tried.

The pseudo-code for theChronological Backtracking Algorithmis given in algorithm
3.1.

Algorithm 3.1: The Chronological Backtracking Algorithm

1 CSP 〈X,D,C〉
2 funct backtrack((〈x1, v1〉, . . . , 〈x|X|, v|X|〉), i) ≡
3 if i > |X| then exit(TRUE) fi
4 for ∀d ∈ Di do
5 vi := d;
6 if consistent((〈x1, v1〉, . . . , 〈x|X|, v|X|〉), i)
7 then
8 if backtrack((〈x1, v1〉, . . . , 〈x|X|, v|X|〉), i + 1)
9 then exit(TRUE) fi

10 fi
11 od
12 exit(FALSE)

26

13 end
14

15 funct consistent((〈x1, v1〉, . . . , 〈x|X|, v|X|〉), i) ≡
16 for ∀j : 1 ≤ j < i ∧ j < |X| do
17 conflict checks + +;
18 if violates((〈xi, vi〉, 〈xj , vj〉), cxi,xj

)
19 then exit(FALSE) fi
20 od
21 exit(TRUE)
22 end

3.2 TheForward Checking with Conflict-Directed Back-
jumping Algorithm

TheForward Checking with Conflict-Directed Backjumping Algorithm (abbreviated by
FCCDBA) extends theCBAwith two adaptations of the backtracking search method:
forward checking[46], andconflict-directed backjumping[73]. Both extensions try to
reduce the number of compound labels checked based on information already found
during the search.

The CBA uses backtracking to check consistency from the currently considered label
back to earlier labels. Forward checking in theFCCDBA reverses the process by a
technique calledshrinking domains. For each variable in the CSP, the domain is stored
as a set of values, called thedomain set. Like backtracking, forward checking tries to
label the variables in order. The values used for labelling the variables are taken from
their respective domain set. When forward checking labels a variable, it removes all
values from the domain sets of the unlabelled variables thatviolate a relevant constraint
with the current label. When the last value from a domain set isremoved, the current
label can never be part of a solution. The domain sets of the unlabelled variables
are then restored and another value from the domain set of thecurrent variable is tried.
When no last variable from the domain set is removed, the next variable is labelled, and
so on. When all values from the current domain set have been tried, forward checking
backtracks to a previous variable. Forward checking terminates when a solution is
found or when all values from the domain set of the first variable has been tried. In the
latter case, the problem has no solutions.

The conflict-directed backjumping extension in theFCCDBAchanges the way in which
the algorithm backtracks to previous variables. Instead ofbacktracking to the previous
variable, theFCCDBAuses information about which constraint was violated to deter-
mine which earlier variable to backtrack to. Each variable in the CSP is assigned a set
of conflicting variables in theFCCDBAcalled theconflict set of a variable. Because
forward checking is used, this set contains a set of as yet unlabelled variables that have
failed a consistency check during forward checking. When allvalues from the domain
set of the current variable have been tried, the algorithm backtracks to the earliest vari-
able found in the conflict set. All conflict sets are then restored to the situation where

27

the algorithm left off with that variable.

Both forward checking and conflict-directed backjumping use sets of either values or
variables to reduce the number of compound labels that need to be checked for con-
sistency. Forward checking uses domain sets for each variable to reduce the number
of future labels that need to be checked. Conflict-directed backjumping uses conflict
sets for each variable to backtrack to earlier variables further up the search tree. Both
essentially increase space complexity for a decrease in computational complexity (see
section 2.4 for description of space and computational complexity). The increase of
space complexity is the product of the number of variables and the domain size of
these variables for the forward checking extension. The increase of space complexity
is cubic to the number of variables for the conflict-directedbackjumping extension.
For both extensions there is also a small increase of the computational complexity be-
cause these sets need to be maintained. The decrease in computational complexity is
related to the complexity of the problem to solve. Constraint satisfaction problems
with few constraints, or less restrictive constraints, benefit less from both extensions
as the effect of domain shrinking is less and there is less chance of backjumping to an
early variable. It is possible that theCBAoutperforms theFCCDBAon easy constraint
satisfaction problem.

The pseudo-code forForward Checking with Conflict-Directed Backjumping Algorithm
is shown in Algorithm 3.2.

Algorithm 3.2: The Forward Checking with Conflict-Directed Backjumping Algo-
rithm

1 CSP 〈X,D,C〉
2 conflictset[|X|][|X|] := −1;
3 checking[|X|][|X|] := FALSE;
4 domains[|X|][|D|] := −1;
5 funct FC–CBJ((〈x1, v1〉, . . . , 〈x|X|, v|X|〉), i) ≡
6 if i > |X| then exit(TRUE) fi
7 for ∀d ∈ Di do
8 if domains[i][d] = −1
9 then vi := d; end := FALSE;

10 for ∀j : i < j ≤ |X| ∧ end = FALSE do
11 if check forward((〈x1, v1〉, . . . , 〈x|X|, v|X|〉), i, j) = 0
12 then end := TRUE fi
13 od
14 if j = 0
15 then j = FC–CBJ((〈x1, v1〉, . . . , 〈x|X|, v|X|〉), i + 1)
16 if j 6= i then exit(j) fi
17 elseunion checking(i, j) fi
18 restore(i) fi
19 od
20 j := 0;
21 for ∀k : k < i ∧ k ≤ |X| do
22 if conflictset[i][k] 6= −1

28

23 then j := k; fi
24 od
25 for ∀l : j < l < i ∧ l ≤ |X| do
26 if checking[l][i] = TRUE
27 then j := l; fi
28 od
29 union checking(i, i);
30 union conflictset(j, i);
31 for ∀m : j < m ≤ i ∧ m ≤ |X| step − 1 do
32 for n : n < m ∧ n ≤ |X| do
33 conflictset[m][n] := −1;
34 od
35 restore(m);
36 od
37 if i 6= 0 then restore(j); fi
38 end
39

40 funct check forward((〈x1, v1〉, . . . , 〈x|X|, v|X|〉), i, j) ≡
41 count := 0; delete := 0;
42 for ∀d ∈ Dj do
43 if domains[j][d] = −1
44 then count + +; conflict checks + +;
45 if violates((〈xi, vi〉, 〈xj , vj〉), cxi,xj

)
46 then domains[j][d] := i; delete + +; fi fi
47 od
48 if delete > 0
49 then checking[i][j] := TRUE; fi
50 exit(count − delete)
51 end
52

53 funct restore(i) ≡
54 for ∀j : j > i ∧ j ≤ |X| do
55 if checking[i][j] = TRUE
56 then checking[i][j] = FALSE;
57 for ∀d ∈ Dj do
58 if domains[j][d] = i
59 then domains[j][d] := −1;
60 fi
61 od
62 fi
63 od
64 end
65

66 funct union checking(i, j) ≡
67 for ∀k : k < i ∧ k ≤ |X| do
68 if conflictset[i][k] > −1 ∨ checking[k][j] = TRUE

29

69 then conflictset[i][k] := 0;
70 elseconflictset[i][k] := −1;
71 fi
72 od
73 end
74

75 funct union conflictsets(i, j) ≡
76 for k : k < i ∧ k ≤ |X| do
77 if conflictset[i][k] > −1 ∨ checking[j][k] = TRUE
78 then conflictset[i][k] := 0;
79 elseconflictset[i][k] := −1;
80 fi
81 if conflictset[i][k] > 1 ∧ conflictset[k][k] < k
82 then conflictset[i][i] = k;
83 fi
84 od
85 end

3.3 Performance Measures for Classical Algorithms

In the pseudo-code of theCBA (Algorithm 3.1) and theFCCDBA(Algorithm 3.2) the
variableconflict checks is increased every time a constraint is checked. Checking if
a compound label is in the set of compound labels of a constraint is taken as the atomic
step of the algorithm. These steps can be used to define performance measures. For
classical algorithms one such step is called a conflict check:

Definition 3.1 (Conflict Check)
Testing if compound labelL is in the set of compound labels of constraintc of a binary
CSP is called a conflict check.

A classical algorithm is more efficient than another classical algorithm when it uses
fewer conflict checks to find a solution. As such, the number ofused conflict checks is
a measure of the computational effort of an algorithm and it does not measure the space
complexity of an algorithm. Both extensions of theFCCDBAincrease the space com-
plexity of the algorithm in order to reduce the number of conflict checks needed, e.g.,
the computational complexity. The increase in space complexity is linear in relation to
the size of the problem of both extensions. As the increase incomputation complexity
is exponential relative to the size of the CSP, the increase in the space complexity of the
FCCDBA is negligible. The same reasoning applies to the increase ofcomputational
complexity needed to handle the increase of space complexity for both extensions.

30

Chapter 4

Generating the Test-set

In this chapter a test-set of randomly generated constraintsatisfaction problems will be
created. This test-set will be used throughout the rest of the thesis for experimentation
with evolutionary algorithms. Although the test-set is particularly useful for experi-
mentation with evolutionary algorithms, it is equally useful for other non-deterministic
algorithms as well.

The constraint satisfaction problem generators discussedin section 2.5 are non-de-
terministic algorithms. They all use random number sequences to make the choices
necessary to generate a constraint satisfaction problem instance. A truly random se-
quence can only be generated by a truly random process. A truly random sequence
can not be generated by a mathematical formula, for knowledge of the formula and
sufficient numbers of the sequence already generated would enable someone to pre-
dict the next value with certainty. There are, however, formulae whichcan produce
long sequences of numbers which satisfy many randomness criteria before they start
to repeat. Such sequences are calledpseudo-randomand they are used by computers
as a substitute for truly random number sequences. The most commonly used method
for generating a pseudo-random number sequence of integersis based on a recurrence
formula. Pseudo-random number generator using these formulae are called linear con-
gruential generators. The sequence is initialised by a random-seed, a first value of the
sequence, and the pseudo-random number generator will generate a different pseudo-
random number sequence for each different random-seed value.

The constraint satisfaction problem generators discussedin section 2.5 use pseudo-
random number sequences to make choices while generating a CSP instance. These
choices include choosing which constraint to add or remove to the CSP instances and
which compound label to add or remove from the constraints inthe CSP instance.
When different random-seeds are used, different choices aremade, resulting in differ-
ent CSP instances. This is independent of the complexity parameters used by the CSP
generator.

Using different random-seeds, a CSP generator will producedifferent CSP instances.
This feature is used to generate sets of different CSP instances for the same complexity

31

parameters. Because different choices were made to generate the CSP instances in the
set, the CSP instances in the set will show a variance in the complexity of the CSP
instances. This will occur for example when the CSP generator chooses to remove
a larger number of compound labels from constraints in the generation of one CSP
instance than in generation of another CSP instance. When a large number of choices
have to be made to generate a CSP instance, the probability ofgenerating an outlier
in complexity is small; approaching zero when the number of choices increases. It is
impossible to predict the exact complexity of a randomly generated CSP instance.

This leads to the question of what arepresentativetest-set of CSP instances is. A test-
set is representative for a problem if it includes a large enough sample of instances
of the problem such that it is an accurate description of the population of all problem
instances. Obviously, a perfectly representative test-set includes all problem instances
that are possible. For the CSP, even for small numbers of variables and small domain
sizes, the population of all problem instances is so large that experimenting with such
a test-set would be prohibitively expensive. In this chapter we provide a method of
selecting a small number of problem instances so that experimentation with the test-set
can be performed in a reasonable time. There is however another matter to consider.
The test-set is intended for use with evolutionary algorithms and evolutionary algo-
rithms are incomplete. Practically, this means that problem instances that are unsolv-
able will take the maximum allowed amount of effort of the evolutionary algorithm to
solve. As such, it makes no sense to include them as no additional information about
the effectiveness and efficiency of the algorithm can be gained from including them
in the test-set. Excluding unsolvable problem instances means that the method for se-
lecting the problem instances for the test-set has to take into account that the test-set
is no longer representative of the population of all possible CSP instances but that it is
representative of the population of all solvable CSP instances. Because of this, we will
call our test-set an appropriate test-set instead of a representative test-set.

4.1 Test-set Parameters

The CSP instances in the test-set are generated using the model F CSP generator. The
parameter vector of the modelF CSP generator includes four parameters:n for the
number of variables,m for the uniform domain size,p1 for the constraint density and
pe as an average tightness parameter. Because the modelF generator chooses the com-
pound labels not in the CSP instance with repetitions and a number of constraints will
be removed as well, thepe parameter has to be set higher than the desired average tight-
ness of the CSP instance. The generator is therefore implemented in such a way that
it will approximate the desired average tightness (p2) by increasing thepe parameter
in a stepwise fashion. In the following discussion therefore, the approximated average
tightnessp2 will be used, instead of the actualpe values.

The hardness of a CSP instance is measured by the number of solutions it has. Using a
sound and complete algorithm, the number of solutions and thus the exact hardness of
a CSP instance can be calculated. We used theChronological Backtracking Algorithm

32

to do this. In [81], Smith provided a formula for the number ofsolutions of a CSP
instance based on the four complexity parameters that were used to generate it:

E(number of solutions) = xe = mn(1 − p2)
(n

2)p1 (4.1)

The formula only holds for binary CSPs with a uniform domain size. We will denote
the number of solutions byxe.

In [15], the authors demonstrate that all NP-complete problems go through aphase-
transition. All NP-complete problems, including the CSP, have a so-called transition
point which marks the spot in the parameter space where problems gofrom having
many solvable problem instances to having almost no solvable problem instances. For
many NP-complete problems, this transition point has been located empirically ([15,
65]). For CSPs, Smith predicted that it would occur around problem instances with
only one solution ([81]), assuming that this solution will be hard to find among all
other possible candidate solutions. When this assumption iscombined with equation
4.1 it leads to:

mn(1 − p2)
(n

2)p1 = 1 (4.2)

The transition point of a CSP occurs for those combinations in the parameter space
where there is a50% chance of generating a solvable CSP and consequently a50%
chance of generating an unsolvable CSP ([65, 82, 20]). Usually the number of variables
and their uniform domain sizes are fixed and the density and average tightness are
varied, so that there is not a transitionpoint, but atransition linethrough the density
and average tightness parameter space. As binary CSPs have finite discrete domains,
the phase transition does not occur abruptly, but over a wider area in the parameter
space. This area is called themushy region.

In Figure 4.1, the transition lines for combinations ofn andm are shown in the pa-
rameter space bound by density (p1) and average tightness (p2). Thex-axis shows the
density, they-axis the tightness. Eight(n,m)-combinations are shown from(n,m) =
(5, 5) to (40, 40) in increments of5 for bothn andm.

A transition line divides the parameter space of the CSP intothree regions:

1. The mushy region, already described;

2. The solvable region, in Figure 4.1 below the mushy region.CSP instances gen-
erated with the parameters in this region are almost exclusively solvable; and

3. The unsolvable region, in Figure 4.1 above the mushy region. CSP instances
generated with parameters in this region are almost exclusively unsolvable.

In Figure 4.1, we see that for combinations of largern andm, the solvable region de-
creases in size, while for combinations of smallern andm the solvable region increases
in size.

33

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

av
er

ag
e

tig
ht

ne
ss

density

n=5,m=5
n=10,m=10
n=15,m=15
n=20,m=20
n=25,m=25
n=30,m=30
n=35,m=35
n=40,m=40

Figure 4.1: Transition lines for combinations ofn andm found using Smith’s formula.

As with all incomplete algorithms, evolutionary algorithms are, in general, unable to
determine whether or not a problem is unsolvable. When they are used to solve an
unsolvable problem they will continue trying to solve it until the maximum number of
search steps allowed has been reached. The inclusion of unsolvable CSP instances in
the test-set will only increase experimental effort without providing more insight into
the performance of the algorithms. As such, we have decided not to include them.

Given the information above, we make the following considerations for the choice of
the number of variables (n) and the uniform domain size (m) of the CSP instances in
the test-set. The considerations are listed in order of importance.

1. Then andm parameters should be large enough to make solving the CSPs non-
trivial.

2. Then andm parameters should be small enough to reduce the amount of exper-
imental effort.

3. Then andm parameters should be chosen in such a way that the solvable region
is large enough to include enough density-tightness combinations for adequate
experimentation.

Obviously, considerations 1 and 2 are conflicting. As a practical compromise we have
chosen to generate CSP instances with10 variables and a uniform domain size of10

34

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

av
er

ag
e

tig
ht

ne
ss

density

transition line n=10,m=10
problem instances generated

Figure 4.2: Overview of the parameter setup of the test-set with n = 10 andm = 10.

for our test-set. These parameter values will produce CSP instances with a maximum
of

(

10
2

)

= 45 constraints and a maximum of1010 possible candidate solutions to search
through. We found that these CSP instances were by no means trivial to solve. The ex-
perimental effort needed to solve one of these CSP instanceshowever is not prohibitive
for a thorough investigation. On an average computer theChronological Backtracking
Algorithmneeds less than a second to find a single solution and about a minute or two
to find all solutions when the CSP instance lies within the mushy region.

Consideration 3 is related to the way CSP test-sets are commonly organised. Usually,
a CSP test-set is constructed by generating a set of CSP instances for a number of
density and tightness combinations with fixed parameters for the number of variables
and the uniform domain size of these variables. The density and tightness combinations
are chosen so that they form a grid-like pattern over the density-tightness parameter
space. We used the following values for both density and tightness:{0.1, 0.2, . . . , 0.9}.
These values produce a grid-like pattern of 81 density-tightness combinations. When
10 variables with a domain size of10 are used,59 grid points lie in the solvable and
mushy region of the density-tightness parameter space.

Figure 4.2 shows a graphical depiction of the parameter setup of the test-set. The line
signifies the transition line found using Smith’s formula for n = 10 andm = 10,
copied from Figure 4.1. The sets of CSP instances for the different density-tightness
combinations that are included in the test-set are shown as points in the solvable and
mushy region.59 sets will be generated. The mushy region is identified as the follow-

35

ing list of density-tightness combinations:(p1, p2) ∈ {(0.1, 0.9), (0.2, 0.9), (0.3, 0.8),
(0.4, 0.7), (0.5, 0.6), (0.6, 0.6), (0.7, 0.5), (0.8, 0.5), (0.9, 0.4)}.

The most important sets of CSP instances in the test-set are found in the mushy region.
The CSP instances in these sets will be the hardest to solve. Compared to the hardness
of the CSP instances in these sets the hardness of the other CSP instances in the test-set
is low. Algorithms solving CSP instances outside the mushy region should have little
difficulty finding a solution. The CSP instances in the solvable region are therefore
generated only for comparison with earlier research. In therest of this chapter we will
therefore focus mostly on making the sets of CSP instances inthe mushy region as ac-
curate as possible. The other CSP instances will be generated by simply using different
random-seeds, without further analysis. For each density-tightness combination in the
test-set,25 instances will be generated.

4.2 Constructing a Test-set in 4 steps

In the previous section we decided to construct a test-set with CSP instances with10
variables and a uniform domain size of10. The CSP instances will be generated for
59 density-tightness combinations of which9 lay in the mushy region of the density-
tightness parameter space. The set of CSP instances with a specific density-tightness
combination we will call thesamplefor that density-tightness combination. Each sam-
ple consists of25 CSP instances.

Now that we have set the parameters for the CSP instances to begenerated we can
generate an appropriate test-set. We propose that the following properties for the CSP
instances in each sample are necessary for constructing an appropriate test-set:

1. All CSP instances in each sample should be solvable;

2. The average number of solutions of the CSP instances in allsamples should
approximate the number of solutions calculated by using Smith’s formula.

3. The variance in the number of solutions should be minimal over all CSP in-
stances in each sample.

Formula 4.1 is defined for sets of both solvable and unsolvable instances. Because of
requirement 1 the samples in the test-set contain only solvable instances. Therefore
further analysis is necessary to see if we can use Smith’s formula for samples of only
solvable instances. This analysis is also necessary to see if Smith’s formula is an ac-
curate approximation of the number of solutions for CSP instances generated with a
modelF CSP generator. We will, therefore, first analyse samples of both solvable and
unsolvable CSP instances and adjust the estimated number ofsolutions when neces-
sary. The adjusted number of solutions will then be used to sub-sample a sample of
only solvable instances in order to minimise the variance ofthe number of solutions.
This final sub-sample should then have the properties mentioned above.

The method used to construct the test-set then consists of four steps:

36

Step 1: parameter adjustment Check if the values used for the CSP generated are
equal to the parameters that should be used in Smith’s formula. Because the
CSP generator will choose discrete numbers of constraints and compound labels
and Smith’s formula uses real numbers, it is safe to assume that there will be a
difference between the two parameter vectors used. The different parameters will
produce different calculated number of solutions and an adjustment will have to
be made for this. We will usex′

e to indicate the adjusted number of solutions.

Step 2: sample sizingThe test-set construction method described below depends for
a large part on statistical analysis. For statistical analysis to be accurate, a large
sample of CSP instances is necessary. In this step we generate a large sample of
CSP instances for each density-tightness combination in the mushy region. For
each CSP instance in the sample the number of solutions is calculated using a
classical algorithm. The average number of solutions of thesample, denoted by
x, is then compared to the adjusted number of solutions found in the first step.
If the difference betweenx andx′

e is significant, this could be the result of not
having generated enough CSP instances for the samples. We therefore generate
more CSP instances until either the difference betweenx andx′

e becomes in-
significant or a maximum practical sample size of1000 CSP instances has been
reached. If the difference betweenx andx′

e is still significant, continue with
Step 3, otherwise continue with Step 4.

Step 3: formula correction Because we generated samples with a large number of
CSP instances, we can assume that the difference betweenx andx′

e is not due
to having too small a sample. The difference is most likely caused by Smith’s
formula calculating an inaccurate number of solutions. We therefore have to
analyse the relationship betweenx andx′

e to see if the over- or under-estimation
is systematic. If it is, we can correctx′

e for this, resulting in the corrected number
of solutions, denoted byx′′

e . We then have to analyse the difference betweenx
andx′′

e to see if it is significant. If it is, we have to consider another correction,
if it is not we continue with Step 4.

Step 4: CSP instance selectionWith x approximately equal to eitherx′
e or x′′

e , we
will use it to sub-sample a sample of only solvable CSP instances. The single
criterion for the sub-sampling is to minimise the variance of the hardness of the
sub-sample. We do this by generating new samples for each density-tightness
combination in the mushy region consisting of only solvableinstances. The new
samples are equal in size to the samples generated in Step 1. For each CSP in-
stance in the sample, the number of solutions is calculated using a sound and
complete algorithm. The CSP instances in these samples are ordered accord-
ing to the difference between the calculated number of solutions of the CSP
instances and eitherx′

e or x′′
e , depending on whether step 3 was necessary. The

sub-samples in the mushy region consist of the25 instances with the smallest
difference.

In Steps 2 and 3, the difference between the average number ofsolutions of the sample
and the estimated number of solutions is used as a test. This involves a statistical

37

analysis using the following hypothesis:

Hypothesis 4.1
In the mushy region the average number of solutions (x) of a given sample is equal to
the estimated number of solutions (xe):

H0 : x = xe

Ha : x 6= xe

In Steps 2 and 3, the adjusted number of solutions (x′
e) or the corrected number of

solutions (x′′
e) will replacexe in the hypothesis.

The null-hypothesis (H0) is rejected when the5% margin of error betweenx andxe (or
x′

e, x′′
e) is exceeded. For the hypothesis test we calculate the95% confidence interval

of the samples. If the number of solutions (xe, x′
e, or x′′

e) lies outside the confidence
interval, the null-hypothesis is rejected. The confidence interval of a sample of sizeN
of a population having unknown meanµ with known standard deviationσ is calculated
as follows:

x ± z∗
σ√
N

(4.3)

wherez∗ is the value on the standard normal curve with areaC between−z∗ andz∗.
C is exact when the population distribution is normal and is approximately correct for
largeN in other cases.C denotes the confidence interval.

The calculation of the confidence level assumes that the distribution of the sample
points is normal. This we can not assume for the samples generated here. Thecentral
limit theoremstates that when we draw a simple random sample from any population
with finite standard deviation, the sampling distribution of the sample mean is approx-
imately normal. The size of the sample needed to get a close approximation of the
mean depends on the population distribution. We implement this by splitting the sam-
ple into25 equal parts and calculating the mean for each of these parts.According to
the central limit theorem, the distribution over these means approximates a normal dis-
tribution. The confidence interval of hypothesis 4.1 is calculated over these25 means.

4.2.1 Step 1: Parameter Adjustment

Smith’s formula uses four parameters to calculate the number of solutions:n for the
number of variables,m for the uniform domain size,p1 for density, andp2 for average
tightness. The parameters are the same as the parameters in the parameter vector of the
modelF CSP generator. The last parameter of the modelF CSP generator is different
but as we approximatep1 by a stepwise increase ofpe, we can usep1 instead. Smith’s
formula uses the four parameters to exactly calculate the number of solutions meaning
that it will take fractional constraints and compound labels into account. The model

38

n m p′
1 p2 x′

e

10 10 0.1111 0.9 100000
10 10 0.2 0.9 10
10 10 0.3111 0.8 1.638
10 10 0.4 0.7 3.874
10 10 0.5111 0.6 7.037
10 10 0.6 0.6 0.180
10 10 0.7111 0.5 2.328
10 10 0.8 0.5 0.146
10 10 0.9111 0.4 8.020

Table 4.1:x′
e calculated using the actual density (p′1) values.

F CSP generator can not do this, the number of generated constraints and the number
of generated compound labels is by definition integer. The model F CSP generator
does this by rounding the number of constraints and the number of compound labels
to the next nearest integer number. When the number of solutions of the generated
CSP instances is calculated this behaviour will introduce adifference between calcu-
lated number of solutions by Smith’s formula and the number of solutions. We will
compensate for this difference by adjusting the density andthe average tightness of the
generated CSP instances and use these parameters to calculate the number of solutions
by Smith’s formula. We will usep′1 andp2

′ to denote the adjusted density and average
tightness.

The adjusted density of a binary CSP instance can be calculated by:

p′1 =
‖
(

n
2

)

· p1‖
(

n
2

) (4.4)

wheren is the number of variables of the CSP instance to be generatedand‖ · ‖ is used
to denote rounding to the next discrete number. The CSP instances to be generated for
the test-set have10 variables (n = 10) so they can have a maximum of

(

10
2

)

= 45
constraints. For density valuesp1 ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, the
actual density values of the CSP instances arep′1 ∈ {0.1111 . . ., 0.2, 0.3111 . . ., 0.4,
0.5111 . . ., 0.6, 0.7111 . . ., 0.8, 0.9111 . . .}. The rounding difference betweenp1 and
p′1 is therefore0.0111 . . . for density valuesp1 ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.

Because of the larger number of conflicts to be generated for aCSP instance, the round-
ing difference betweenp2 andp2

′ is usually negligible. The adjusted average tightness
of a binary CSP instance can be calculated by:

p2
′ =

‖
(

n
2

)

· p′1 · m2 · p2‖
(

n
2

)

· p′1 · m2
(4.5)

wheren is the number of variables andm is the uniform domain size and‖ · ‖ is again

39

p′
1 p2 x′

e x s CI95%

0.1111 0.9 100000 78127 10217 (73910,82345)
0.2 0.9 10 6.743 6.482 (4.067,9.419)
0.3111 0.8 1.638 1.114 0.678 (0.834,1.394)
0.4 0.7 3.874 3.015 1.059 (2.578,3.452)
0.5111 0.6 7.037 5.798 1.511 (5.174,6.422)
0.6 0.6 0.180 0.117 0.092 (0.079,0.155)
0.7111 0.5 2.328 1.937 0.668 (1.661,2.213)
0.8 0.5 0.146 0.118 0.076 (0.087,0.149)
0.9111 0.4 8.020 7.269 1.310 (6.728,7.810)

Table 4.2: Statistical analysis ofx andx′
e for the samples of1000 CSP instances in the

mushy region.

used to denote rounding to the next integer. A maximum ofm2 = 100 conflicts can be
generated for each constraint. Using the actual density values calculated above paired
with the average tightness valuesp2 ∈ {0.9, 0.9, 0.8, 0.7, 0.6, 0.6, 0.5, 0.4} (in order),
the actual average tightness values for the CSP instances inthe mushy region can be
calculated. No rounding difference between the expected average tightness values and
the actual average tightness values was found:p2 = p2

′.

The difference betweenp1 andp′1 results in different calculated number of solutions
(x′

e). Table 4.1 shows the number of solutions calculated wep′1 is used.

4.2.2 Step 2: Sample Sizing

The statistical analysis in the following steps needs a large enough sample to be accu-
rate. A sample of CSP instances is large enough when the null hypothesis of hypothesis
4.1 is valid. If the null hypothesis of hypothesis 4.1 is valid for a sample size smaller
or equal to the maximum sample size (1000 CSP instances) we continue with Step 4,
if not, further modifications of the estimated number of solutions is necessary (Step
3). The maximum sample size of1000 CSP instances was chosen to place a limit
on the effort needed to generate the sample and calculate thenumber of solutions for
each instance in the sample. The number of solutions of each instance in the sample is
calculated using theChronological Backtracking Algorithm.

At first a sample of100 CSP instances was generated for each density-tightness com-
bination in the mushy region. The exact number of solutions for each CSP instance
was then determined by theCBAalgorithm. The samples were then uniform randomly
divided into25 sub-samples of4 instances each. The average number of solutions was
calculated over the average number of solutions of each sub-sample. As the adjusted
number of solutions did not fall within the95% confidence interval of the average num-
ber of solutions of the sub-samples,H0 of hypothesis 4.1 had to be rejected. Next we
tried samples with200, 400 and finally1000 instances. Again, all samples were divided
into 25 equal sub-samples. The same hypothesis test was applied to all samples.

40

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1 2 3 4 5 6 7 8 9 10

av
er

ag
e

nu
m

be
r

of
 s

ol
ut

io
ns

adjusted estimated number of solutions

Figure 4.3: Scatter plot ofx′
e andx, excluding(p1, p2) = (0.1, 0.9).

Table 4.2 shows the statistical analysis of the samples with1000 CSP instances. The
first two columns show the actual density (p′1) and the tightness (p2) values of the
instances in the samples. Thex′

e column shows the estimated number of solutions for
these density-tightness combinations found in Step 1. Thex column shows the mean
of means of the sub-samples and thes column shows the standard deviation over these
means. ColumnCI95% shows the95% confidence interval of the samples. Only for
(p′1, p2)-combination(0.8, 0.5) does the adjusted estimated number of solutions fall
within the95% confidence interval. For all other combinations hypothesis4.1 has to
be rejected. The estimated number of solutions need to modified further, we have to
continue with Step 3.

4.2.3 Step 3: Formula Correction

In Step 2, we found that the adjusted number of solutions for all but one sample did
not fall within the95% confidence interval and that for these samples the null hypoth-
esis of hypothesis 4.1 had to be rejected. We take this as an indication of the fact that
the difference between the adjusted number of solutions found by Smith’s formula and
the average number of solutions calculated by a classical algorithm is not caused by
having samples of insufficient size. We hypothesise that it is the result of a systematic
error in Smith’s formula. By analysing the relationship between the adjusted number
of solutions and the number of solutions calculated by theChronological Backtracking

41

p′
1 p2 x′′

e x s CI95%

0.1111 0.9 76888 78127 10217 (73910,82345)
0.2 0.9 7.6888 6.743 6.482 (4.067,9.419)
0.3111 0.8 1.2594 1.114 0.678 (0.834,1.394)
0.4 0.7 2.9786 3.015 1.059 (2.578,3.452)
0.5111 0.6 5.4106 5.798 1.511 (5.174,6.422)
0.6 0.6 0.1384 0.117 0.092 (0.079,0.155)
0.7111 0.5 1.7900 1.937 0.668 (1.661,2.213)
0.8 0.5 0.1123 0.118 0.076 (0.087,0.149)
0.9111 0.4 6.1664 7.269 1.310 (6.728,7.810)

Table 4.3: Statistical analysis ofx andx′′
e for the samples in the mushy region.

Algorithm, we can correct the adjusted number of solution for this difference. On in-
spection of the adjusted number of solutions we decided to treat(p′1, p2) = (0.111, 0.9)
as an outlier because the value for that sample is so large compared to the other val-
ues. Figure 4.3 shows the relation between the adjusted number of solutions and the
calculated average number of solutions as a scatter plot. Along thex-axis the adjusted
number of solutions (x′

e) is shown, along they-axis the calculated average number of
solutions is shown.

The points in Figure 4.3 lie along a straight line. This indicates a linear relationship.
The strength of the relationship is calculated by the correlation coefficientr. The closer
the correlation coefficient is to1.0, the stronger the relation. The correlation coefficient
is calculated by:

r =
1

n − 1

∑

(
xi − x

sx

)(
x′

e,i − x′
e

sx′

e

) (4.6)

wherexi stands for thei-th value ofx, x for the average over all values ofxi, sx for the
standard deviation over all values ofxi, x′

e,i for thei-th value ofx′
e, x′

e for the average
over all values ofx′

e, andsx′

e
for the standard deviation over all values ofx′

e. The
correlation coefficient forx′

e andx is r = 0.98121, indicating a strong relationship.
When(p′1, p2) = (0.1111, 0.9) is included, the correlation coefficient is1.0, but this is
probably inaccurate.

The linear relationship betweenx′
e andx can be expressed by:

x′
e = α · x + β (4.7)

whereα is the slope of the line through the data points andβ is the intercept, the value
of x′

e whenx = 0. Here the intercept isβ = 0. The slope of the line through the points
in Figure 4.3 can be calculated by:

α = r · sx′

e

sx

(4.8)

42

p′
1 p2 xsubsample ssubsample

0.1111 0.9 77340 1289.3
0.2 0.9 8 0
0.3111 0.8 1 0
0.4 0.7 3 0
0.5111 0.6 5 0
0.6 0.6 1 0
0.7111 0.5 2 0
0.8 0.5 1 0
0.9111 0.4 6 0

Table 4.4: Mean and standard deviation of the sub-samples inthe mushy region.

wherer stands for the correlation coefficient,sx′

e
for the standard deviation ofx′

e and
sx for the standard deviation ofx, the latter two calculated over the values from the
scatter plot. The slope of the straight line through the datapoints in the scatter plot is
α = 0.76888, the relationship found is thenx = 0.76888 · x′

e. This relationship is
shown in Figure 4.3 by the dotted line.

We use this relationship to correct the adjusted number of solutions a second time, by
introducing a correction factor. The correction of the adjusted number of solutions
is denoted byx′′

e . Table 4.3 shows the statistical analysis of the samples using x′′
e .

The other columns of the table are copied from Table 4.2. The corrected number of
solutions all fall inside the confidence interval of their respective samples. The null
hypothesis of hypothesis 4.1 is valid when the corrected number of solutions is used.
No further correction of the number of solutions is necessary: we can continue with
Step 4.

4.2.4 Step 4: CSP Instance Selection

With eitherx′
e orx′′

e , Step 4 is used to finish constructing the test-set. We first generated
1000 new samples of solvable CSP instances for each density-tightness combination in
the density-tightness parameter space. TheFCCDBAwas used to calculate if the CSP
instance is solvable. If not, another CSP instance was generated until a solvable one
was generated. Using theChronological Backtracking Algorithmwe calculated the
number of solutions for each CSP instance in these samples. The samples were then
ordered according to the difference of the calculated number of solutions and eitherx′

e

or x′′
e . From each sample the25 CSP instances with the least difference was selected

for the test-set. In Table 4.4 the average number of solutions and the standard deviation
for the selected instances in the mushy region are shown.

The nine sub-samples in the mushy region added to the uniformrandomly generated
samples from the solvable region form the test-set that willbe used throughout the rest
of the thesis.

43

44

Chapter 5

Iterated Local-Search and
Evolutionary Algorithms

Evolutionary algorithms belong to a group of algorithms called Iterated Local-Search
algorithms (ILS). The Iterated Local-Search meta-heuristic can be described in a nut-
shell as follows: a sequence of candidate solutions is builtiteratively by an embedded
heuristic, leading to better candidate solutions than if repeated random trials of that
heuristic were used. This simple idea ([12]) has a long history and has lead to many
differently named algorithms: iterated descent [11, 10], large-step Markov chains [61],
iterated Lin-Kernighan [53], chained local optimisation [60], or combinations of these
[3]. The historical development of iterated local-search algorithms can be found in
[54].

An algorithm is considered a local-search algorithm when there is a single chain of
candidate solutions that is followed, and the search for better candidate solutions oc-
curs in a reduced space defined by the output of an embedded heuristic. In practice,
local-search has been the most frequently used embedded heuristic, but in fact, any
optimiser can be used, be-it deterministic or not. Althoughthe description limits the
algorithm to following only a single chain of candidate solutions, often more than one
chain is followed concurrently. These algorithms are stillconsidered to be ILS algo-
rithms although they are also called concurrent ILS algorithms or population-based ILS
algorithms.

In essence, an ILS algorithm consists of two parts: a move operator containing the
embedded heuristic and a selection operator. The move operator is used to search
through the search space of the problem. The selection operator is used to direct the
search by selecting candidate solutions for the next iteration of the algorithm. The basic
pseudo-code of an ILS algorithm is shown in algorithm 5.1.

Algorithm 5.1: The Iterated Local Search Algorithm

1 funct ILS ≡
2 P := initialise;

45

3 while ¬contains solution(P) do
4 P := move(P);
5 evaluate(P);
6 P := select(P);
7 od
8 end

In algorithm 5.1 we see that the while-loop from line 3 to 7 iteratively applies the
move-operator to a population of candidate solutions (P). The population is randomly
initialised in line 2. The algorithm is terminated when a solution is found. Because
some problem instances are unsolvable, a maximum number of iterations is commonly
used to stop the algorithm as well. Themove-operator of the ILS algorithm (line
4) modifies these candidate solutions using a heuristic embedded in the operator. The
select-operator (line 6) then selects candidate solutions for thenext iteration. Selection
of the population for the next iteration of the algorithm is based on the evaluation of the
population, implemented in theevaluate-operator, also called the objective function.

Many different implementations of the ILS algorithm have been proposed. Different
selection methods provide different operators based on thenotion of the selection pres-
sure. Selection pressure is used to express the strength of the selection. High selection
pressure is exerted when only the best candidate solutions are selected, no selection
pressure is exerted when candidate solutions are selected uniform randomly. Selec-
tion is related to the problem by the objective function. Thebest candidate solutions
are selected, for example, by ordering the population according to the value given by
the objective function. The best candidate solution is thenthe first candidate solution
in the ordering. Different problems have different objective functions and sometimes
different objective functions exist for a single problem.

The move operator includes a heuristic, or rule-of-thumb, and is used to search through
the search space of the problem. This heuristic can be deterministic or non-determi-
nistic. The move operator usually focusses on part of the problem, a sub-problem,
trying to solve it every time the heuristic is used. At each iteration of the algorithm
different sub-problems can be solved. The choice of which sub-problem to solve can
be made randomly but usually a heuristic is used for this as well. ILS is closely related
to neighbourhood search. In neighbourhood search a sub-problem is chosen and all
possible solutions for the sub-problem are generated. The select operator then selects
the best solution, i.e., candidate solution, that was generated. When two best candidate
solutions with equal quality have been generated, one of them is selected at random.
For example, a move-operator for the CSP can be implemented by selecting a variable
of the CSP instance and generating candidate solutions werethis variable is labelled
with all possible values in the domain of the variable. The selection operator then
selects the candidate solution with the least number of constraint violations. The set
of candidate solutions with a different label for a single variable can been seen as the
neighbourhood of the original candidate solution. The nameneighbourhood search
stems from the fact that the move operator searches through the neighbourhoods in the
chain of candidate solutions in order to find a solution.

An example of an ILS algorithm is theSimulated Annealingalgorithm [1]. Simulated

46

Annealing was introduced as a generalisation of a Monte Carlo method for examining
the equations of state and frozen states ofn-body systems [63]. The concept is based on
the manner in which liquids freeze or metals re-crystalise in the process of annealing.
In an annealing process, a melt, initially at high temperature and disordered, is slowly
cooled so that the system at any time is approximately in thermodynamic equilibrium.
As cooling proceeds, the system becomes more and more ordered and approaches a
“frozen” state at its lowest temperature. The process can bethought of as an adiabatic
approach to the lowest energy state. If the initial system temperature is too low or cool-
ing is done insufficiently slowly, the system may become quenched, forming defects or
freezing out in meta-stable states, i.e., trapped in a localminimum energy state. Sim-
ulated Annealing is an example of an ILS algorithm with adaptive selection pressure
regulated by temperature, applied on a population of candidate solutions altered by a
move operator specific to a problem. For different problems,different move operators
can be used.

In the next section two examples of general ILS algorithms are given: theRandom
Search Algorithmand theHill Climber with Restart Algorithm. Both algorithms will
be used as benchmark algorithms in the rest of the thesis. In the last section of this
chapter, evolutionary algorithms will be introduced. A basic evolutionary algorithm,
called theIntuitive Evolutionary Algorithmwill be introduced as a benchmark for the
other evolutionary algorithm introduced later in this thesis.

5.1 TheRandom Search Algorithmand theHill Climber
with Restart Algorithm

Two Iterated Local-Search algorithms will be introduced inthis section: theRandom
Search Algorithm(RSA) and theHill Climber with Restart Algorithm(HCAWR). The
Random Search Algorithmis a very simple algorithm and throughout the rest of the
thesis it will be used to distinguish the CSP instances that are easy to solve from the
ones that are hard to solve. TheHill Climber with Restart Algorithmis more powerful
and it will be used as a performance benchmark for the evolutionary algorithms in the
thesis.

5.1.1 TheRandom Search Algorithm

TheRandom Search Algorithmis to the ILS algorithms what a brute-force algorithm
is to the classical algorithms. It tries to solve a problem byrepeatedly checking if
randomly instantiated candidate solutions are solutions to the problem. A randomly
instantiated candidate solutions for the CSP is a candidatesolution were all variables
are labelled with a uniform randomly chosen value from the variable’s domain.

The Random Search Algorithmdoes not include an imbedded heuristic to guide the
search, nor does it have memory or a selection operator. It isalso possible to randomly
instantiate a candidate solution that has been checked before. At the beginning of the

47

search, the probability of ‘rechecking’ a candidate solution is small, but as the search
continues, and more and more (unique) candidate solutions have been checked, this
probability increases. TheRandom Search Algorithmis not a complete algorithm and
will search for a solution indefinitely when the problem is unsolvable. A maximum
number of candidate solutions that theRandom Search Algorithmis allowed to check
is therefore also used to terminate the search.

Like the brute-force algorithm for classical algorithms, theRandom Search Algorithm
has a low probability of finding a solution in reasonable timeif the complexity of the
problem is non-trivial. The usefulness of theRandom Search Algorithmis therefore
limited. In this thesis, theRandom Search Algorithmis used to determine which con-
straint satisfaction problems are trivial or not. It is alsoused to provide a minimum
performance for the other algorithms.

Algorithm 5.2 shows the pseudo-code of theRandom Search Algorithm. It shows that
the Random Search Algorithmhas no selection operator. As theinitialise method
produces randomly instantiated candidate solutions, it replaces themove operator in
line 5. Added are themax evaluations parameter and theevaluations variable in
order to terminate the algorithm after a maximum number of candidate solutions have
been checked. The check is made by the while statement (line 4). The evaluate
operator has been changed to return the number of evaluations necessary to evaluate
the population. This is usually equal to the size of the population. If the population
consists of only a single candidate solution, the maximum number of evaluations is
equal to the number of iterations.

Algorithm 5.2: The Random Search Algorithm

1 funct RSA(max evaluations) ≡
2 evaluations := 0;
3 P := initialise;
4 while ¬contains solution(P) ∨ evaluations < max evaluations do
5 P := initialise;
6 evaluations := evaluations + evaluate(P);
7 od
8 end

5.1.2 TheHill Climber with Restart Algorithm

TheHill Climber with Restart Algorithmis an example of a standard Iterated Local-
Search algorithm. After initialising a population randomly, the Hill Climber with
Restart Algorithmwill solve a problem by repeatedly applying a heuristic moveop-
erator and selecting the best candidate solution for the next iteration. TheHill Climber
with Restart Algorithmis not a complete algorithm and a maximum number of can-
didate solutions that it is allowed to check is therefore setas a parameter. TheHill
Climber with Restart Algorithmterminates when either a solution of the problem is
found or when the maximum number of candidate solutions is checked.

For the constraint satisfaction problem, theHill Climber with Restart Algorithmini-

48

tialises a candidate solution by labelling each variable ofthe candidate solution with
a random value in the variable’s domain. The most commonly used move operator
selects a variable in the candidate solution uniform randomly and then generates the
candidate solutions where that variable is labelled with all possible values in the do-
main of the variable. These candidate solutions are then added to the population. The
selection operator then selects the candidate solution from the population which vio-
lates the least number of constraints of the CSP.

TheHill Climber with Restart Algorithmis an example of a neighbourhood search al-
gorithm. A problem with using neighbourhood search is that it can become stuck in
a local optimum. This happens when the neighbourhoods of allvariables of the prob-
lem have been examined. Because all value combinations of these variables have to
be checked, this takes a large number of search steps when thenumber of variables
of the problem is large and/or the domains of these problems are large. Since the
neighbourhood of a candidate solution depends on all valuesof the variables in the
candidate solution, two candidate solutions in which only asingle variable is labelled
differently therefore have different neighbourhoods. Whenthe neighbourhoods of all
value-combinations of the variables have been examined, theHill Climber with Restart
Algorithm will revert to re-examining candidate solutions that have been checked al-
ready. When this happens, the population maintained by theHill Climber with Restart
Algorithm is said to have converged on a local optimum and the algorithmis said to be
stuck in a local optimum. At this point, theHill Climber with Restart Algorithmwill
be unable to proceed to a global optimum on its own.

In order for theHill Climber with Restart Algorithmto escape a local optimum, a
restart strategy is used: during the search, theHill Climber with Restart Algorithmis
restarted with a new, randomly generated, population, and the search for the global
optimum is renewed. Different restart strategies can be applied, depending mostly on
when to restart the algorithm. We have implemented a naive restart strategy, were the
Hill Climber with Restart Algorithmis restarted after a preset number of iterations.

Algorithm 5.3 shows the pseudo-code of theHill Climber with Restart Algorithmwith
this restart strategy. Like theRandom Search Algorithm, theHill Climber with Restart
Algorithm also has a parameter calledmax evaluations determining the maximum
number of candidate checks allowed. The variable is checkedagainst theevaluations
parameter in the while statement (4). Again theevaluate operator returns the number
of evaluations necessary to evaluate the population, usually equal to the size of the
population. Themove hill climber described earlier replaces themove operator in
line 9. The restart strategy is implemented by adding therestart interval parameter
and the if-then-else statement. After an interval ofrestart interval evaluations have
been performed, the population is replaced by a new, randomly initialised, population
(line 7). No more modification is then done, as it is possible to find a solution in the
new population. The mod-operator returns the remainder of the division ofiteriations
and restart interval. If iterations is a natural multiple ofrestart interval, the
mod-operator returns zero. It is possible that for certain combinations of population
size andrestart interval values, the mod is not exactly zero while a restart of the
algorithm is still necessary. When the number of evaluationsfor each iteration is equal

49

to the population size, line 5 should then be replaced withif evaluations > 0 ∧
evaluations modrestart interval < |P |.
Algorithm 5.3: The Hill Climber with Restart Algorithm

1 funct HCAWR(max evaluations, restart interval) ≡
2 evaluations := 0;
3 P := initialise;
4 while ¬contains solution(P) ∨ evaluations < max evaluations do
5 if evaluations > 0 ∧ evaluations modrestart interval = 0
6 then
7 P := initialise;
8 else
9 move hill climber(P);

10 fi
11 evaluations := evaluations + evaluate(P);
12 P := select(P);
13 od
14 end

5.2 Evolutionary Algorithms

Evolutionary algorithms are based on the evolution paradigm. First described by
C. Darwin in “The Origin of Species by Means of Natural Selection or the Preservation
of Favoured Races in the Struggle for Life.” ([21]), the mostwidely accepted collection
of evolutionary theories today is the neo-Darwinian paradigm. Neo-Darwinian theory
arguments that the history of life can be fully accounted forby physical processes
operating on and within populations and species ([47]).

The processes described in the neo-Darwinian paradigm are reproduction, mutation,
competition, and selection.Reproductionis an obvious property of extant species. It
is accomplished through the transfer of an individual’s genetic material to progeny.
Mutation is guaranteed, in that replication errors during information transfer will nec-
essarily occur.Competitionis the consequence of expanding populations in a finite
resource space.Selectionis the inevitable result of competitive replication as species
fill the available space. Evolution becomes the inescapableresult of interacting basic
physical statistical processes ([49, 88, 4] and others).

In [62], E. Mayr summarised some of the more salient characteristics of the neo-Dar-
winian paradigm:

1. The individual is the primary target of selection.

2. Genetic variation is largely a chance phenomenon, stochastic processes play a
significant role in evolution.

3. Genotypic variation is largely a product of recombination and “only ultimately
of mutation”.

50

4. “Gradual” evolution may incorporate phenotypic discontinuities.

5. Not all phenotypic changes are necessarily consequencesof ad hocnatural se-
lection.

6. Evolution is a change in adaptation and diversity, not merely a change in gene
frequencies.

7. Selection is probabilistic, not deterministic.

Simulations of evolution rely on these foundations [38, 32,8]. They are translated into
algorithms using the common underlying idea of all evolutionary algorithms: given a
population of individuals, the environmental pressure causes natural selection (survival
of the fittest) which causes a rise in the overall fitness of thepopulation.

That such a process can be used for optimisation is easy to see. Given an objective
function, a set of candidate solutions can be randomly created. By applying the objec-
tive function, an abstract fitness measure can be calculatedfor all candidate solutions
in the set. Based on this fitness, some of the better candidatesolutions are chosen to
seed the next generation by applying recombination and/or mutation.

Recombination is then an operator applied to a number of candidate solutions (usually
two), called parents, which results in a number of candidatesolutions, called children.
Mutation is usually a unary operation applied to one candidate solution which pro-
duces as a result a single new candidate solution. The candidate solutions produced by
recombination and mutation form an offspring population which competes, based on
their fitness, with the parent population for a place in the next generation. This pro-
cess is iterated until either a solution is found or a previously set computational limit is
reached, usually, a maximum number of candidate solutions that are examined.

In this process, selection acts as a force pushing quality, while the variation opera-
tors, recombination and mutation, create the necessary diversity. Their combined ap-
plication leads to improving fitness values in consecutive populations, approximating
optimal fitness values closer and closer.

Many components of the evolutionary process are stochastic. In selection, fitter indi-
viduals have a higher chance to be selected than less fit ones,but typically, even weak
individuals have a chance to become a parent or to survive. Recombination is stochastic
as, in general, the choice of which variables of the candidate solution will be recom-
bined is made randomly. Similarly for the mutation operator, the variables that are to
be mutated, and the values that they are taking are chosen randomly.

Evolutionary algorithms are studied by the Evolutionary Computation research field.
Over the years, four main dialects within the evolutionary computation field have been
established:Evolutionary Strategies, Evolutionary Programming, Genetic Algorithms,
andGenetic Programming. The differences between the four dialects are characterised
by the typical representations, the methods for producing random variance in the pop-
ulation, and the method employed for selecting parents. A discussion on these differ-
ences can be found in [32]. Here, it suffices to say that the algorithms discussed in this
thesis are most closely related toGenetic Algorithms.

51

5.2.1 TheIntuitive Evolutionary Algorithm

The Intuitive Evolutionary Algorithmis used as a benchmark evolutionary algorithm
for the other evolutionary algorithms in this thesis. It is specifically designed to solve
constraint satisfaction problems and is: easy to understand, has decent performance
and has no major alterations to the canonical evolutionary algorithm described above.

The pseudo-code of theIntuitive Evolutionary Algorithmis given in algorithm 5.4.
From the similarities between algorithm 5.1 and 5.4 it is easy to see that evolutionary
algorithms are part of the Iterated Local-Search group. Twodifferences are apparent:
Theselect operator from algorithms 5.2 and 5.3 is split into two selection operators,
select parents andselect survivors, and themove operator is split into acrossover
and amutate operator.

Algorithm 5.4: The Intuitive Evolutionary Algorithm

1 funct IEA(max evaluations) ≡
2 evaluations := 0;
3 P := initialise;
4 while ¬contains solution(P) ∨ evaluations < max evaluations do
5 S := select parents(P);
6 S := crossover(S);
7 S := mutate(S);
8 evaluations := evaluations + evaluate(S);
9 P := select survivors(P, S);

10 od

The split in theselect operator is necessary because evolutionary algorithms apply the
crossover andmutate operators on just a part of the population called the parent pop-
ulation. The candidate solutions in the parent population are selected with replacement.
The crossover operator typically takes two candidate solutions from the parent pop-
ulation and produces two candidate solutions from them. Many different crossover
operators have been proposed. The candidate solutions produced by thecrossover
operator are called the children of the operator, the population of all children is called
the child population. It is used as a parent population for the mutate operator. The
mutate operator takes a single parent candidate solution and produces a single child
candidate solution. Theinitialise operator initialises the population randomly, just as
in algorithms 5.2 and 5.3, theevaluate operator is also the same as in those two algo-
rithms. The conditional statement in the while loop (line 4)is called the stop-condition
of the algorithm.

In evolutionary algorithms it is customary to use the termchromosomefor candidate
solutionandgeneandallele for variableandvaluerespectively. The termindividual
is commonly used as a synonym forchromosomebut we will use in its more precise
meaning, which is to refer to a pair consisting of a candidatesolution and its fitness
value. One iteration of an evolutionary algorithm is often called ageneration. The
crossover- and themutation-operators together are called the genetic- or variation-
operators of an evolutionary algorithm.

52

Innards of the Intuitive Evolutionary Algorithm

This section will describe how theIntuitive Evolutionary Algorithmis implemented
to solve constraint satisfaction problems. In [48], Holland suggested that, for genetic
algorithms, candidate solutions should be implemented using a binary representation.
For the CSP this would entail the encoding of each value as a binary vector. The com-
plete candidate solution would then be the concatenation ofthese vectors in order. This
representation has been criticised as being cumbersome andimpractical for problems
including real values. For the CSP especially, it was found that representing the candi-
date solutions as a vector of values, without encoding, is more practical with no adverse
affects on the performance of the algorithm. As such, theIntuitive Evolutionary Algo-
rithm uses this representation for its individuals. This representation is denoted as an
ordered set of values. The individuals are initialised by uniform randomly selecting a
value from the domain of each variable in the CSP. A population is then a set of these
individuals.

The fitness value of an individual is calculated by the objective function. In algorithm
5.4 this is done using theevaluate operator. This operator evaluates all individuals in
the population. The fitness value of an individual is commonly referred to as thefitness
of an individual. The fitness of an individual is used by the selection operators for se-
lecting certain individuals over others for the next generation. The selection operators
thus determines the direction of the search of an evolutionary algorithm. An objective
function for an evolutionary algorithm solving a CSP has to be able to determine if
a candidate solution is a solution to the CSP, since at this point the search can stop.
However, since the CSP is a satisfaction problem, for an evolutionary algorithm, only
determining whether or not a candidate solutions is a solution is not enough. An ob-
jective function also has to be able to distinguish which of two candidate solutions is
better without them being solutions to the CSP. Two commonlyused methods for this
have been proposed ([17]):

1. Assign a fitness value based on the number of constraints that the individual
violates; and

2. Assign a fitness value based on the number of variables thatviolate a relevant
constraint

An individual is then a solution when either no constraints are violated or when no vari-
ables violate their relevant constraints. Both objective functions are to be minimised.
Given a CSP〈X,D,C〉, s = (〈x1, v1〉, . . . , 〈x|X|, v|X|〉) a candidate solution,ci a
constraint inC, andCj the set of constraints relevant toxj , the two objective functions
f1 andf2 are defined as follows:

f1(s) =

|C|
∑

i=1

χ(s, ci) (5.1)

53

where

χ(s, ci) =

{

1 if violates(s, ci)

0 otherwise.
(5.2)

and

f2(s) =

|X|
∑

j=1

χ(s, Cj) (5.3)

where

χ(s, Cj) =

{

1 if ∃c ∈ Cj : violates(s, c)

0 otherwise.
(5.4)

Objective functionf1 provides more information thanf2. This is obvious when the
range of the fitness values of the two objective functions arecompared. The range of
the fitness values off1 is 〈0, |C|〉, the range of the fitness values off2 is 〈0, |X|〉. The
number of constraints in a CSP is calculated usingp1 · 1

2 |X| · (|X| − 1), therefore
whenp1 · 1

2 · |X| · (|X| − 1) > |X|, f1 will provide more information. The ranges
of the fitness values of both objective functions are equal whenp1 · (1

2 |X| − 1
2) = 1.

For example, for a CSP with10 variables, thef1 objective function will provide more
information when the density is between0.05 and0.95. Because the fitness values are
calculated over the constraints of the CSP, however, thef1 objective function will use
more conflict checks per evaluation. TheIntuitive Evolutionary Algorithmwill use the
first objective function (f1).

Many different parent selection operators have been proposed for evolutionary algo-
rithms. In various ways, all try to maintain a balance between the selection of good in-
dividuals to for further development and lesser individualin order to maintain diversity
of the population. TheIntuitive Evolutionary Algorithmuses a parent selection oper-
ator based onlinear ranking selection([87]). Linear ranking selection orders (ranks)
the individuals in the population by their fitness values. Individuals are then uniform
randomly selected based on their rank in the ordering by generating a pseudo-random
number between0 andpop size − 1, wherepop size stands for the size of the pop-
ulation. Since most pseudo-random number generators only generate numbers in the
range[0, 1〉, the rank is calculated by multiplying the random number bypop size and
rounding it down to the nearest integer number:

i = ⌊pop size · random⌋ (5.5)

wherei is the rank in the ordered population andrandom a pseudo-random number
in the range[0, 1〉. ⌊·⌋ denotes that the number is rounded down to the nearest natural

54

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

m
ul

tip
lie

r

random value

linear
bias=1.2
bias=1.5
bias=1.7

bias=2

Figure 5.1: Biased ranking multiplier plotted againstrandom-values for bias ∈
{1.0(linear), 1.2, 1.5, 1.7, 2}.

number. Selection pressure in linear ranking selection is exerted through the random
selection ofrankedindividuals.

The Intuitive Evolutionary Algorithmchanges the linear ranking selection operator by
adding a bias so that better individuals are more often selected. The operator is called
the biased rankingselection operator. The amount of bias is set by a bias-parameter
for the operator:bias. The range ofbias is between1 (no bias, or linear ranking
selection) and2 (strong bias), inclusive. Which individual is selected is calculated by
the following equation:

i =

⌊

pop size · bias −
√

bias2 − (4 · (bias − 1)) · random

2 · (bias − 1)

⌋

(5.6)

wherei is the rank in the ordered population, andrandom and ⌊·⌋ the same as in
equation 5.5.

The effect of different values for the bias-parameter is show in Figure 5.1. It shows
the ranking multiplier(bias −

√

bias2 − (4 · (bias − 1)) · random)/(2 · (bias − 1))
(y-axis) applied to the population size (equation 5.6) for different values ofbias for
the range of possiblerandom values (x-axis). The line “linear”, whenbias = 1,
shows that no bias is applied and every individual has the same chance of being se-
lected. Whenbias is increased, the range ofrandom where higher ranked individuals

55

'

&

$

%

IEA

Evolutionary Model Steady State
Representation Ordered Set of Values
Objective Function f1

Crossover operator Uniform Random Crossover
Mutation operator Uniform Random Mutation
Parent Selection Biased Ranking
Survivor Selection Elitist Replace Worst
Other Functions None

Table 5.1: Characteristics of theIntuitive Evolutionary Algorithm.

are chosen increases while the range ofrandom where lower ranked individuals are
chosen decreases.

The survivor selection operator merges the child-population of the genetic operators
(S) with the population of the evolutionary algorithm (P). TheIntuitive Evolutionary
Algorithm uses anelitist replace worst survivor selectionoperator. A survivor selec-
tion operator is called elitist when is preserves individuals from the population with
the best fitness value. In theIntuitive Evolutionary Algorithmonly a single individ-
ual from the population is preserved. The other individualsfrom the population are
replaced by individuals from the child population when their fitness values are worse.
The survivor selection operator in theIntuitive Evolutionary Algorithmmaintains the
size of population. An evolutionary algorithm in which recombination of less than
the whole population is performed every generation is said to employ thesteady state
evolutionary model.

The genetic operators used in theIntuitive Evolutionary Algorithmare called theuni-
form random crossoveroperator and theuniform random mutationoperator. The uni-
form random crossover operator takes two parent individuals and randomly swaps each
value between them, producing two child individuals. Uniform random mutation is
also calledk/l-mutation. It takes a single parent individual and changes each value
with probabilityp, called the mutation rate. It takes its name from the two parameters
to calculate the mutation rate:l for the number of values of the individuals, here the
number of variables of the CSP to solve, andk the parameter to determine the muta-
tion rate using the equation:p = k

l
. Much theoretical and empirical research has been

done on the best mutation rate setting (see for example [36, 43, 79, 67]) for different
evolutionary algorithms for different problems. Through experimentation we found
thatk = 1 is a near optimal value for the mutation rate for theIntuitive Evolutionary
Algorithm, constraint satisfaction problem combination. The value in the individual is
changed to another value in the domain of its variable.

The characteristics of all evolutionary algorithms proposed in the thesis will be sum-
marised incharacteristics tables. The characteristics table of theIntuitive Evolutionary
Algorithm is shown in Table 5.1.

56

Chapter 6

Performance Measures and
Experimentation

In this chapter theRandom Search Algorithm, theHill Climber with Restart Algorithm,
and theIntuitive Evolutionary Algorithmalgorithms will be used as an example of our
method of experimentation. First we introduce the performance measures that will
be used throughout the thesis and how they are displayed in tables and figures. The
measurements of the three algorithms will be shown next. In the third and final section
of the chapter we show how the results are compared and how conclusions can be
drawn from them with a certain degree of accuracy.

6.1 Performance Measures

The classical algorithm described earlier only needed a single performance measure,
the number of conflict checks needed to find a solution if the problem instance is
solvable or the number of conflict checks needed to determineif a problem instance
is unsolvable. Because non-deterministic algorithms are not complete, the conflict
checks performance measure does not give enough information. If, for example, a
non-deterministic algorithm does not find a solution duringa run, this does not imply
that the problem instance the algorithm was trying to solve is unsolvable. This can only
be estimated with some degree of certainty with a very long run or a large number of
shorter ones and even then, there is the possibility of not finding a solution when there
is one. Since in this thesis we use a test-set that contains only solvable CSP instance,
this experiment is actually unnecessary, however, this does not mean that multiple runs
on a single instance are also unnecessary because multiple runs will provide an esti-
mate of the overall performance of the algorithm. An accurate estimate of the overall
performance of the algorithm can be given by running the algorithm multiple times on
the same (set of) problem instances and then averaging the performance measures over
the number of runs. The accuracy of the estimate increases when the number of runs

57

increases.

This section will define a number of performance measures. The measures will be used
to assess the performance of the algorithms on three properties:

1. The effectiveness; which determines how good an algorithm is in finding a solu-
tion;

2. The efficiency; which determines how fast an algorithm canfind a solution; and

3. The behaviour: which gives an insight in how an algorithm finds a solution.

Behavioural measures can also give an explanation on why onealgorithm outperforms
another.

6.1.1 Success Rate

The Success Rate (SR) of an algorithm is calculated by dividing the number of success-
ful runs of an algorithm by the total number of runs. A successful run of an algorithm
is a run where the algorithm found a solution to the problem. The range of theSR
measure is between0 and1, but is sometimes expressed as a percentile. If theSRis 0,
no solutions were found, if it is1, all runs were successful. TheSRis a measure of the
effectiveness of the algorithm.

TheSRmeasure is the most important measure when we compare two algorithms. An
algorithm with a higherSRfinds more solutions than an algorithm with a lowerSR,
and finding solutions is, after all, what the algorithm is designed to do. The accuracy
of theSRmeasure is influenced by the total number of runs, more runs provide a more
accurate approximation of theSRof the algorithm. When the difference between the
SRof two algorithms is small, it does not necessarily mean thatthe algorithm with
the bestSRoutperforms the other algorithm. The difference can also becaused by
the inaccuracy of the measure, properties of the test-set used, and random influences.
Further analysis is then necessary.

6.1.2 Average Number of Evaluations to Solution

The average number of evaluations to solutions (AES) of an algorithm is calculated by
the average number of evaluations over all successful runs.The number of evaluations
is calculated by counting the number of times that the evaluate operator was used by
the algorithm. If a run is unsuccessful,AESis undefined. TheAESis a measure of the
efficiency of the algorithm.

TheAESmeasure is used as a secondary measure for comparing two algorithms. When
two algorithms have approximately the sameSR, theAESmeasure is used to determine
which algorithm is more efficient. The algorithm with the lower AESis more efficient
than the algorithm with a higherAES.

58

6.1.3 Conflict Checks

The number of conflict checks needed to find a solution (CC) measure is calculated by
the average number of conflict checks over all successful runs. The number of conflict
checks is calculated by counting the number of times that a compound label is tested
to be in a constraint of the CSP. If a run is unsuccessful,CC is undefined. TheCC
measure is a measure of the efficiency of the algorithm.

TheCC measure is used as a more fine grained efficiency measure or to compare the
performance of a non-deterministic algorithm with a classical algorithm. TheCCmea-
sure is more precise than theAESbecause it counts the conflict checks used while
the AEScounts the evaluations. Because different evaluation operators use different
amounts of conflict checks and evaluations of different candidate solutions also use
different amounts of conflict checks, the difference between two algorithms can be
quite large.

TheCC measure also accounts for the “hidden work” done by the algorithm. Hidden
work is defined as the number of conflict checks performed by the algorithm outside
the evaluation operator. The efficiency of the evaluation operator can be approximated
by dividing theCCby theAES. This can only be an indication of the efficiency because
it leaves out the hidden work performed outside the evaluation operator.

6.1.4 Unique Individuals Checked

The number of unique individuals checked (UIC) measure is calculated by counting
the number of unique candidate solutions that were evaluated during the run. TheUIC
measure is a behavioural measure and is measured at intervals during a run. When the
UIC measure is applied to a number of runs, the measure is averaged over all runs at
each interval. The interval over which the measure is calculated is usually every100
or 1000 evaluations, depending on the maximum number of evaluations allowed.

For a single run, theUIC consists of a monotonic increasing sequence of values. When
the algorithm has not converged on a local optimum it consists of a strict monotonic
increasing sequence of values. When theUIC is averaged over all runs, it does not have
to consist of a monotic sequence of values, as smaller numbers of unique individuals
can occur when one of the runs is successful and the remainingruns have an average
UIC that is smaller than the averageUIC including the successful run. TheUIC mea-
sure is depicted as a plot where on thex-axis the number of evaluations and on the
y-axis the (average)UIC is shown. The line where every evaluated candidate solution
is unique is added as a reference.

6.1.5 Mean Best Fitness and Mean Champion Error

The mean best fitness (MBF) measure is calculated by averaging the fitness value of
the best candidate solution in the population over a number of runs at a given moment.
Moments are specified via our notion of time, measured by performed fitness evalu-

59

ations. TheMBF measure is depicted as a plot where on thex-axis the number of
evaluations and on they-axis theMBF measure is shown. TheMBF measure depends
on the fitness function. This makes comparing two algorithmswith different fitness
functions difficult which is why in the same plot the championerror is added.

The mean champion error (MCE) measure is calculated by averaging the number of
violated constraints of the best candidate solution (the champion) in the population,
again over a number of runs at a given moment. Just as theMBF measure, the intervals
are determined using the number of performed fitness evaluations. This measure is
independent of the evaluation operator used. A plot where both theMBF and theMCE
measure are shown uses the left-handy-axis for theMBF measure and the right-hand
y-axis for theMCE measure.

The interval over which both measures are commonly used is100 or 1000 evaluations.
Both theMBF and theMCE measures are behavioural measures.

6.2 Experimentation

All experiment in this thesis will be performed on the test-set generated in Chapter
4. 10 independent runs on all1475 instances in the test-set will be performed. Al-
though this might seem like a low number of runs, performing10 independent runs on
25 instances for each density-tightness combination in the test-set provides250 sam-
ple points for each density-tightness combination. As there are59 density-tightness
combinations in the test-set this amounts to a total of14750 runs performed for each
algorithm. TheSRis calculated over all250 sample points for each density-tightness
combination, theAESandCC measures are calculated over successful runs only. The
UIC, MBF, andMCEmeasures are calculated at an interval of1000 evaluations during
each run. All algorithms use a population size of10 candidate solutions for all runs. A
maximum number of100000 evaluations is allowed for each algorithm. With a popu-
lation size of10 candidate solutions this allows for approximately10000 generations
depending on the algorithm used.

The results of the experiments will be summarised by three tables and two plots of each
algorithm. The tables show theSR, AES, andCC measures. Along the columns of the
table the density is shown, along the rows the average tightness is shown. Density-
tightness combinations not in the test-set are representedwith a ’-’. The density-
tightness combinations in the mushy region are representedin the lowest row for each
column in the tables. When theAESand CC measures exceed100000000 evalua-
tions and conflict checks respectively, they will be roundedto the nearest million with
·106added. The two plots show theUIC, and theMBF MCEplots as explained earlier.

6.2.1 Results of theRandom Search Algorithm

In Table 6.1 the parameters used for the experiments withRandom Search Algorithm
are shown. Table 6.2 shows theSRof the Random Search Algorithm. It shows that

60

RSA

Population Size 10
Selection Siz 10
Maximum Number of Evaluations100000

Table 6.1: Parameters of theRSA.

the Random Search Algorithmis unable to solve any CSP instance in the mushy re-
gion except for density-tightness combination(0.1, 0.9) where53.2% of the runs were
successful. As theRandom Search Algorithmsearches for a solution by checking ran-
domly instantiated candidate solutions, this rather poor performance was to be ex-
pected. Table 6.2 also shows that for a large portion of the solvable region in the
test-set,RSAfound a solution for all runs (aSRof 1.0). The instances in this region
are obviously very easy to solve and should not be used to compare the performance
of two algorithms. Table 6.2 also shows that theSRof theRandom Search Algorithm
drops off sharply after these easy instances. For the harderinstances a more powerful
search method is required.

Table 6.3 shows theAESof theRandom Search Algorithm. For the density-tightness
combinations where no runs were successful, theAESmeasure is undefined, indicated
byundef.For the density-tightness combinations where all runs weresuccessful theAES
is low. TheAESmeasure is inaccurate when the number of successful runs (the SR)
is low. TheAESincreases when the complexity increases, indicating that more search
was necessary. The only two exceptions are density-tightness combinations(0.4, 0.6)
and(0.5, 0.5) but this is due to the lowSRof these density-tightness combinations and
the inaccuracy of theAES.

Table 6.4 shows theCC of theRandom Search Algorithm. Just as with theAESmea-
sure, for density-tightness combinations where no runs were successful, theAESmea-
sure is undefined, indicated byundef.. TheCC measure is also inaccurate when the
SRfor a density-tightness is low. Again, theCC increases when the complexity of the
instances increases.

Figure 6.1 shows theUIC of the Random Search Algorithmfor the density-tightness
combinations in the mushy region. Throughout the thesis, whenever we display plots
of results in the mushy region, we do so by displaying a group of nine plots. Each
plot in the group displays the results of an experiment on theset of CSP instances of
one of the density-tightness combinations in the mushy region. The plots are displayed
in the following order: The top row, from left to right; density-tightness combina-
tions(0.1, 0.9), (0.2, 0.9), and(0.3, 0.8). The middle row, from left to right; density-
tightness combinations(0.4, 0.7), (0.5, 0.6), and(0.6, 0.6). The bottom row, from left
to right; (0.7, 0.5), (0.8, 0.5), and(0.9, 0.4).

The plots show that theRandom Search Algorithmexamines a unique individual almost
every time a new individual is initialised. The chance of initialising a new individual
that was already examined before is small but increases as more individuals are exam-
ined. After the maximum number of individuals allowed were examined, the chance of

61

generating an individual that was already examined is approximately 104

1010 = 1
10000000 .

The Random Search Algorithmsearches through almost the maximum search space
allowed, unfortunately, most of the search space searched through is infeasible.

Figure 6.2 shows theMBF andMCE of theRandom Search Algorithmfor the density-
tightness combinations in the mushy region. The straight lines through almost all plots
indicate that no real search was performed. The exception isthe plot for density-
tightness combination(0.1, 0.9) which shows a “saw-tooth” line forMBF. This is
caused by the successful runs. When a runs are successful, thebest fitness of the
individuals in their populations is0. When a runs is successful at the interval when the
measure is taken this reduces the average mean best fitness value indicated by the spike
downwards. When the next interval is calculated, the successful run is not included and
the average mean best fitness is back at its former value. The spikes increase in depth
because the average is taken over fewer values as more and more runs are successful
and are left out. The spike is double the depth when two runs are successful at the same
interval in the run.

62

p1�p2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.3 1.0 1.0 1.0 1.0 1.0 1.0 0.58 0.216 0.044
0.4 1.0 1.0 1.0 1.0 0.52 0.088 0.0 0.0 0.0
0.5 1.0 1.0 0.996 0.28 0.012 0.0 0.0 0.0 —
0.6 1.0 1.0 0.208 0.004 0.0 0.0 — — —
0.7 1.0 0.764 0.0 0.0 — — — — —
0.8 1.0 0.104 0.0 — — — — — —
0.9 0.532 0.0 — — — — — — —

Table 6.2:SRof theRandom Search Algorithm.

p1�p2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 10 10 12 14 18 29 42 58 95
0.2 10 15 30 82 199 459 1435 3268 11966
0.3 13 37 185 644 3724 14789 40496 42819 46935
0.4 20 116 1440 9780 46054 44260 undef. undef. undef.
0.5 51 536 17410 45909 26007 undef. undef. undef. —
0.6 124 3724 50477 44650 undef. undef. — — —
0.7 465 38981 undef. undef. — — — — —
0.8 4615 47010 undef. — — — — — —
0.9 41146 undef. — — — — — — —

Table 6.3:AESof theRandom Search Algorithm.

p1�p2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 40 62 89 120 171 278 406 566 937
0.2 35 65 146 394 978 2277 7152 16217 59915
0.3 37 118 601 2134 12241 49269 132841 142246 159318
0.4 47 288 3605 24587 116234 111178 undef. undef. undef.
0.5 97 1075 34225 92617 53995 undef. undef. undef. —
0.6 205 6178 83460 76249 undef. undef. — — —
0.7 661 55714 undef. undef. — — — — —
0.8 5825 58842 undef. — — — — — —
0.9 46241 undef. — — — — — — —

Table 6.4:CC of theRandom Search Algorithm.

63

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.1,0.9)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.2,0.9)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.3,0.8)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.4,0.7)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.5,0.6)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.6,0.6)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.7,0.5)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.8,0.5)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.9,0.4)

Figure 6.1:UIC of theRandom Search Algorithm.

 0.98

 0.982

 0.984

 0.986

 0.988

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 445

 446

 447

 448

 449

 450

 451

 452

 453

 454

 455

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.1,0.9)

MBF
CE

 0.985

 0.99

 0.995

 1

 1.005

 1.01

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 800

 802

 804

 806

 808

 810

 812

 814

 816

 818

 820

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.2,0.9)

MBF
CE

 0.985

 0.99

 0.995

 1

 1.005

 1.01

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1105

 1110

 1115

 1120

 1125

 1130

 1135

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.3,0.8)

MBF
CE

 0.985

 0.99

 0.995

 1

 1.005

 1.01

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1245

 1250

 1255

 1260

 1265

 1270

 1275

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.4,0.7)

MBF
CE

 0.985

 0.99

 0.995

 1

 1.005

 1.01

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1365

 1370

 1375

 1380

 1385

 1390

 1395

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.5,0.6)

MBF
CE

 0.985

 0.99

 0.995

 1

 1.005

 1.01

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1600

 1605

 1610

 1615

 1620

 1625

 1630

 1635

 1640

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.6,0.6)

MBF
CE

 0.985

 0.99

 0.995

 1

 1.005

 1.01

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1580

 1585

 1590

 1595

 1600

 1605

 1610

 1615

 1620

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.7,0.5)

MBF
CE

 0.985

 0.99

 0.995

 1

 1.005

 1.01

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1780

 1785

 1790

 1795

 1800

 1805

 1810

 1815

 1820

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.8,0.4)

MBF
CE

 0.985

 0.99

 0.995

 1

 1.005

 1.01

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1620

 1625

 1630

 1635

 1640

 1645

 1650

 1655

 1660

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.9,0.4)

MBF
CE

Figure 6.2:MBF andMCE of theRandom Search Algorithm.

64

HCAWR

Population Size 10
Selection Siz 10
Maximum Number of Evaluations100000
Restart Interval 5000

Table 6.5: Parameters of theHCAWR.

6.2.2 Results of theHill Climber with Restart Algorithm

In Table 6.5 the parameters used for the experiments with theHCAWRare shown. In
order to find the restart interval of theHill Climber with Restart Algorithm, a number
of test experiments were done. It was found that after about5000 evaluations theHill
Climber with Restart Algorithmconverged to a local optimum and no new individuals
would be examined. The restart interval was therefore set at5000 evaluations. Table
6.6 shows theSRof the Hill Climber with Restart Algorithm. It shows that theHill
Climber with Restart Algorithmwas successful in finding solutions in all runs.

Table 6.7 shows theAESof theHill Climber with Restart Algorithm. Because all runs
were successful, theAESmeasure for theHill Climber with Restart Algorithmis reli-
able. This because theAESis an average measure and when all runs are successful its
reliability doesn’t suffer from a lack of samples. The tableshows that theHill Climber
with Restart Algorithmneeds relatively few evaluations to find a solution but that the
AESincreases as the complexity of the instances increases. This is substantiated by
Table 6.8 which shows theCC of theHill Climber with Restart Algorithm. Figure 6.3
shows theUIC plots of theHill Climber with Restart Algorithmin the mushy region.
The stepwise increase of theUIC is explained by the restart strategy. The steps have a
length of5000 evaluations. After this number of evaluations, theUIC does not increase,
indicating a premature convergence to a local optimum. At this point the population is
reinitialised randomly and theUIC increases again until5000 evaluations later another
convergence to a local optimum occurs, etc.

Figure 6.4 shows theMBF andMCE plots of theHill Climber with Restart Algorithm
in the mushy region. These plots too show stepwise changes because of the restart
strategy used. TheMBF of the population decreases stepwise while theMCE measure
shows a spiked behaviour. The spikes occur when the reinitialised population includes
not yet improved candidate solutions with a large error. Theerror is greatly decreased
when after another interval the candidate solutions are improved by the move operator.
The total number of evaluations of theMBF andMCE plots corresponds to theUIC
plot, the spikes in theMCE line correspond to the steps in theUIC plot.

65

p1�p2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 —
0.6 1.0 1.0 1.0 1.0 1.0 1.0 — — —
0.7 1.0 1.0 1.0 1.0 — — — — —
0.8 1.0 1.0 1.0 — — — — — —
0.9 1.0 1.0 — — — — — — —

Table 6.6:SRof theHill Climber with Restart Algorithm.

p1�p2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 10 10 11 13 17 22 25 33 33
0.2 10 14 23 31 39 48 54 60 69
0.3 12 24 40 50 62 73 129 235 579
0.4 17 34 55 70 281 720 2352 6203 15178
0.5 27 48 183 637 2747 7295 23718 17290 —
0.6 37 125 1112 3707 15487 18464 — — —
0.7 68 830 8744 16208 — — — — —
0.8 390 3487 15412 — — — — — —
0.9 1858 9712 — — — — — — —

Table 6.7:AESof theHill Climber with Restart Algorithm.

p1�p2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 50 105 305 561 1207 2100 2743 4003 4288
0.2 98 628 1931 3206 4470 6101 7172 8448 10198
0.3 303 1949 4264 5943 7912 9736 18817 36017 93199
0.4 910 3286 6343 8660 39583 106039 360394 976505 2 · 106

0.5 2229 5180 23882 87971 396324 1 · 106 4 · 106 3 · 106 —
0.6 3541 15254 149729 516498 2 · 106 3 · 106 — — —
0.7 7554 107407 1 · 106 2 · 106 — — — — —
0.8 48309 454559 2 · 106 — — — — — —
0.9 234242 1 · 106 — — — — — — —

Table 6.8:CC of theHill Climber with Restart Algorithm.

66

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.1,0.9)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.2,0.9)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.3,0.8)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.4,0.7)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 10000 20000 30000 40000 50000 60000 70000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.5,0.6)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.6,0.6)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.7,0.5)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 10000 20000 30000 40000 50000 60000 70000 80000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.8,0.5)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 10000 20000 30000 40000 50000 60000 70000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.9,0.4)

Figure 6.3:UIC of theHill Climber with Restart Algorithm.

 0.998

 1

 1.002

 1.004

 1.006

 1.008

 1.01

 1.012

 1.014

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
 0.998

 1

 1.002

 1.004

 1.006

 1.008

 1.01

 1.012

 1.014

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.1,0.9)

MBF
CE

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000
 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.2,0.9)

MBF
CE

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000
 1

 1.5

 2

 2.5

 3

 3.5

 4

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.3,0.8)

MBF
CE

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000
 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.4,0.7)

MBF
CE

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 0 10000 20000 30000 40000 50000 60000 70000
 1

 1.5

 2

 2.5

 3

 3.5

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.5,0.6)

MBF
CE

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1

 2

 3

 4

 5

 6

 7

 8

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.6,0.6)

MBF
CE

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1

 2

 3

 4

 5

 6

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.7,0.5)

MBF
CE

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 10000 20000 30000 40000 50000 60000 70000 80000
 1

 2

 3

 4

 5

 6

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.8,0.5)

MBF
CE

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 0 10000 20000 30000 40000 50000 60000 70000
 1

 1.5

 2

 2.5

 3

 3.5

 4

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.9,0.4)

MBF
CE

Figure 6.4:MBF andMCE of theHill Climber with Restart Algorithm.

67

IEA

Population Size 10
Selection Size 10
Maximum Number of Evaluations100000
Crossover Rate 1.0
Mutation Rate 0.1
Linear Ranking Bias 1.5

Table 6.9: Parameters of theIEA.

6.2.3 Results of theIntuitive Evolutionary Algorithm

In Table 6.9 the parameters used for the experiments with theIntuitive Evolutionary
Algorithm are shown. Table 6.10 shows theSRof the Intuitive Evolutionary Algo-
rithm. The Intuitive Evolutionary Algorithmfinds solutions in the test-set throughout
all density-tightness combinations although the performance is lower than the perfor-
mance of theHill Climber with Restart Algorithm. The Intuitive Evolutionary Algo-
rithm has trouble finding solutions for the instances in the mushy region.

Table 6.11 shows theAESof the Intuitive Evolutionary Algorithm. TheAESis higher
than theAESof theHill Climber with Restart Algorithm, especially when the hardness
of the instances increases. Because theSRof the Intuitive Evolutionary Algorithmis
low for these instances, the accuracy of theAESmeasure is also less than the accuracy
of theAESmeasure for theHill Climber with Restart Algorithm. This is substantiated
by theCC of theIntuitive Evolutionary Algorithmshown in Table 6.12.

Figure 6.5 shows theUIC plots of theIntuitive Evolutionary Algorithmin the mushy
region. The plots show that theUIC keeps increasing during the run but that the rate of
increase decreases. Important to note is that during the runno premature convergence
to a local optimum occurred.

Figure 6.6 shows theMBF andMCE plots of theIntuitive Evolutionary Algorithmin
the mushy region. TheMBF andMCE lines in the plots lie close together because the
evaluation operator of theIntuitive Evolutionary Algorithmis actually an implemen-
tation of theMCE measure. The spikes in the plots for density-tightness combination
(0.1, 0.9) are caused by successful runs and the effect they have on the average taken
for both methods. This effect is less for the other plots because the number of success-
ful runs is less.

68

p1�p2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.3 1.0 1.0 1.0 1.0 1.0 1.0 0.992 0.972 0.824
0.4 1.0 1.0 1.0 1.0 0.98 0.872 0.576 0.292 0.088
0.5 1.0 1.0 0.996 0.916 0.596 0.252 0.06 0.088 —
0.6 1.0 1.0 0.876 0.476 0.108 0.068 — — —
0.7 1.0 0.892 0.328 0.108 — — — — —
0.8 0.98 0.584 0.064 — — — — — —
0.9 0.808 0.156 — — — — — — —

Table 6.10:SRof theIntuitive Evolutionary Algorithm.

p1�p2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 10 10 11 12 16 22 28 37 42
0.2 10 13 23 37 56 79 117 133 196
0.3 12 25 57 86 171 226 1319 2697 6510
0.4 18 46 135 337 2133 5282 10054 13766 20571
0.5 31 86 1300 3151 10545 10500 19471 12835 —
0.6 51 500 5138 15594 11971 9929 — — —
0.7 92 3499 10652 19965 — — — — —
0.8 2361 9272 16009 — — — — — —
0.9 4775 18352 — — — — — — —

Table 6.11:AESof theIntuitive Evolutionary Algorithm.

p1�p2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 50 91 153 221 372 584 892 1346 1719
0.2 51 117 327 662 1289 2128 3729 4785 8023
0.3 59 223 795 1557 3940 6111 42204 97081 266928
0.4 90 415 1893 6068 49053 142605 321729 495587 843407
0.5 155 778 18198 56724 242536 283500 623083 462060 —
0.6 254 4503 71936 280690 275336 268078 — — —
0.7 461 31492 149134 359367 — — — — —
0.8 11807 83447 224122 — — — — — —
0.9 23873 165166 — — — — — — —

Table 6.12:CC of theIntuitive Evolutionary Algorithm.

69

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.1,0.9)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.2,0.9)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.3,0.8)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.4,0.7)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.5,0.6)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.6,0.6)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.7,0.5)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.8,0.5)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.9,0.4)

Figure 6.5:UIC of theIntuitive Evolutionary Algorithm.

 1.01

 1.02

 1.03

 1.04

 1.05

 1.06

 1.07

 1.08

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.01

 1.02

 1.03

 1.04

 1.05

 1.06

 1.07

 1.08

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.1,0.9)

MBF
CE

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.2,0.9)

MBF
CE

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.3,0.8)

MBF
CE

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.4,0.7)

MBF
CE

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.5,0.6)

MBF
CE

 2.7

 2.8

 2.9

 3

 3.1

 3.2

 3.3

 3.4

 3.5

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 2.7

 2.8

 2.9

 3

 3.1

 3.2

 3.3

 3.4

 3.5

 3.6

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.6,0.6)

MBF
CE

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.7,0.5)

MBF
CE

 2.8

 2.9

 3

 3.1

 3.2

 3.3

 3.4

 3.5

 3.6

 3.7

 3.8

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 2.8

 2.9

 3

 3.1

 3.2

 3.3

 3.4

 3.5

 3.6

 3.7

 3.8

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.8,0.5)

MBF
CE

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.9,0.4)

MBF
CE

Figure 6.6:MBF andMCE of theIntuitive Evolutionary Algorithm.

70

6.3 Comparison

Comparing the performance of the algorithms is done in two phases: first a superficial
inspection of the results and then a statistical analysis. The comparison focusses pri-
marily on the mushy region because we expect that in the mushyregion the differences
between the algorithms will be more pronounced.

During the first phase of the comparison we will consider theSR, AES, andCC mea-
sures of the algorithms. Table 6.13 shows these measures forthe RSA, theHCAWR,
and theIEA in the mushy region. The first phase of the comparison is only used to
determine which algorithms clearly outperform the others.The bestSRmeasure in the
table for each density-tightness combination is shown in bold-face. To make the com-
parison more accurate, we have not rounded theAESandCC measures in the mushy
region. The results in Table 6.13 show thatHCAWRoutperforms all other algorithms
when we considerSR. The RSAhas the worst performance of the three algorithms,
only for density-tightness combination(0.1, 0.9) does it solve some CSP instances.
The HCAWRalso has the bestAESof all three algorithms for most density-tightness
combinations. Although theAESfor theIEA is sometimes lower, this can be attributed
to the inaccuracy of this measure resulting from the lowerSRthat it achieved.

The first phase of the comparison shows that there is a big difference between the per-
formance of theRSA, theHCAWR, and theIEA. It is clear that theHCAWRoutperforms
the other two algorithms. At this point, no further statistical analysis is really necessary
to support this conclusion. Not all comparisons will have such a big difference though
and we give a method for statistical analysis for use in thosecases. We will analyse
the performance difference using the two samplet-test over the measures of two algo-
rithms. The standard two samplet-test formulates two hypotheses in order to decide
which has the better performance:

H0 :x1 = x2 (6.1)

Ha1
:x1 6= x2 (6.2)

There are two hypotheses, the first one, called the null-hypothesis (H0), states that the
average value of the data points in the first sample is equal tothe average value of the
data points in the second sample. The second hypothesis, thealternative hypothesis
(Ha1

), states that the average value of the data points in the firstsample is unequal
to the average value of the data points in the second sample. The result of the two
samplet-test is expressed by ap-value. Thep-value gives the probability that the null-
hypothesis (6.1) is true and the alternative hypothesis (6.2) is not. Thep-value has a
range between0.0 and1.0, ap-value of0.5 means that there is an equal probability of
both hypotheses being true, signifying that thet-test is inconclusive.

Using hypotheses 6.1 and 6.2 we can determine the probability of two algorithms hav-
ing equalSR, AES, orCCmeasures. The data points for the samples are then the values
of these measures per run, for a total of250 data points for each density-tightness com-
bination. Because a run can only be successful or unsuccessful we average these data

71

RSA HCAWR IEA
(p1, p2) SR AES CC SR AES CC SR AES CC

(0.1, 0.9) 0.532 41146 46214 1.0 1858 234242 0.808 4775 23873
(0.2, 0.9) 0.0 undef. undef. 1.0 9712 1267015 0.156 18351 165166
(0.3, 0.8) 0.0 undef. undef. 1.0 15412 20879470.064 16009 224123
(0.4, 0.7) 0.0 undef. undef. 1.0 16208 22606340.108 19965 359467
(0.5, 0.6) 0.0 undef. undef. 1.0 15487 22374190.108 11971 275336
(0.6, 0.6) 0.0 undef. undef. 1.0 18464 27415670.068 9929 268078
(0.7, 0.5) 0.0 undef. undef. 1.0 23718 36406300.06 19471 623083
(0.8, 0.5) 0.0 undef. undef. 1.0 17290 27227630.088 12835 462060
(0.9, 0.4) 0.0 undef. undef. 1.0 15178 24659750.088 20571 843407

Table 6.13: Comparison of theRSA, theHCAWRand theIEA in the mushy region.

points per CSP instance for a total number of data points per density-tightness combi-
nation of25. Although this reduces the number of data points, this actually increases
the accuracy of the test. Thet-test assumes an approximately normal distribution of
the data points and, according to the central limit theorem,averaging a sample over a
number of sub-sets makes the distribution of the sample approximate the normal dis-
tribution.

By altering the alternative hypothesis we can order the algorithms according to perfor-
mance. Two alternative hypothesis can be used:

Ha2
:x1 > x2 (6.3)

Ha3
:x1 < x2 (6.4)

But as thep-value of alternative hypothesisHa3
(6.4) is equal to one minus thep-value

of alternative hypothesisHa2
(6.3), only a singlet-test is needed to calculate both

probabilities.

The hypotheses used to order the algorithms are:

H0 :SRA1
= SRA2

(6.5)

Ha1
:SRA1

6= SRA2
(6.6)

Ha2
:SRA1

> SRA2
(6.7)

whereA1 is the first algorithms in the test, in this case theHill Climber with Restart
Algorithm, andA2 is the second algorithm in the test, in this case theIntuitive Evo-
lutionary Algorithm. The order in which the algorithms are used in the test makes no
difference because thep-value ofHA3

is one minus thep-value ofHA2
.

Thep-values for the two alternative hypothesis (the null hypothesis remains the same)
are shown in Table 6.14. From the table we can see that the difference between theSR

72

(p1,p2) Ha1
Ha2

(0.1,0.9) 0.0 0.0
(0.2,0.9) 0.0 0.0
(0.3,0.8) 0.0 0.0
(0.4,0.7) 0.0 0.0
(0.5,0.6) 0.0 0.0
(0.6,0.6) 0.0 0.0
(0.7,0.5) 0.0 0.0
(0.8,0.5) 0.0 0.0
(0.9,0.4) 0.0 0.0

Table 6.14: Two samplet-Tests of theHCAWRand theIEA.

of two algorithms is large as the probability for the null hypothesis in botht-tests is
0.0 for all density-tightness combinations. Because allp-values are0.0 we have shown
that the average success rate ofHCAWRis not equal to the average success rate ofIEA
but that it is in fact larger. The probability that it is not sois in fact0.0. Clearly, the
Hill Climber with Restart Algorithmoutperforms theIntuitive Evolutionary Algorithm
and theRandom Search Algorithm.

73

74

Chapter 7

Evolutionary Algorithms for
Solving the Constraint
Satisfaction Problem

This chapter gives a inventory of evolutionary algorithms for solving constraint satis-
faction problems. The algorithms included cover the different types of methods used in
evolutionary algorithms for solving constraint satisfaction problems. Each algorithm
is discussed in its own section and included are a full description of the algorithm, a
specification of the characteristics of the algorithm, the parameter setup used for the
experiments and an overview of the results of these experiments. A comparison of the
performance of the algorithms is given in the next chapter.

7.1 Heuristic Evolutionary Algorithm

In [28, 29], A.E. Eibenet al. propose to incorporate existing heuristics for the con-
straint satisfaction problem into the genetic operators ofevolutionary algorithms.
These heuristics are used asrules-of-thumbto guide the operators to choose which
variables or values to change. The heuristics are divided into two categories:

Variable Heuristics A variable heuristic chooses which variable the operator should
re-label. The most commonly used variable heuristic for theconstraint satisfac-
tion problem chooses the variable with the largest number ofrelevant violated
constraints for a particular candidate solution. By re-labelling this variable, the
biggest improvement by a single re-labelling can be made.

Value Heuristics A value heuristic chooses which value a chosen variable should be
re-labelled with. The most commonly used value heuristic for the constraint sat-
isfaction problem chooses the value which satisfies the mostrelevant constraints.

75

This heuristic was also used in theHill Climber with Restart Algorithm.

Experiments with theHill Climber with Restart Algorithmshowed that the exclusive
use of heuristics leads to a convergence on a local optimum ofthe population when
the neighbourhood of a series of candidate solutions is explored exhaustively. This
prevents the algorithm from reaching the global optimum andin theHill Climber with
Restart Algorithma restart strategy is used to counter this behaviour. Although a restart
strategy is also possible for evolutionary algorithms, more commonly, the mutation
operator is used for this. Heuristics are then incorporatedin the crossover operator
only. In [28, 29], A.E. Eibenet al., identified two ways of incorporating heuristics into
a recombination operator:

The Asexual Heuristic Operator This operator uses both the variable and the value
heuristic. First it uses the variable heuristic to select a number of variables.
These variables are then re-labelled with a value chosen by the value heuristic.
Variables are re-labelled iteratively, taking the effectsof previous re-labellings
into account. The number of variables to re-label is determined by a parameter
of the operator. In [18], it was found that selecting one quarter of the variables
has the best overall performance for the constraint satisfaction problem. The
asexual operator produces one child for each parent and can be used both as a
crossover and a mutation operator.

The Multi-Parent Heuristic Operator The multi-parent heuristic operator uses the
multi-parent crossover mechanism of scanning. The scanning mechanism deter-
mines the values of the children by scanning the values of theparents for each
variable. The multi-parent heuristic operator creates onechild from more than
two parents. The number of parents is determined by a parameter of the operator.
In [18], it was found that using5 parents produced the best overall performance.
No variable heuristic is used in the multi-parent heuristicoperator since the scan-
ning mechanism considers all variables. The value heuristic is used to select the
value for each variable of the child. Only the values of the parents are considered.

Two versions of theHeuristic Evolutionary Algorithm(HeuristicEA) are defined, one
for each heuristic operator. In [18], another, third, version was defined, using the multi-
parent heuristic operator as a crossover operator and the asexual heuristic operator as
a mutation operator. In the same paper, a fourth version, using the asexual heuristic
operator as both a crossover and a mutation operator was rejected, because it would
simply entail a double application of the same operator. Thethree versions of the
Heuristic Evolutionary Algorithmare abbreviated as:

HEA1 using the asexual heuristic operator as a crossover operator;

HEA2 using the multi-parent heuristic operator as a crossover operator; and

HEA3 using the multi-parent heuristic operator as a crossover operator and the asex-
ual heuristic operator as a mutation operator.

76

7.1.1 HeuristicEA Characteristics and Parameter Setup

Tables 7.1, 7.3, and 7.5 show the characteristics tables of the HEA1, theHEA2, and
the HEA3 respectively. All three versions of theHeuristic Evolutionary Algorithm
use a steady state evolutionary model, an ordered set of values representation, fitness
function f1, a biased ranking parent selection operator, and a replace worst survivor
selection operator. These characteristics are explained in Chapter 5. TheHEA1 and
theHEA2use a uniform random mutation operator. The three versions of theHeuristic
Evolutionary Algorithmuse the heuristic operators as explained in the previous section.

Tables 7.2, 7.4, and 7.6 show the parameter tables of theHEA1, the HEA2, and the
HEA3. All three versions of theHeuristic Evolutionary Algorithmhave a population of
10 individuals (Population Size), from which10 parents are selected (Selection Size)
using the biased ranking parent selection operator with a bias of1.5 (Ranking Bias).
The crossover operator of all three versions is applied witha crossover rate of1.0
(Crossover Rate) and the uniform random mutation operator in theHEA1and theHEA2
uses a mutation rate of0.1 (Mutation Rate). A mutation rate of0.1 here means that
there is a0.1 probability of re-labelling a variable where each variablein the individual
is checked. The experiments of all three versions of theHeuristic Evolutionary Algo-
rithm are terminated after100, 000 fitness evaluations (Maximum Number of Evalua-
tions). The asexual heuristic operator of theHEA1and theHEA3changes one quarter
of the ten variables of the CSP instances in our test-set, rounded upwards to3 (Change
Number of Variables). The multi-parent heuristic operatoruses5 parents (Number of
Parents).

7.1.2 HeuristicEA Experimental Results

Tables 7.7, 7.10, and 7.13, show that both theHEA1 and theHEA3 solve the CSP
instances in the solvable region in almost all runs. In the mushy region itself, both the
HEA1and theHEA3have aSRof 1.0 for density-tightness combination(0.1, 0.9). The
HEA2 has the worstSRthroughout the density-tightness combinations in the mushy
region, in general solving the CSP instances there in only a few runs. Tables 7.8, 7.11,
and 7.14 show that relative to theIntuitive Evolutionary Algorithm, theHEA1and the
HEA2use a lowAESin the mushy region. Only theHEA3uses a highAESin the mushy
region. On the other hand, Tables 7.9, 7.12, and 7.15 show that all three versions of
theHeuristic Evolutionary Algorithmuse a highCC in the mushy region. The highCC
are used by the heuristic operators. The heuristics use the conflict checks to determine
which variable or value to choose. As these heuristics are used outside the objective
function, this is not reflected in a highAES.

TheUIC plots of all three versions of theHeuristic Evolutionary Algorithmin Figures
7.1, 7.3, and 7.5 all show that throughout the run, all versions keep evaluating new
unique individuals. Of the three versions,HEA1 searches through the largest portion
of the search space and, on average, is the least close to a premature convergence to
a local optimum at the end of its runs. The runs for both theHEA1 and theHEA3
solved all CSP instances in density-tightness combination(0.1,0.9) before the second

77

'

&

$

%

HEA1

Evolutionary Model Steady State
Representation Ordered Set of Values
Objective Function f1

Crossover operator Asexual Heuristic
Mutation operator Uniform Random Mutation
Parent Selection Biased Ranking
Survivor Selection Replace Worst
Other Functions None

Table 7.1: Characteristics of theHEA1.

HEA1

Population Size 10
Selection Size 10
Maximum Number of Evaluations100, 000
Change Number of Variables 3
Ranking Bias 1.5
Crossover Rate 1.0
Mutation Rate 0.1

Table 7.2: Parameters of theHEA1.'

&

$

%

HEA2

Evolutionary Model Steady State
Representation Ordered Set of Values
Objective Function f1

Crossover operator Multi-Parent Heuristic
Mutation operator Uniform Random Mutation
Parent Selection Biased Ranking
Survivor Selection Replace Worst
Other Functions None

Table 7.3: Characteristics of theHEA2.

HEA2

Population Size 10
Selection Size 10
Maximum Number of Evaluations100, 000
Number of Parents 5
Ranking Bias 1.5
Crossover Rate 1.0
Mutation Rate 0.1

Table 7.4: Parameters of theHEA2.

78

'

&

$

%

HEA3

Evolutionary Model Steady State
Representation Ordered Set of Values
Objective Function f1

Crossover operator Multi-Parent Heuristic
Mutation operator Asexual Heuristic
Parent Selection Biased Ranking
Survivor Selection Replace Worst
Other Functions None

Table 7.5: Characteristics of theHEA3.

HEA3

Population Size 10
Selection Size 10
Maximum Number of Evaluations100, 000
Number of Parents 5
Change Number of Variables 3
Ranking Bias 1.5
Crossover Rate 1.0

Table 7.6: Parameters of theHEA3.

interval, i.e., before2000 evaluations. TheUIC plots for these two algorithms therefore
show only a single dot. TheUIC plots for theHEA2and theHEA3show that these two
algorithms search through the smallest portion of the search space and that, on average,
by the end of their runs, their populations have almost converged on a local optimum.
Both theHEA2and theHEA3use the multi-parent heuristic operator and theUIC plots
suggest that this operator limits the amount of search spacethat is searched.

TheMBF/MCE plots of all three versions of theHeuristic Evolutionary Algorithmin
Figures 7.2, 7.4, and 7.6 show that, on average, theMBF is close to theMCE. The
reason for this is that thef1 objective function is the same as theMCE measure. The
difference between theMBF and theMCE in theHEA1and theHEA3can be explained
by the influence of finding a solution has on these measures. Whereas theMBF is
calculated by averaging over the best fitness values of the individuals in the population,
the MCE is calculated over a single value at the same interval. Neither measure is
calculated over runs that are not yet successful but as more runs end successfully, the
average of both measures is calculated over fewer runs. For theHEA1and theHEA3,
which have more successful runs, this is shown as a less regular plot than for theHEA2,
which has fewer successful runs.

79

p1�p2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.928 0.504
0.5 1.0 1.0 1.0 1.0 1.0 0.872 0.4 0.428 —
0.6 1.0 1.0 1.0 0.98 0.504 0.42 — — —
0.7 1.0 1.0 0.888 0.572 — — — — —
0.8 1.0 1.0 0.556 — — — — — —
0.9 1.0 0.892 — — — — — — —

Table 7.7:SRof theHEA1.

p1�p2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 10 10 11 12 14 16 17 19 19
0.2 10 12 16 18 19 20 21 23 26
0.3 12 17 19 20 23 26 31 35 44
0.4 14 19 22 25 33 42 69 7980 2789
0.5 18 20 27 37 102 13528 1951 7603 —
0.6 19 23 40 2089 3387 5704 — — —
0.7 20 33 11548 1448 — — — — —
0.8 24 53 3931 — — — — — —
0.9 37 335 — — — — — — —

Table 7.8:AESof theHEA1.

p1�p2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 50 129 546 1127 2139 3504 4171 4996 5120
0.2 172 1263 3168 4486 5178 5635 6388 7199 8874
0.3 813 3563 4984 5636 7198 8745 11319 14059 18864
0.4 2022 4633 6097 7891 12080 16824 31613 444585 2 · 106

0.5 3944 5311 8780 14073 47751 435723 1 · 106 4 · 106 —
0.6 4635 6865 15594 41547 1 · 106 3 · 106 — — —
0.7 5034 11831 197501 760728 — — — — —
0.8 6993 22073 2 · 106 — — — — — —
0.9 13715 166541 — — — — — — —

Table 7.9:CC of theHEA1.

80

-1

-0.5

 0

 0.5

 1

 1.5

-1 -0.5 0 0.5 1

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.1,0.9)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.2,0.9)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.3,0.8)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.4,0.7)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.5,0.6)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.6,0.6)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.7,0.5)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.8,0.5)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.9,0.4)

Figure 7.1:UIC of theHEA1.

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1
-1

-0.5

 0

 0.5

 1

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.1,0.9)

MBF
CE

 1.07

 1.08

 1.09

 1.1

 1.11

 1.12

 1.13

 1.14

 1.15

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 1.2

 1.22

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.2,0.9)

MBF
CE

 1.14

 1.145

 1.15

 1.155

 1.16

 1.165

 1.17

 1.175

 1.18

 1.185

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.2

 1.22

 1.24

 1.26

 1.28

 1.3

 1.32

 1.34

 1.36

 1.38

 1.4

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.3,0.8)

MBF
CE

 1.11

 1.115

 1.12

 1.125

 1.13

 1.135

 1.14

 1.145

 1.15

 1.155

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.14

 1.16

 1.18

 1.2

 1.22

 1.24

 1.26

 1.28

 1.3

 1.32

 1.34

 1.36

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.4,0.7)

MBF
CE

 1.045

 1.05

 1.055

 1.06

 1.065

 1.07

 1.075

 1.08

 1.085

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 1.2

 1.22

 1.24

 1.26

 1.28

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.5,0.6)

MBF
CE

 1.53

 1.54

 1.55

 1.56

 1.57

 1.58

 1.59

 1.6

 1.61

 1.62

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.7

 1.75

 1.8

 1.85

 1.9

 1.95

 2

 2.05

 2.1

 2.15

 2.2

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.6,0.6)

MBF
CE

 1.12

 1.13

 1.14

 1.15

 1.16

 1.17

 1.18

 1.19

 1.2

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

 1.6

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.7,0.5)

MBF
CE

 1.62

 1.63

 1.64

 1.65

 1.66

 1.67

 1.68

 1.69

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.75

 1.8

 1.85

 1.9

 1.95

 2

 2.05

 2.1

 2.15

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.8,0.5)

MBF
CE

 1.03

 1.04

 1.05

 1.06

 1.07

 1.08

 1.09

 1.1

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.1

 1.12

 1.14

 1.16

 1.18

 1.2

 1.22

 1.24

 1.26

 1.28

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.9,0.4)

MBF
CE

Figure 7.2:MBF andMCE of theHEA1.

81

p1�p2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.3 1.0 1.0 1.0 1.0 1.0 1.0 0.988 0.948 0.808
0.4 1.0 1.0 1.0 1.0 0.98 0.888 0.572 0.288 0.076
0.5 1.0 1.0 1.0 0.92 0.592 0.232 0.04 0.064 —
0.6 1.0 1.0 0.832 0.444 0.072 0.056 — — —
0.7 1.0 0.904 0.324 0.08 — — — — —
0.8 0.956 0.616 0.068 — — — — — —
0.9 0.764 0.188 — — — — — — —

Table 7.10:SRof theHEA2.

p1�p2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 10 10 11 12 14 18 21 25 27
0.2 10 12 19 24 34 43 58 86 193
0.3 12 19 33 59 88 183 1590 4047 5461
0.4 15 29 73 182 2281 5448 11402 11387 16609
0.5 22 58 1171 5280 9081 14371 14444 13596 —
0.6 35 391 4589 16208 10727 13596 — — —
0.7 134 5287 12545 21876 — — — — —
0.8 2791 8732 13660 — — — — — —
0.9 5862 14268 — — — — — — —

Table 7.11:AESof theHEA2.

p1�p2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 50 145 691 1511 3273 6054 8125 10826 12754
0.2 213 1704 6203 9965 16787 23099 34199 54168 131724
0.3 1111 6547 15739 34054 54646 121997 1 · 106 3 · 106 4 · 106

0.4 3232 12922 43767 119653 2 · 106 4 · 106 8 · 106 8 · 106 12 · 106

0.5 8319 33141 800097 4 · 106 6 · 106 10 · 106 10 · 106 8 · 106 —
0.6 16996 260913 3 · 106 11 · 106 7 · 106 10 · 106 — — —
0.7 84533 4 · 106 9 · 106 15 · 106 — — — — —
0.8 2 · 106 6 · 106 9 · 106 — — — — — —
0.9 4 · 106 10 · 106 — — — — — — —

Table 7.12:CC of theHEA2.

82

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.1,0.9)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.2,0.9)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.3,0.8)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.4,0.7)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.5,0.6)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.6,0.6)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.7,0.5)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.8,0.5)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.9,0.4)

Figure 7.3:UIC of theHEA2.

 0.99

 1

 1.01

 1.02

 1.03

 1.04

 1.05

 1.06

 1.07

 1.08

 1.09

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 0.99

 1

 1.01

 1.02

 1.03

 1.04

 1.05

 1.06

 1.07

 1.08

 1.09

 1.1

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.1,0.9)

MBF
CE

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.2,0.9)

MBF
CE

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.3,0.8)

MBF
CE

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.4,0.7)

MBF
CE

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.5,0.6)

MBF
CE

 2.9

 3

 3.1

 3.2

 3.3

 3.4

 3.5

 3.6

 3.7

 3.8

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 2.9

 3

 3.1

 3.2

 3.3

 3.4

 3.5

 3.6

 3.7

 3.8

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.6,0.6)

MBF
CE

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.7,0.5)

MBF
CE

 2.9

 3

 3.1

 3.2

 3.3

 3.4

 3.5

 3.6

 3.7

 3.8

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 2.9

 3

 3.1

 3.2

 3.3

 3.4

 3.5

 3.6

 3.7

 3.8

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.8,0.5)

MBF
CE

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.9,0.4)

MBF
CE

Figure 7.4:MBF andMCE of theHEA2.

83

p1�p2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.992 0.76
0.5 1.0 1.0 1.0 1.0 1.0 0.968 0.588 0.488 —
0.6 1.0 1.0 1.0 1.0 0.692 0.44 — — —
0.7 1.0 1.0 0.976 0.712 — — — — —
0.8 1.0 1.0 0.688 — — — — — —
0.9 1.0 0.984 — — — — — — —

Table 7.13:SRof theHEA3.

p1�p2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 10 10 11 12 14 16 17 19 19
0.2 10 12 16 18 19 20 20 20 20
0.3 12 17 19 20 20 20 20 21 24
0.4 14 19 20 20 20 23 33 339 1563
0.5 18 20 20 22 32 438 969 1258 —
0.6 19 20 22 47 2382 988 — — —
0.7 20 21 432 1404 — — — — —
0.8 20 31 1635 — — — — — —
0.9 26 419 — — — — — — —

Table 7.14:AESof theHEA3.

p1�p2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 50 212 1359 2983 5858 9723 11523 13749 13904
0.2 412 3602 9091 12934 14486 15237 15643 15792 15887
0.3 2347 10526 14551 15027 15467 15583 15778 17054 21967
0.4 6032 13443 15329 15357 16137 20332 35849 509570 2 · 106

0.5 11885 14905 15478 18130 34542 660473 1 · 106 2 · 106 —
0.6 13827 15246 18087 55841 4 · 106 1 · 106 — — —
0.7 14679 17182 630507 2 · 106 — — — — —
0.8 15607 32547 2 · 106 — — — — — —
0.9 23899 621391 — — — — — — —

Table 7.15:CC of theHEA3.

84

-1

-0.5

 0

 0.5

 1

 1.5

-1 -0.5 0 0.5 1

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.1,0.9)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.2,0.9)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.3,0.8)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.4,0.7)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.5,0.6)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.6,0.6)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.7,0.5)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.8,0.5)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.9,0.4)

Figure 7.5:UIC of theHEA3.

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1
-1

-0.5

 0

 0.5

 1

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.1,0.9)

MBF
CE

 0.985

 0.99

 0.995

 1

 1.005

 1.01

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.2,0.9)

MBF
CE

 1.06

 1.065

 1.07

 1.075

 1.08

 1.085

 1.09

 1.095

 1.1

 1.105

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.14

 1.16

 1.18

 1.2

 1.22

 1.24

 1.26

 1.28

 1.3

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.3,0.8)

MBF
CE

 1.01

 1.015

 1.02

 1.025

 1.03

 1.035

 1.04

 1.045

 1.05

 1.055

 1.06

 1.065

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.4,0.7)

MBF
CE

 1.01

 1.0105

 1.011

 1.0115

 1.012

 1.0125

 1.013

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.5,0.6)

MBF
CE

 1.36

 1.38

 1.4

 1.42

 1.44

 1.46

 1.48

 1.5

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.75

 1.8

 1.85

 1.9

 1.95

 2

 2.05

 2.1

 2.15

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.6,0.6)

MBF
CE

 1.045

 1.05

 1.055

 1.06

 1.065

 1.07

 1.075

 1.08

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.7,0.5)

MBF
CE

 1.4

 1.41

 1.42

 1.43

 1.44

 1.45

 1.46

 1.47

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.7

 1.75

 1.8

 1.85

 1.9

 1.95

 2

 2.05

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.8,0.5)

MBF
CE

 1.012

 1.0125

 1.013

 1.0135

 1.014

 1.0145

 1.015

 1.0155

 1.016

 1.0165

 1.017

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.9,0.4)

MBF
CE

Figure 7.6:MBF andMCE of theHEA3.

85

7.2 Arc Evolutionary Algorithm

The Arc Evolutionary Algorithm(ArcEA) was first introduced in [74] by M.-C. Riff-
Rojas. Based onHEA1, in addition theArcEAuses constraint network information in
the objective function of the algorithm. In [75],ArcEAwas further adapted by replac-
ing the asexual heuristic operator with a special crossoveroperator using information
gathered by the objective function. In [76], in a third and final version of theArcEA, the
crossover operator was made more adaptive. In addition, theuniform random mutation
operator used by the first version was replaced by a mutation operator also using con-
straint network information. All three versions of theArcEAused a specially designed
parent selection operator. In total, five new parts were introduced:

The Arc Objective Function This objective function takes its name from the defini-
tion of an arc in the constraint satisfaction problem. An (second order) arc is
three variables and their two relevant constraints. The arcobjective function
uses constraint network information by calculating theerror evaluationfor each
constraint in the problem. The error evaluation of a constraint is defined as fol-
lows: for a binary CSP〈X,C,D〉, two variablesx1 ∈ X andx2 ∈ X, x1 6= x2,
both relevant to constraintc ∈ C, are also relevant to the constraints inC1 ⊂ C
andC2 ⊂ C respectively; the error evaluation ofc is then the size of the sub-
setC ′ ⊂ C, whereC ′ = C1 ∩ C2. Because the constraint network of a CSP
remains static, the error evaluation of all constraints canbe calculated at initial-
isation of the algorithm. The arc objective function calculates the fitness value
of an individual by adding the error evaluation of all violated constraints in the
candidate solution of the individual. Constraints with a high error evaluation are
relevant by arc to more variables and are thus harder to satisfy. By focussing on
these constraints, the arc objective function directs the search of the evolutionary
algorithm towards solving these constraints first.

The Arc Crossover Operator The arc crossover operator constructs a single child
from two parents. The construction starts with a child in which none of the
variables are labelled. The variables in the child are then labelled iteratively
considering each constraint in the CSP in random order usingthe labels of the
parents. The constraint currently considered is denoted byc and the two relevant
variables toc are denoted byx1 andx2. The following three cases can then be
distinguished:

1. Both variables are unlabelled in the child. Three cases are possible:

(a) The compound label with variable setS = {x1, x2} of neither par-
ent satisfiesc. The compound label that minimises the summed error
evaluation of the constraints relevant tox1 or x2 whose other relevant
variable is already labelled in the child is used to labelx1 andx2 in
the child.

(b) The compound label with variable setS = {x1, x2} of exactly one
parent satisfiesc. That compound label is used to labelx1 andx2 in
the child.

86

(c) The compound labels with variable setS = {x1, x2} of both parents
satisfiesc. The compound label from the parent with the best fitness
value is used to labelx1 andx2 in the child.

2. One variable is unlabelled in the child. The label in the two parents that
minimises the summed error evaluation of the constraints relevant to the
unlabelled variable is used to label the unlabelled variable in the child.

3. Both variables are labelled in the child. Nothing is done and the next con-
straint is considered.

When the summed error evaluation of the constraints relevantto two variables are
tied, the value used is determined randomly. A variable relevant to any constraint
in the CSP is labelled by a random value from its domain.

The Constraint Dynamic Adaptive Crossover Operator This operator
uses the same construction method as the arc crossover operator but replaces the
random order in which the constraints are considered with anadaptive ordering
based on the error evaluation of the constraints in both parents. The ordering is
divided into three parts: first the constraints that are violated in both parents are
considered, then the constraints that are violated in one ofthe parents are con-
sidered, finally, constraints that are not violated in both parents are considered.
In each of these parts the constraints are ordered based on their error evaluation:
constraints with a higher error evaluation are considered before constraints with
a lower error evaluation. By using this ordering, the constraint dynamic adaptive
crossover operator focusses on constraints that have not yet been satisfied before
constraints that have already be satisfied. The operator is dynamic because it
changes focus based on the parent pair it is supplied with. Focus also changes
during the run of the algorithm.

The Arc Mutation Operator The arc mutation operator also uses the error evaluation
of constraints. First it selects a variable to re-label uniform randomly. It then re-
labels this variable with the value that minimises the summed error evaluation of
the constraints relevant to the selected variable.

The α-β Parent Selection Operator Theα-β parent selection operator
splits the population into three groups. The first group includes all individuals
with a fitness value better than the mean fitness value of the population. The
second group includes all individuals with a fitness value better than the mean
plus the standard deviation of the fitness values. If the fitness function is to be
maximised, the standard deviation is subtracted. The thirdgroup then includes
all remaining individuals in the population. The operator then selects individuals
proportionally from these three groups depending on theα andβ parameters of
the operator. If bothα andβ are given as percentages,α percent of the selection
size are selected from the first group,β−α percent are selected from the second
group and100% − β percent are selected from the third group. Selection from
within a group is done uniform randomly and with repetition.Commonly used
parameters areα = 50% andβ = 85%. Note that theα-β parent selection

87

'

&

$

%

ArcEA1

Evolutionary Model Steady State
Representation Ordered Set of Values
Objective Function Arc Objective Function
Crossover operator Asexual Heuristic
Mutation operator Uniform Random Mutation
Parent Selection α-β Parent Selection
Survivor Selection Replace Worst
Other Functions None

Table 7.16: Characteristics of theArcEA1.

ArcEA1

Population Size 10
Selection Size 10
Maximum Number of Evaluations100, 000
Change Number of Variables 3
Selectionα 0.5
Selectionβ 0.85
Crossover Rate 1.0
Mutation Rate 0.1

Table 7.17: Parameters of theArcEA1.

operator is similar to a linear ranking parent selection operator in which there
are only three ranks where parents are selected from these ranks with a fixed
probability (determined byα andβ).

The three papers of M.-C. Riff-Rojas ([74, 75, 76]) define three different evolution-
ary algorithms. The three algorithms will be abbreviated by: ArcEA1, ArcEA2, and
ArcEA3. ArcEA1is an adaptation ofHEA1with the objective function replaced by the
arc objective function and the biased ranked parent selection operator by the arc parent
selection operator.ArcEA2then replaces the asexual heuristic operator inArcEA1with
the arc crossover operator and the uniform random mutation operator with the arc mu-
tation operator.ArcEA3 then replaces the arc crossover operator of theArcEA2with
the constraint dynamic crossover operator.

7.2.1 ArcEA Characteristics and Parameter Setup

Tables 7.16, 7.18, and 7.20 show the characteristics tablesof theArcEA1, theArcEA2,
and theArcEA3respectively. All three versions of theArc Evolutionary Algorithmuse
a steady state evolutionary model, an ordered set of values representation, and a replace
worst survivor selection operator, all explained in Chapter 5. The other characteristics
of the three versions of theArc Evolutionary Algorithmwere given in the previous

88

'

&

$

%

ArcEA2

Evolutionary Model Steady State
Representation Ordered Set of Values
Objective Function Arc Objective Function
Crossover operator Arc Crossover
Mutation operator Arc Mutation
Parent Selection α-β Parent Selection
Survivor Selection Replace Worst
Other Functions None

Table 7.18: Characteristics of theArcEA2.

ArcEA2

Population Size 10
Selection Size 10
Maximum Number of Evaluations100, 000
Selectionα 0.5
Selectionβ 0.85
Crossover Rate 1.0
Mutation Rate 0.1

Table 7.19: Parameters of theArcEA2.

section.

Tables 7.17, 7.19, and 7.21 show the parameter tables of theArcEA1, theArcEA2, and
theArcEA3. All three versions of theArc Evolutionary Algorithmhave a population of
10 individuals (Population Size), from which10 parents are selected (Selection Size)
using theα-β parent selection operator with anα of 0.5 (Selectionα) and aβ of 0.85
(Selectionβ). The crossover operator of all three versions is applied with a crossover
rate of1.0 (Crossover Rate) and the mutation operator is applied with amutation rate
of 0.1 (Mutation Rate). The experiments of all three versions of the Arc Evolution-
ary Algorithmare terminated after100, 000 fitness evaluations (Maximum Number of
Evaluations). The asexual heuristic operator ofArcEA1changes3 variables in the in-
dividual (Change Number of Variables).

7.2.2 ArcEA Experimental Results

Tables 7.22, 7.25, and 7.28, show that theArcEA1 has the highestSRof the three
versions of theArc Evolutionary Algorithm. Both theArcEA2and theArcEA3do not
solve the CSP instances in the mushy region as often as theArcEA1does. This suggests
that the addition of the arc crossover operator and the constraint dynamic adaptive
crossover operator does not contribute to a highSR. Tables 7.23, 7.26, and 7.29 show
that theAESof all three versions of theArc Evolutionary Algorithmis relatively low.

89

'

&

$

%

ArcEA3

Evolutionary Model Steady State
Representation Ordered Set of Values
Objective Function Arc Objective Function
Crossover operator Constraint Dynamic Adaptive Crossover
Mutation operator Arc Mutation
Parent Selection α-β Parent Selection
Survivor Selection Replace Worst
Other Functions None

Table 7.20: Characteristics of theArcEA3.

ArcEA3

Population Size 10
Selection Size 10
Maximum Number of Evaluations100, 000
Selectionα 0.5
Selectionβ 0.85
Crossover Rate 1.0
Mutation Rate 0.1

Table 7.21: Parameters of theArcEA3.

However, because theSRof theArcEA2and theArcEA3are not as high as theSRof
theArcEA1, theseAESvalues are less accurate. This is because theAES(as theCC) is
calculated over successful runs only and with less successful runs, the accuracy of the
AESmeasures is reduced. The same is seen for theCC measure in Tables 7.24, 7.27,
and 7.30.

TheUIC plots of all three versions of theArc Evolutionary Algorithmin Figures 7.7,
7.9, and 7.11 show that both theArcEA2and theArcEA3search only a limited portion
of the search space. These plots also show that after only a few evaluations, almost no
new unique individuals are evaluated, suggesting premature convergence of the popula-
tion. TheArcEA1, much like theHEA1, searches through a larger portion of the search
space and shows no sign of premature convergence of the population. TheMBF/MCE
plots in Figures 7.8, 7.10, and 7.12 show little difference between how the arc objec-
tive function calculates fitness values and theMCE. Although the arc objective function
uses constraint network information, this did not give the algorithm an edge over, for
example, theHEA1. One has to keep in mind that theArc Evolutionary Algorithmwas
written with CSPs with varying tightness is mind whereas in the test-set we use all
constraints have approximately the same tightness. With nohard to satisfy constraints
to focus on, the direction provided by the more elaborate arcobjective function does
not result in a betterSR. The same (but less clear from the experiments we ran) can
probably be said for the other components of theArc Evolutionary Algorithmthat use
the error evaluation of the constraints. We expect that on a test-set with CSP instances

90

with more variance between the tightness of constraints, the use of error evaluations
would give an edge to theArc Evolutionary Algorithm. For all three versions of theArc
Evolutionary Algorithm, the MBF and theMCE are close together and almost com-
pletely monotonic in their decrease. TheMBF/MCE plots show no sign of premature
convergence of the population. TheUIC andMBF/MCEplots together do not point to
premature convergence of the population as the reason for the low SRof the ArcEA2
and theArcEA3, but, instead, point to a lack of effectiveness of the algorithms to find
solutions within the number of evaluations allowed. TheMBF/MCE plots are fairly
regular for theArcEA2and theArcEA3because of the low number of successful runs
over which the measures were calculated.

91

p1�p2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.4 1.0 1.0 1.0 1.0 1.0 1.0 0.968 0.704 0.3
0.5 1.0 1.0 1.0 1.0 0.936 0.644 0.22 0.24 —
0.6 1.0 1.0 0.996 0.884 0.312 0.284 — — —
0.7 1.0 1.0 0.684 0.384 — — — — —
0.8 1.0 0.948 0.368 — — — — — —
0.9 0.988 0.688 — — — — — — —

Table 7.22:SRof theArcEA1.

p1�p2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 10 10 11 12 14 16 17 19 20
0.2 10 12 16 19 21 24 27 29 33
0.3 12 17 21 25 29 33 40 81 156
0.4 14 20 27 33 44 89 297 2815 5067
0.5 18 24 34 104 287 2732 2116 778 —
0.6 20 30 112 653 962 2099 — — —
0.7 23 45 1561 4403 — — — — —
0.8 71 398 2008 — — — — — —
0.9 279 3467 — — — — — — —

Table 7.23:AESof theArcEA1.

p1�p2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 50 110 345 661 1220 2005 2381 2971 3251
0.2 111 688 1751 2587 3309 4129 5076 5877 7023
0.3 436 1863 3079 4118 5530 6819 8942 20581 43490
0.4 1036 2641 4645 6297 9516 21302 79078 794981 2 · 106

0.5 2038 3713 6635 25542 74370 765289 568997 220251 —
0.6 2590 5310 29708 174661 260864 588314 — — —
0.7 3448 9238 412297 1 · 106 — — — — —
0.8 15947 102493 523101 — — — — — —
0.9 67462 865715 — — — — — — —

Table 7.24:CC of theArcEA1.

92

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.1,0.9)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.2,0.9)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.3,0.8)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.4,0.7)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.5,0.6)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.6,0.6)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.7,0.5)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.8,0.5)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.9,0.4)

Figure 7.7:UIC of theArcEA1.

 3.66

 3.68

 3.7

 3.72

 3.74

 3.76

 3.78

 3.8

 3.82

 3.84

 3.86

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 0.985

 0.99

 0.995

 1

 1.005

 1.01

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.1,0.9)

MBF
CE

 4.9

 4.95

 5

 5.05

 5.1

 5.15

 5.2

 5.25

 5.3

 5.35

 5.4

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.18

 1.2

 1.22

 1.24

 1.26

 1.28

 1.3

 1.32

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.2,0.9)

MBF
CE

 7.8

 8

 8.2

 8.4

 8.6

 8.8

 9

 9.2

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.34

 1.36

 1.38

 1.4

 1.42

 1.44

 1.46

 1.48

 1.5

 1.52

 1.54

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.3,0.8)

MBF
CE

 10.1

 10.2

 10.3

 10.4

 10.5

 10.6

 10.7

 10.8

 10.9

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.35

 1.36

 1.37

 1.38

 1.39

 1.4

 1.41

 1.42

 1.43

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.4,0.7)

MBF
CE

 10.7

 10.8

 10.9

 11

 11.1

 11.2

 11.3

 11.4

 11.5

 11.6

 11.7

 11.8

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.17

 1.18

 1.19

 1.2

 1.21

 1.22

 1.23

 1.24

 1.25

 1.26

 1.27

 1.28

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.5,0.6)

MBF
CE

 21

 21.5

 22

 22.5

 23

 23.5

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.92

 1.94

 1.96

 1.98

 2

 2.02

 2.04

 2.06

 2.08

 2.1

 2.12

 2.14

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.6,0.6)

MBF
CE

 17.2

 17.4

 17.6

 17.8

 18

 18.2

 18.4

 18.6

 18.8

 19

 19.2

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.38

 1.4

 1.42

 1.44

 1.46

 1.48

 1.5

 1.52

 1.54

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.7,0.5)

MBF
CE

 30.6

 30.8

 31

 31.2

 31.4

 31.6

 31.8

 32

 32.2

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 2.18

 2.19

 2.2

 2.21

 2.22

 2.23

 2.24

 2.25

 2.26

 2.27

 2.28

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.8,0.5)

MBF
CE

 19

 19.5

 20

 20.5

 21

 21.5

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.22

 1.24

 1.26

 1.28

 1.3

 1.32

 1.34

 1.36

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.9,0.4)

MBF
CE

Figure 7.8:MBF andMCE of theArcEA1.

93

p1�p2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.996
0.3 1.0 1.0 1.0 1.0 0.996 0.972 0.876 0.756 0.456
0.4 1.0 1.0 0.992 0.968 0.84 0.556 0.224 0.108 0.012
0.5 1.0 0.988 0.932 0.732 0.252 0.1 0.008 0.008 —
0.6 1.0 0.948 0.628 0.208 0.016 0.024 — — —
0.7 0.984 0.712 0.168 0.02 — — — — —
0.8 0.94 0.408 0.016 — — — — — —
0.9 0.708 0.12 — — — — — — —

Table 7.25:SRof theArcEA2.

p1�p2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 10 10 11 13 16 22 26 31 33
0.2 10 13 22 30 42 51 72 84 188
0.3 12 24 40 55 163 565 1098 1565 2372
0.4 16 37 71 478 1712 1728 2667 396 250
0.5 28 55 338 1509 2208 1044 218 1953 —
0.6 37 237 2184 1720 494 186 — — —
0.7 164 2029 494 186 — — — — —
0.8 1544 1747 362 — — — — — —
0.9 2804 8269 — — — — — — —

Table 7.26:AESof theArcEA2.

p1�p2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 50 95 209 424 957 1863 2883 4170 5219
0.2 56 240 1008 2043 3953 5751 10128 13408 35851
0.3 102 710 2253 4176 17224 72339 167911 269468 466275
0.4 212 1306 4340 40796 188529 223412 409633 67419 48171
0.5 509 2101 22263 129995 242882 134956 40616 51267 —
0.6 751 10262 147895 148207 23545 253660 — — —
0.7 3814 87257 32826 15292 — — — — —
0.8 38036 74987 24073 — — — — — —
0.9 68308 351511 — — — — — — —

Table 7.27:CC of theArcEA2.

94

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.1,0.9)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.2,0.9)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.3,0.8)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.4,0.7)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.5,0.6)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.6,0.6)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.7,0.5)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.8,0.5)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.9,0.4)

Figure 7.9:UIC of theArcEA2.

 3.49

 3.5

 3.51

 3.52

 3.53

 3.54

 3.55

 3.56

 3.57

 3.58

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.02

 1.03

 1.04

 1.05

 1.06

 1.07

 1.08

 1.09

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.1,0.9)

MBF
CE

 7.7

 7.8

 7.9

 8

 8.1

 8.2

 8.3

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.8

 1.82

 1.84

 1.86

 1.88

 1.9

 1.92

 1.94

 1.96

 1.98

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.2,0.9)

MBF
CE

 16

 16.2

 16.4

 16.6

 16.8

 17

 17.2

 17.4

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 2.62

 2.64

 2.66

 2.68

 2.7

 2.72

 2.74

 2.76

 2.78

 2.8

 2.82

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.3,0.8)

MBF
CE

 19.8

 20

 20.2

 20.4

 20.6

 20.8

 21

 21.2

 21.4

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 2.58

 2.6

 2.62

 2.64

 2.66

 2.68

 2.7

 2.72

 2.74

 2.76

 2.78

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.4,0.7)

MBF
CE

 23.6

 23.8

 24

 24.2

 24.4

 24.6

 24.8

 25

 25.2

 25.4

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 2.46

 2.48

 2.5

 2.52

 2.54

 2.56

 2.58

 2.6

 2.62

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.5,0.6)

MBF
CE

 44.8

 45

 45.2

 45.4

 45.6

 45.8

 46

 46.2

 46.4

 46.6

 46.8

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 4.08

 4.1

 4.12

 4.14

 4.16

 4.18

 4.2

 4.22

 4.24

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.6,0.6)

MBF
CE

 39.5

 40

 40.5

 41

 41.5

 42

 42.5

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 3.1

 3.12

 3.14

 3.16

 3.18

 3.2

 3.22

 3.24

 3.26

 3.28

 3.3

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.7,0.5)

MBF
CE

 56

 56.5

 57

 57.5

 58

 58.5

 59

 59.5

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 3.85

 3.9

 3.95

 4

 4.05

 4.1

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.8,0.5)

MBF
CE

 45

 45.5

 46

 46.5

 47

 47.5

 48

 48.5

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 2.78

 2.8

 2.82

 2.84

 2.86

 2.88

 2.9

 2.92

 2.94

 2.96

 2.98

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.9,0.4)

MBF
CE

Figure 7.10:MBF andMCE of theArcEA2.

95

p1�p2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.988
0.3 1.0 1.0 1.0 1.0 0.992 0.988 0.888 0.752 0.532
0.4 1.0 1.0 1.0 1.0 0.868 0.564 0.272 0.1 0.008
0.5 1.0 0.996 0.912 0.724 0.248 0.108 0.012 0.004 —
0.6 1.0 0.944 0.656 0.2 0.012 0.028 — — —
0.7 0.976 0.696 0.196 0.032 — — — — —
0.8 0.908 0.356 0.024 — — — — — —
0.9 0.692 0.128 — — — — — — —

Table 7.28:SRof theArcEA3.

p1�p2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 10 10 11 13 16 21 25 31 32
0.2 10 13 22 30 39 52 64 79 196
0.3 12 24 42 57 91 363 1132 1920 2799
0.4 17 37 71 452 426 2482 2467 5444 1225
0.5 28 66 767 775 1225 413 2720 290 —
0.6 41 360 995 574 173 8060 — — —
0.7 81 581 2605 2906 — — — — —
0.8 250 2991 648 — — — — — —
0.9 2036 4056 — — — — — — —

Table 7.29:AESof theArcEA3.

p1�p2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 50 97 236 520 1244 2387 3519 5477 6506
0.2 58 311 1294 2582 4686 7808 11837 16649 50139
0.3 112 989 3169 5877 12605 63628 229993 453099 760467
0.4 296 1771 5897 52190 63303 429485 507992 1 · 106 333482
0.5 682 3603 69641 90344 177084 72220 596776 66792 —
0.6 1194 21573 92708 68401 25600 1 · 106 — — —
0.7 2589 35258 244572 353944 — — — — —
0.8 8657 177186 60408 — — — — — —
0.9 72839 251766 — — — — — — —

Table 7.30:CC of theArcEA3.

96

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.1,0.9)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.2,0.9)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.3,0.8)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.4,0.7)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.5,0.6)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.6,0.6)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.7,0.5)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.8,0.5)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.9,0.4)

Figure 7.11:UIC of theArcEA3.

 3.6

 3.65

 3.7

 3.75

 3.8

 3.85

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.06

 1.07

 1.08

 1.09

 1.1

 1.11

 1.12

 1.13

 1.14

 1.15

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.1,0.9)

MBF
CE

 7.7

 7.8

 7.9

 8

 8.1

 8.2

 8.3

 8.4

 8.5

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.8

 1.82

 1.84

 1.86

 1.88

 1.9

 1.92

 1.94

 1.96

 1.98

 2

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.2,0.9)

MBF
CE

 15.8

 16

 16.2

 16.4

 16.6

 16.8

 17

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 2.62

 2.64

 2.66

 2.68

 2.7

 2.72

 2.74

 2.76

 2.78

 2.8

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.3,0.8)

MBF
CE

 20.4

 20.6

 20.8

 21

 21.2

 21.4

 21.6

 21.8

 22

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 2.64

 2.66

 2.68

 2.7

 2.72

 2.74

 2.76

 2.78

 2.8

 2.82

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.4,0.7)

MBF
CE

 24.4

 24.6

 24.8

 25

 25.2

 25.4

 25.6

 25.8

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 2.54

 2.56

 2.58

 2.6

 2.62

 2.64

 2.66

 2.68

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.5,0.6)

MBF
CE

 43.4

 43.6

 43.8

 44

 44.2

 44.4

 44.6

 44.8

 45

 45.2

 45.4

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 3.94

 3.96

 3.98

 4

 4.02

 4.04

 4.06

 4.08

 4.1

 4.12

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.6,0.6)

MBF
CE

 39.5

 40

 40.5

 41

 41.5

 42

 42.5

 43

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 3.1

 3.15

 3.2

 3.25

 3.3

 3.35

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.7,0.5)

MBF
CE

 59

 59.5

 60

 60.5

 61

 61.5

 62

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 4.1

 4.12

 4.14

 4.16

 4.18

 4.2

 4.22

 4.24

 4.26

 4.28

 4.3

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.8,0.5)

MBF
CE

 43.5

 44

 44.5

 45

 45.5

 46

 46.5

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 2.7

 2.72

 2.74

 2.76

 2.78

 2.8

 2.82

 2.84

 2.86

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.9,0.4)

MBF
CE

Figure 7.12:MBF andMCE of theArcEA3.

97

7.3 Co-evolutionary Algorithm

The Co-evolutionary Algorithm(CoeEA) was proposed by J. Paredis, and was used
to solve a number of problems: neural net learning ([71]), constraint satisfaction ([70,
71]), and searching for cellular automata that solve the density classification task ([72]).
TheCo-evolutionary Algorithmuses the co-evolutionary approach for evolutionary al-
gorithms, from which it takes its name. The co-evolutionaryapproach pits two popu-
lations, commonly referred to as the host- and parasite-population, against each other.

TheCo-evolutionary Algorithmfor solving the constraint satisfaction problem uses a
host-population of candidate solutions to compete with a parasite-population of con-
straints. All constraints of the CSP to be solved are included in the parasite-population.
The size of the host-population is determined by a parameter. The fitness of an indi-
vidual of both populations is based on a history of encounters between individuals of
both populations. Anencounteroccurs when a constraint from the parasite-population
is matched with the candidate solution of an individual of the host-population. If the
constraint is satisfied in the candidate solution, the individual from the host-population
earns a fitness point. If the constraint is not satisfied, the individual of the parasite-
population earns a fitness point. The fitness value of an individual in both populations
is the amount of fitness points gathered in the last200 encounters. By matching of-
ten violated constraints with candidate solutions that have satisfied many constraints
recently, a dynamic host-parasite relationship between the two populations is estab-
lished. The relationship is characterised as a host-parasite relationship because both
populations depend on each other for their fitness.

At each generation during the run of theCo-evolutionary Algorithm, 20 encounters
between the individuals of the host- and parasite-population are allowed to occur. En-
counters occur by repeatedly selecting an individual from each population and pairing
them off. Selecting the individuals is biased forwards selecting individuals with higher
fitness values. The genetic operators of crossover and mutation are applied only to the
individuals of the host-population. The crossover operator is the two-point surrogate
crossover operator, described in [87, 13]. The operator is designed to minimise the
chance of generating children that have a similar candidatesolution as their parents.
The mutation operator used in theCo-evolutionary Algorithmis the uniform random
mutation operator.

7.3.1 CoeEACharacteristics and Parameter Setup

Table 7.31 shows the characteristics table of theCo-evolutionary Algorithm. TheCo-
evolutionary Algorithmuses a steady state evolutionary model, an ordered set of values
representation, a uniform random mutation operator, and a replace worst survivor selec-
tion operator, explained in Chapter 5. Selection of the individuals in both populations
is done using the biased ranked parent selection operator. The fitness function and the
two-point surrogate crossover operator used by theCo-evolutionary Algorithmhave
been discussed in the previous section.

Table 7.32 shows the parameters table for theCo-evolutionary Algorithm. The Co-

98

'

&

$

%

CoeEA

Evolutionary Model Steady State
Representation Ordered Set of Values
Objective Function CoeEAObjective Function
Crossover operator Two-point Surrogate Crossover
Mutation operator Uniform Random Mutation
Parent Selection Biased Ranking
Survivor Selection Replace Worst
Other Functions None

Table 7.31: Characteristics of theCoeEA.

CoeEA

Population Size 10
Selection Size 10
Maximum Number of Evaluations100, 000
Individual History Size 200
Ranking Bias 1.5
Number of Encounters 20
Encounter Bias 1.5
Crossover Rate 1.0
Mutation Rate 0.1

Table 7.32: Parameters of theCoeEA.

evolutionary Algorithmhas a host-population of10 individuals (Population Size), from
which10 parents are selected (Selection Size) using the biased ranking parent selection
operator with a bias of1.5 (Ranking Bias). The two-point surrogate crossover operator
is applied with a crossover rate of1.0 (Crossover Rate) and the uniform random muta-
tion operator uses a mutation rate of0.1 (Mutation Rate). Experiments with theCoeEA
are terminated after100, 000 fitness evaluations (Maximum Number of Evaluations).
Each individual in both populations maintains a history of200 encounters (Individual
History Size) and each generation of theCo-evolutionary Algorithm, 20 encounters are
performed (Number of Encounters). Selection of the individuals from both populations
for these encounters is done using the biased ranking parentselection operator, using a
bias of1.5 (Encounter Bias).

7.3.2 CoeEAExperimental Results

Table 7.33 shows that theCo-evolutionary Algorithmis unable to solve the CSP in-
stances in the mushy region in any of its runs nor for a sizableportion of the solvable
region. Consequently, theAESandCC for these density-tightness combinations are
undefined in Tables 7.34 and 7.35. These tables also show thatthe Co-evolutionary
Algorithmuses a lot ofAESandCC when the run is successful. We believe that one

99

reason for this performance is that the host-parasite relationship between the two pop-
ulations is too dynamic, even with the long history of encounters used. This can result
in the best individual in the host-population satisfying the constraint that has been vi-
olated recently the most in one generation but violating it in the next. This dynamic
relationship of the two populations can result in constant changes to both populations
without ever resulting in a directed search to a global optimum, an example of theRed
Queen-principle [86]. In experiments not shown here, we tried to fine-tune the param-
eters of theCo-evolutionary Algorithm, in an effort to increase the performance of the
algorithm. This was unsuccessful.

The UIC plots for theCo-evolutionary Algorithmin Figure 7.13 show that the algo-
rithm searches through a large portion of the search space for the CSP instances in
the mushy region. However, theMBF/MCE plots in Figure 7.14 show that for all the
new unique individuals checked, no increase, on average, was achieved in theMBF
or theMCE. In fact, theUIC and theMBF/MCE plots together suggest the behaviour
of a random search algorithm. This means that the fitness values calculated by the
encounters of the host- and parasite-population is of no useto maintain selection pres-
sure. Although many unique individuals are checked, probably because of the use of
the two-point surrogate crossover operator, the information gained by evaluating these
individuals is not used to produce individuals with a higherfitness value in the next
generation. Without selection pressure, theCoeEAcan not direct the search to a global
optimum, i.e., a solution.

100

p1�p2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 0.92 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.2 0.524 0.952 1.0 1.0 0.96 0.664 0.316 0.16 0.052
0.3 0.18 0.252 0.78 0.344 0.084 0.02 0.0 0.004 0.0
0.4 0.092 0.02 0.008 0.024 0.0 0.0 0.0 0.0 0.0
0.5 0.016 0.0 0.0 0.0 0.0 0.0 0.0 0.0 —
0.6 0.008 0.0 0.0 0.0 0.0 0.0 — — —
0.7 0.0 0.0 0.0 0.0 — — — — —
0.8 0.0 0.0 0.0 — — — — — —
0.9 0.0 0.0 — — — — — — —

Table 7.33:SRof theCoeEA.

p1�p2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 583 868 1220 1426 2007 2706 3817 6107 8534
0.2 499 3248 6024 13263 29972 42686 50073 54494 48403
0.3 266 3682 35468 51860 48209 34436 undef. 28010 undef.
0.4 10 292 34610 63367 undef. undef. undef. undef. undef.
0.5 10 undef. undef. undef. undef. undef. undef. undef.—
0.6 10 undef. undef. undef. undef. undef. — — —
0.7 undef. undef. undef. undef. — — — — —
0.8 undef. undef. undef. — — — — — —
0.9 undef. undef. — — — — — — —

Table 7.34:AESof theCoeEA.

p1�p2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 4059 9530 19502 28494 50156 78444 129743 232063 366927
0.2 3476 35708 96364 265242 749275 1 · 106 2 · 106 2 · 106 2 · 106

0.3 1842 40484 567463 1 · 106 1 · 106 998624 undef. 1 · 106 undef.
0.4 50 3192 553740 1 · 106 undef. undef. undef. undef. undef.
0.5 50 undef. undef. undef. undef. undef. undef. undef.—
0.6 50 undef. undef. undef. undef. undef. — — —
0.7 undef. undef. undef. undef. — — — — —
0.8 undef. undef. undef. — — — — — —
0.9 undef. undef. — — — — — — —

Table 7.35:CC of theCoeEA.

101

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.1,0.9)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.2,0.9)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.3,0.8)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.4,0.7)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.5,0.6)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.6,0.6)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.7,0.5)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.8,0.5)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.9,0.4)

Figure 7.13:UIC of theCoeEA.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 4.95

 4.96

 4.97

 4.98

 4.99

 5

 5.01

 5.02

 5.03

 5.04

 5.05

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.1,0.9)

MBF
CE

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 8.982

 8.984

 8.986

 8.988

 8.99

 8.992

 8.994

 8.996

 8.998

 9

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.2,0.9)

MBF
CE

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 13.6

 13.65

 13.7

 13.75

 13.8

 13.85

 13.9

 13.95

 14

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.3,0.8)

MBF
CE

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 15.5

 16

 16.5

 17

 17.5

 18

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.4,0.7)

MBF
CE

 0

 5

 10

 15

 20

 25

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 16

 17

 18

 19

 20

 21

 22

 23

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.5,0.6)

MBF
CE

 0

 5

 10

 15

 20

 25

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 18

 19

 20

 21

 22

 23

 24

 25

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.6,0.6)

MBF
CE

 18

 20

 22

 24

 26

 28

 30

 32

 34

 36

 38

 40

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 18.1

 18.2

 18.3

 18.4

 18.5

 18.6

 18.7

 18.8

 18.9

 19

 19.1

 19.2

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.7,0.5)

MBF
CE

 20

 22

 24

 26

 28

 30

 32

 34

 36

 38

 40

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 20

 20.2

 20.4

 20.6

 20.8

 21

 21.2

 21.4

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.8,0.5)

MBF
CE

 38

 40

 42

 44

 46

 48

 50

 52

 54

 56

 58

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 18.2

 18.4

 18.6

 18.8

 19

 19.2

 19.4

 19.6

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.9,0.4)

MBF
CE

Figure 7.14:MBF andMCE of theCoeEA.

102

7.4 Eliminate-Split-Propagate Evolutionary
Algorithm

In [57], E. Marchiori introduced an evolutionary algorithmfor solving constraint sat-
isfaction problems based on pre- and post-processing techniques for CSPs. The algo-
rithm was further investigated in [19, 85], but here we use the version from [57]. We
call this algorithm theEliminate-Split-Propagate Evolutionary Algorithm(ESPEA).
The technique applied in theEliminate-Split-Propagate Evolutionary Algorithmis ba-
sed on the glass-box approach from [85] which decomposes a CSP in such a way that
there is only one single type of constraint. By decomposing more complex constraints
into primitive ones, the resulting constraints have the same granularity and therefore
the same intrinsic hardness. The rewriting of constraints is done in two steps and is
calledconstraint processing. Because after constraint processing, all constraints have
the same form, a single repair rule can be used to enforcedependency propagation.
Because a single repair rule is used, a local-search technique can be used to repair an
individual, applying the repair rule to every violated constraint in a candidate solution.
TheESPEAtakes its name from the initials of the two steps of the constraint processing
phase,EliminateandSplit, and from the propagation of the dependencies by the repair
rule. Constraint processing and dependency propagation isfurther discussed below:

Constraint Processing When theESPEAwas introduced it was tested on thefive
houses puzzleand theN -queens problem ([57, 85]). The constraints in these
problems are, unlike the definition of constraints in the CSP, often defined as
equations. These equations are the equivalent of what wouldbe several con-
straints in the CSP. Because the equations combine several constraints, their rel-
ative complexity varies. Constraint processing is a way of reducing the variance
of complexity of these constraints. The method proposed forprocessing these
constraints consists of two phases: theelimination phaseand thesplit phase.
The elimination phase eliminates functional constraints in order to reduce the
number of variables in the problem analogous to the GENOCOP method ([64]).
The split phase then decomposes the resulting constraints into a set of constraints
in canonical form. Each constraint is represented by a composition of primitive
constraints. The canonical form proposed in [57] is of the form:

α · xi − β · xj 6= γ (7.1)

wherexi andxj stand for the variables of the constraint. Because some variables
are discarded during the elimination phase, when the solution of the original CSP
is calculated, these variables have to be recovered. This ineffect, reverses the
elimination phase. Because we use a constraint satisfaction problem without
functional variables and with constraints already in a canonical form, constraint
processing is unnecessary, although the dependency propagation step has to be
rewritten using these constraints.

Dependency PropagationDependency propagation is implemented in the form of a
probabilistic repair rule:

103

if α · pi − β · pj = γ then re-labelpi or pj (7.2)

The repair rule deals with violations of primitive constraints. It states that if a
constraint is violated by a candidate solution, it should either re-label the first or
the second variable of the constraint. There are three issues to resolve with this
repair rule: which variable to re-label, to which value of the variable’s domain
to re-label it to, and in what order the constraints are to be processed. In [57], a
uniform randomly chosen variable is re-labelled with a uniform randomly chosen
value. The constraints are checked in random order. No bias is applied to any of
these choices nor to the ordering of the constraints.

Because in our definition of the CSP, the constraint processing step of theEliminate-
Split-Propagate Evolutionary Algorithmis unnecessary, this leaves only the depen-
dency propagation step. This is implemented as a repair rule. The repair rule is imple-
mented in a repair operator added to the genetic operators oftheIntuitive Evolutionary
Algorithm. The repair operator is used after the mutation operator. The other compo-
nents of theIntuitive Evolutionary Algorithmremain unchanged.

7.4.1 ESPEACharacteristics and Parameter Setup

Table 7.36 shows the characteristics table of theEliminate-Split-Propagate Evolu-
tionary Algorithm. The characteristics of theEliminate-Split-Propagate Evolutionary
Algorithmare for a large part identical to the characteristics of theIntuitive Evolution-
ary Algorithm in that it too uses a steady state evolutionary model, an ordered set of
values representation, thef1 fitness function, the uniform random crossover operator,
the uniform random mutation operator, the bias ranking parent selection operator and
the replace worst survivor selection operator. All these characteristics are explained
in Chapter 5. As an additional operator, theEliminate-Split-Propagate Evolutionary
Algorithmuses theESPEArepair operator discussed in the previous section.

Table 7.37 shows the parameter table of theEliminate-Split-Propagate Evolutionary
Algorithm. The Eliminate-Split-Propagate Evolutionary Algorithmhas a population
of 10 individuals (Population Size), from which10 parents are selected (Selection
Size) using the biased ranking parent selection operator with a bias of1.5 (Ranking
Bias). The crossover operator of theEliminate-Split-Propagate Evolutionary Algo-
rithm is applied with a crossover rate of1.0 (Crossover Rate) and the uniform random
mutation operator in theEliminate-Split-Propagate Evolutionary Algorithmuses a mu-
tation rate of0.1 (Mutation Rate). The experiments of theEliminate-Split-Propagate
Evolutionary Algorithmare terminated after100, 000 fitness evaluations (Maximum
Number of Evaluations). TheESPEArepair operator has only a single parameter, de-
termining the portion of constraints that are checked to repair the individuals. We use
all constraints to repair the individuals:1.0 (Constraints Check Rate).

104

'

&

$

%

ESPEA

Evolutionary Model Steady State
Representation Ordered Set of Values
Objective Function f1

Crossover operator Uniform Random Crossover
Mutation operator Uniform Random Mutation
Parent Selection Biased Ranking
Survivor Selection Replace Worst
Other Functions Repair Operator

Table 7.36: Characteristics of theESPEA.

ESPEA

Population Size 10
Selection Size 10
Maximum Number of Evaluations100, 000
Constraints Check Rate 1.0
Ranking Bias 1.5
Crossover Rate 1.0
Mutation Rate 0.1

Table 7.37: Parameters of theESPEA.

7.4.2 ESPEAExperimental Results

Table 7.38 shows that theEliminate-Split-Propagate Evolutionary Algorithmsolves
the CSP instances in the solvable region in almost all runs. Only for density-tightness
combinations(0.3, 0.7), (0.6, 0.5), and(0.8, 0.5) was theESPEA SRnot almost1.0.
TheSRof theESPEAwas not so high in the mushy region, only for density-tightness
combination (0.1,0.9) did it have aSRof 1.0. The lowestSRof theESPEAin the mushy
region is for density-tightness combination (0.7,0.5) with a SRof 0.328. Tables 7.39
and 7.40 show that for the solvable region, theESPEAhad a fairly lowAESandCC,
for the density-tightness combinations in the mushy regionhowever, theESPEAuses
a fairly large amount of bothAESandCC. However, because these measures are cal-
culated over successful runs only, and theESPEAhas a lowerSRin the mushy region,
these values are inaccurate. In general, the repair operator of theESPEA, even though
it does not use any expensive heuristics, still uses a certain amount ofCC because all
constraints are used to repair the individuals in the population.

TheUIC plots of theESPEAin Figure 7.15 show that theESPEAsearches through a
substantial portion of the search space. The jump in theUIC plot for density-tightness
combination (0.1,0.9) is explained by the fact that in between the two intervals, many
runs of the algorithm were successful. Since theUIC is calculated as an average over
all runs, this has an effect of theUIC as a whole. TheUIC plots show that theESPEA
shows no sign of premature convergence of the population in the mushy region, enough

105

new unique individuals are evaluated during the run of the algorithm. TheMBF/MCE
plots of theESPEAin Figure 7.16 show that thef1 objective function is similar to the
calculation of theMCE. TheMBF and theMCE, on average, follow each other closely.
The plots further show that, except for density-tightness combination (0.1,0.9), the
search concentrates rapidly around individuals that have the same fitness value. The
exception for density-tightness combination (0.1,0.9) isexplained by the fact that all
runs of theESPEAwere successful after only a few evaluations.

106

p1�p2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.4 1.0 1.0 1.0 1.0 1.0 1.0 0.996 0.844 0.432
0.5 1.0 1.0 1.0 1.0 0.988 0.788 0.328 0.468 —
0.6 1.0 1.0 1.0 0.968 0.436 0.404 — — —
0.7 1.0 1.0 0.796 0.436 — — — — —
0.8 1.0 0.932 0.388 — — — — — —
0.9 1.0 0.676 — — — — — — —

Table 7.38:SRof theESPEA.

p1�p2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 10 10 11 12 14 16 17 19 19
0.2 10 12 16 19 22 24 30 35 47
0.3 12 17 22 27 39 55 88 126 213
0.4 14 21 34 55 99 523 1832 5598 8365
0.5 19 30 64 126 2094 5972 8599 5332 —
0.6 24 50 162 2265 7928 5581 — — —
0.7 35 123 2854 6280 — — — — —
0.8 166 1157 4982 — — — — — —
0.9 997 6604 — — — — — — —

Table 7.39:AESof theESPEA.

p1�p2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 50 91 162 246 401 603 786 996 1164
0.2 52 132 308 491 773 1039 1603 2154 3414
0.3 65 220 467 805 1579 2683 5325 8709 17026
0.4 90 294 803 1794 4318 27996 116941 402717 685535
0.5 139 441 1642 4356 96098 322239 549994 383535 —
0.6 187 817 4392 81351 364466 301103 — — —
0.7 300 2129 79780 225890 — — — — —
0.8 1614 20743 139361 — — — — — —
0.9 9918 118774 — — — — — — —

Table 7.40:CC of theESPEA.

107

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 10000 20000 30000 40000 50000 60000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.1,0.9)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.2,0.9)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.3,0.8)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.4,0.7)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.5,0.6)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.6,0.6)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.7,0.5)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.8,0.5)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.9,0.4)

Figure 7.15:UIC of theESPEA.

 0.985

 0.99

 0.995

 1

 1.005

 1.01

 0 10000 20000 30000 40000 50000 60000
 0.985

 0.99

 0.995

 1

 1.005

 1.01

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.1,0.9)

MBF
CE

 1.1

 1.12

 1.14

 1.16

 1.18

 1.2

 1.22

 1.24

 1.26

 1.28

 1.3

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.2,0.9)

MBF
CE

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

 1.6

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.3,0.8)

MBF
CE

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

 1.6

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.4,0.7)

MBF
CE

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.5,0.6)

MBF
CE

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.6,0.6)

MBF
CE

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.7,0.5)

MBF
CE

 1.5

 2

 2.5

 3

 3.5

 4

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.8,0.5)

MBF
CE

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.9,0.4)

MBF
CE

Figure 7.16:MBF andMCE of theESPEA.

108

7.5 Host-Parasite Evolutionary Algorithm

In [45, 44], H. Handaet al. introduce an evolutionary algorithm also based on the co-
evolutionary approach, which we call theHost-Parasite Evolutionary Algorithm
(HPEA). In the HPEA, a parasite-population of schemata is used to improve a host-
population of candidate solutions. Schemata are defined as candidate solutions where
a number of variables are labelled with an asterisk. The asterisk is used as a “don’t
care”-value. The schemata are used as an overlay or templateover the individuals of the
host-population. When applied to a host-individual, the asterisk values in the schemata
are replaced by the values of the corresponding variables ofthe host-individual.

Unlike theCo-evolutionary Algorithm, both host- and parasite-populations are evolved.
Both populations have their own objective function and the evolution of both popula-
tions is done using genetic and selection operators. The schemata of the parasite-
population are used to enhance the fitness of the host-population only. The rela-
tionship of the two populations is parasitic from the point of the parasite-population
as the schemata and fitness values of the parasite-individuals depend solely on the
host-individuals. However, it also resembles a symbiotic relationship as the parasite-
population is used to enhance the ability of the host-population to find solutions to the
problem. As such it resembles the relationship between, forexample, sharks and their
cleaner-fish.

The objective function of the host-population is based on the number of constraints
violated by a candidate solution. The fitness of the host-individuals is normalised be-
tween zero and one and is to be maximised. The host-crossoveroperator is the uniform
random crossover operator and the host-mutation operator is the uniform random mu-
tation operator. Parents are selected using the biased ranking parent selection operator
and survivors are selected using the replace worst survivoroperator. With the excep-
tion of the different objective function, the host-part of theHPEAclosely resembles the
Intuitive Evolutionary Algorithm.

The fitness value of a parasite-individual is calculated by measuring the improvement
of the schema on a portion of the host-population. The improvement is measured
by summing the positive difference of the fitness values before and after the schema
is applied to the host-individual. Applying a schema to a host-individual is called
super-positioningthe schema. The parasite-crossover operator is the uniformrandom
crossover operator, the asterisk labels are treated like ordinary labels. The parasite-
mutation operator is an adaptation of the uniform random mutation operator where for
re-labelling to a asterisk a new parameter is used. The parameter determines the proba-
bility that an asterisk is used to re-label a variable, instead of an ordinary value. A third,
repair, operator is added to evolve the parasite-population. The operator only considers
the variables not labelled with an asterisk. These variables are re-labelled iteratively to
values that do not violate any constraint relevant to other labelled variables. A local-
search algorithm as was used in theHill Climber with Restart Algorithmis used to do
this. Parents for the parasite-population are selected using the biased ranking parent
selection operator and survivors are selected using the replace worst survivor selection
operator.

109

Interaction between the host population and the parasite population is based on two
mechanisms:

Super-position Super-position is the interaction from the host-population to the para-
site-population. This interaction provides the schemata in the parasite-popula-
tion with their fitness values. Each schema in the parasite-population is applied
to a number of host-individuals. Asterisk values in the schemata are replaced by
the corresponding values of the host-individual.

Transcription Transcription is the interaction from the parasite-population to the host-
population and is the actual transmission of the parasite-population’s genetic in-
formation. TheHost-Parasite Evolutionary Algorithmsequentially performs a
generation of the host population before it performs a generation of the parasite
population. Transcription is performed after the parasitepopulation is evaluated.
It uniform randomly selects a number of host-individuals based on a parame-
ter called the transcription rate. Randomly selected schemata are then super-
positioned over these host-individuals.

TheHost-Parasite Evolutionary Algorithmuses two populations and in effect evolves
these populations separately, only exchanging genetic information during super-posi-
tion and transcription. Different genetic and selection operators and even objective
functions can be used for the host part of the algorithm.

7.5.1 HPEA Characteristics and Parameter Setup

Table 7.41 shows the characteristics table for theHost-Parasite Evolutionary Algo-
rithm. Unlike the other characteristics tables in this chapter, the table for theHost-
Parasite Evolutionary Algorithmconsists of three columns. The centre column show
the characteristics of the host part of the algorithm and theright column shows the
characteristics of the parasite part of the algorithm. Boththe host and the parasite-
population of theHPEA use a steady state evolutionary mode, a uniform random
crossover operator, a uniform random mutation operator, a biased ranked parent se-
lection operator and a replace worst survivor selection operator. The crossover oper-
ator and the mutation operator for the parasite-populationhave been adapted so that
they can handle schemata, no adjustment is needed for the host-population’s genetic
operators since it uses an ordered set of values representation. These characteristics
are explained in Chapter 5. As a third operator, the parasitepart of the algorithm also
includes a repair operator, described in the previous section. The host-population uses
thef1 objective function that normalises the fitness values to a range between0 and1,
maximised. The objective function of the parasite-population is based on the improve-
ment of the transcription of the schemata on a number of host-individuals, explained
above. The termImprovementf1 is used in the characteristics table to describe this.
More details on these objective functions can be found in theprevious section as well.

Table 7.42 shows the parameter table for theHost-Parasite Evolutionary Algorithm.
TheHost-Parasite Evolutionary Algorithmmaintains a host-population of10 individ-

110

'

&

$

%

HPEA

Evolutionary Model Steady State Steady State
Representation Ordered Set of Values Schemata
Objective Function f1 Normalised Improvementf1

Crossover operator Uniform Random Uniform Random
Crossover Crossover

Mutation operator Uniform Random Uniform Random
Mutation Mutation

Parent Selection Biased Ranking Biased Ranking
Survivor Selection Replace Worst Replace Worst
Other Functions None Repair Operator

Table 7.41: Characteristics of theHPEA.

HPEA

Host Population Size 10
Parasite Population Size 5
Host Selection Size 10
Parasite Selection Size 5
Maximum Number of Evaluations 100, 000
Number of Super-Positions 2
Transcription Rate 0.8
Mutation Rate Host Population 0.1
Mutation Rate Parasite Population 0.3
Asterisk Rate 0.7
Ranking Bias Host 1.5
Ranking Bias Parasite 1.5
Crossover Rate Host Population 1.0
Crossover Rate Parasite Population 1.0

Table 7.42: Parameters of theHPEA.

111

uals (Host Population Size), from which10 parents are selected (Host Selection Size)
using the biased ranking parent selection operator with a bias of1.5 (Ranking Bias
Host). Simultaneously, theHost-Parasite Evolutionary Algorithmmaintains a parasite
population of5 individuals (Parasite Population Size), from which5 parents are se-
lected (Parasite Selection Size) using the biased ranking parent selection operator with
a bias of1.5 (Ranking Bias Parasite). The crossover operators of both the host- and the
parasite-population are applied with a crossover rate of1.0 (Crossover Rate Host Pop-
ulation and Crossover Rate Parasite Population) and the mutation operator of both pop-
ulations uses a mutation rate of0.1 (Mutation Rate Host Population and Mutation Rate
Parasite Population). The experiments of theHost-Parasite Evolutionary Algorithmare
terminated after100, 000 fitness evaluations have been performed (Maximum Number
of Evaluations), combining the number of evaluations of both the host- and the parasite-
population. During each fitness evaluation of an individualof the parasite-population,
it is super-positioned over2 host population individuals (Number of Super-Positions).
TheHost-Parasite Evolutionary Algorithmuses a transcription rate of0.8 (Transcrip-
tion Rate) and the uniform random mutation operator for the parasite-population uses
an asterisk rate of0.7 (Asterisk Rate).

7.5.2 HPEA Experimental Results

Table 7.43 shows that theHPEAhas reasonableSRfor the solvable region of the test-
set. In the mushy region however, theSRof the algorithm is much lower. Table 7.44
shows that theAESto attain thisSRis quite large. As expected, maintaining the two
populations of theHPEAuses many evaluations. Table 7.45 shows that theHPEAalso
needs a highCC to attain thisSR. The lowSRof theHPEA is also explained because
of the lower number of allowed evaluations for the host part of the algorithm. Because
theHPEAuses evaluations for the maintenance of both populations, and the runs are
terminated after a certain number of evaluations have been used, the host-population
of the algorithm is allowed fewer evaluations to find a solution in than the population
of an algorithm with has only one population. This is a drawback of all evolutionary
algorithms that use the co-evolutionary approach: the extra cost incurred by having to
maintain two populations has to be compensated by an improved performance of the
algorithm. The highCC of theHPEA is probably caused by the local-search technique
used in the repair operator of the parasite-population. TheSRof the HPEA is not
increased enough to compensate for the highCC cost of this operator however.

TheUIC plots in Figure 7.17 show that theHPEAsearches only through a small portion
of the search space. The amount of search space searched is probably limited by the
way the parasite-population is used. TheMBF/MCEplots in Figure 7.18 show that the
MBF andMCE graphs follow each other closely. Except for density-tightness combi-
nation (0.1,0.9), theSRof theHPEAis low, which makes both theMBF/MCEandMCE
measures accurate and explains the smooth monotonic decrease of both plots. Both
plots together show that the population of theHPEA does not converge prematurely
to a local optimum. The erratic behaviour of theMBF/MCEplot for density-tightness
combination (0.1,0.9) is explained by the effects of successful runs on calculating the
mean of theMBF andMCE measures.

112

p1�p2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.988 0.912
0.4 1.0 1.0 1.0 1.0 0.984 0.968 0.788 0.472 0.156
0.5 1.0 1.0 1.0 0.988 0.768 0.436 0.152 0.204 —
0.6 1.0 1.0 0.96 0.708 0.188 0.188 — — —
0.7 1.0 1.0 0.576 0.228 — — — — —
0.8 1.0 0.852 0.256 — — — — — —
0.9 0.98 0.564 — — — — — — —

Table 7.43:SRof theHPEA.

p1�p2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 25 25 26 28 33 43 51 69 75
0.2 25 29 44 72 103 139 189 242 380
0.3 27 50 98 164 253 394 851 2713 6514
0.4 35 82 199 339 1143 6881 10771 16288 20945
0.5 57 148 673 3512 11357 21170 21258 20629 —
0.6 86 263 3603 14406 20224 22063 — — —
0.7 143 2255 12752 20118 — — — — —
0.8 875 8692 23212 — — — — — —
0.9 2727 15222 — — — — — — —

Table 7.44:AESof theHPEA.

p1�p2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 100 180 316 478 788 1438 2001 3165 3836
0.2 100 307 1047 2268 4159 6194 9631 13298 22539
0.3 168 995 3191 6381 11352 19695 45607 151718 416938
0.4 413 2129 7267 14424 56944 367844 645799 1 · 106 1 · 106

0.5 1108 4453 25003 167218 630930 1 · 106 2 · 106 2 · 106 —
0.6 2099 9045 156620 696238 1 · 106 1 · 106 — — —
0.7 4022 77272 593063 1 · 106 — — — — —
0.8 30985 361459 1 · 106 — — — — — —
0.9 85374 718336 — — — — — — —

Table 7.45:CC of theHPEA.

113

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.1,0.9)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.2,0.9)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.3,0.8)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.4,0.7)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.5,0.6)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.6,0.6)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.7,0.5)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.8,0.5)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.9,0.4)

Figure 7.17:UIC of theHPEA.

 1.5

 1.55

 1.6

 1.65

 1.7

 1.75

 1.8

 1.85

 1.9

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 0.99

 1

 1.01

 1.02

 1.03

 1.04

 1.05

 1.06

 1.07

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.1,0.9)

MBF
CE

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.2,0.9)

MBF
CE

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 3

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.3,0.8)

MBF
CE

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 3

 3.1

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.4,0.7)

MBF
CE

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.5,0.6)

MBF
CE

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.6,0.6)

MBF
CE

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.7,0.5)

MBF
CE

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.8,0.5)

MBF
CE

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.9,0.4)

MBF
CE

Figure 7.18:MBF andMCE of theHPEA.

114

7.6 Local Search Evolutionary Algorithm

In [59], E. Marchiori introduced another evolutionary algorithm that uses the combi-
nation of a repair operator and ordinary variation operator. The repair method consists
of a specially adapted local-search algorithm. We call thisalgorithm: theLocal Search
Evolutionary Algorithm(LSEA). In [58], the algorithm was adapted to solve the Maxi-
mum Clique Problem, closely related to the CSP, and a comparison was given between
an evolutionary algorithm setup, an iterated local-searchsetup, and a local-search setup
with a restart strategy.

TheLocal Search Evolutionary Algorithmuses an array of domain sets representation.
One domain set for each variable of the CSP is used. The idea isthat the algorithm will
reduce the domain sets to include only values that do not violate relevant constraints to
the values in the other domain sets. During the search, more and more values are re-
moved from the domain sets until only the values remain that are consistent with each
other. Because only values remain in the domain sets that areconsistent with the values
in the other domain sets, the objective function of theLSEAis straightforward, it counts
thenon-empty domain sets in the individual. Since theLocal Search Evolutionary Al-
gorithmsearches for individuals with domain sets with at least on value consistent with
each other, this is enough. The objective function is calledthe LS objective function.

Because the representation used by theLocal Search Evolutionary Algorithmis so dif-
ferent from the ordered set of values representation, the standard genetic operators
cannot be used. New genetic operators were therefore designed. TheLocal Search
Evolutionary Algorithmhas three operators: the LS crossover operator, the LS muta-
tion operator and the LS repair operator. The LS crossover operator takes two parents
and generates two children. Initially the domain sets of thechildren are empty. With
equal probability, each value from the domain sets of the parents is added to the corre-
sponding domain set of either the first or the second child. Novalues are added twice
to a domain set, instead, the value is added to the domain set of the child that does not
contain it yet.

The LS mutation operator has two parts, it takes one parent toproduce one child. The
first part adds a uniform randomly chosen value to a uniform randomly chosen domain
set of the child. If the value is already in the domain set, another value is chosen. The
second part of the operator removes a value of a domain set. The value is selected with
a low probability, typically0.05. Neither the LS crossover operator nor the LS mutation
operator uses heuristics and both operators are blind to constraints. The biased ranking
selection operator is used for parent selection and replaceworst survivor selection is
used for survivor selection.

The LS repair operator is applied just after initialisationof the individuals and just
after the mutation operator. It consists of three parts, called initialisation, repair, and
improve. The local-search repair operator takes a single parent to construct a single
child. The objective of the repair operator is to have the child contain a maximal partial
solution over all variables of the CSP, constructed based onthe parent. The three parts
of the local-search repair operator are described below:

115

Initialisation The initialisation part of the operator initialises the child with empty
domain sets for all variables of the CSP.

Repair The repair part of the operator consists of two phases:

Extract During the extract phase the operator selects for each variable in the
CSP a uniform randomly chosen value from the domain set of theparent. It
then checks if this value is consistent with the other valuesalready added to
the child. If it is not consistent, another value is uniform randomly selected.
No value can be selected twice. If no value is found to be consistent, the
domain set is left empty. All domain sets are checked in random order.

Extend During the extend phase, the operator tries to extend the domain sets
of the child by checking if a uniform randomly chosen valuenot in the
domain set of the parent is consistent with the already addedvalues in the
child. Again the different domain sets are extended in random order and no
value in the domain sets is checked twice.

The objective of the repair part of the operator is to uniformrandomly construct
an array of maximal domain sets whose values are all consistent with each other.

Improve The improve part of the operator consists of three phases:

Arc-consistency During the arc-consistency phase, the operator checks if there
is a value in the domain sets that is inconsistent with all values of a (empty)
domain set in the child. If such a value is in the domain sets ofthe child,
it is removed. This phase is called arc-consistency becauseconsistency is
checked by arc.

Delete During the delete phase, the operator removes the value in all domain
sets that has the largest number of violated constraints relevant to the other
domain set values. If two or more values have an equal number of violated
constraints, all values are deleted.

Extend This extend phase is the same as the extend phase in the repairpart of
the operator.

The objective of the improve part of the operator is to improve the array of do-
main sets by first eliminating values from the domain sets that cause one or more
domain sets to remain empty and remove the values from the domain sets which
limit the further extension of the child the most. After the arc-consistency and
delete phase, the child is no longer an array of consistent maximal domain sets.
The extend step is repeated in the hope that more values are added to the domain
sets.

The domain sets and the values to be added to them are selecteduniform randomly.
This ensures that the array of consistent maximal domain sets is generated without
bias. The operator also ensures that the algorithm remains in feasible search space,
unlike the repair operator of theEliminate-Split-Propagate Evolutionary Algorithm.

116

'

&

$

%

LSEA

Evolutionary Model Steady State
Representation Array of Domain Sets
Objective Function LSEAObjective Function
Crossover operator LS crossover
Mutation operator LS mutation
Parent Selection Biased Ranking
Survivor Selection Replace Worst
Other Functions LS Repair Operator

Table 7.46: Characteristics of theLSEA.

LSEA

Population Size 10
Selection Size 10
Maximum Number of Evaluations100, 000
Domain Value Add Rate 0.1
Domain Value Remove Rate 0.05
Repair Delete Rate 0.9
Ranking Bias 1.5
Crossover Rate 1.0

Table 7.47: Parameters of theLSEA.

7.6.1 LSEA Characteristics and Parameter Setup

Table 7.46 shows the characteristics table of theLocal Search Evolutionary Algorithm.
TheLocal Search Evolutionary Algorithmuses a steady state evolutionary model, the
biased ranking parent selection operator and the replace worst survivor selection op-
erator, explained in Chapter 5. TheLocal Search Evolutionary Algorithmuses the LS
fitness function, the LS crossover operator, the LS mutationoperator and the LS repair
operator explained in the previous section.

Table 7.47 shows the parameters table of theLocal Search Evolutionary Algorithm. The
Local Search Evolutionary Algorithmuses a population of10 individuals (Population
Size), from which10 parents are selected (Selection Size) using the biased ranked
parent selection operator with a bias of1.5 (Ranking Bias). The LS mutation operator
adds a value to a domain set with a probability of0.1 (Domain Value Add Rate) and
removes a value from a domain set with a probability of0.05 (Domain Value Remove
Rate). The LS crossover operator is applied with a crossoverrate of1.0 (Crossover
Rate). The LS repair operator deletes values from the domainsets with a probability of
0.9 (Repair Delete Rate). The experiments of theLocal Search Evolutionary Algorithm
are terminated after100, 000 fitness evaluations (Maximum Number of Evaluations).

117

7.6.2 LSEA Experimental Results

Table 7.48 shows that theLSEAwill find a solution for the CSP instances in the solvable
region in almost every run. In the mushy region, theSRwas lower but still compar-
atively high. Table 7.49 shows that theAESof theLSEAin the mushy region is low,
finding on average a solution in the first generation for most CSP instances in the mushy
region. TheAESused for solving the CSP instances in the mushy region is higher but is
comparatively low when compared to the other algorithms discussed. Table 7.50 shows
that although theLSEAuses fewAES, it uses manyCCs. This indicates that most of the
conflict checks are used outside the objective function. Since the other operators of the
algorithm do not use conflict checks, these must all be used bythe LS repair operator.

TheUIC plots in Figure 7.19 show that theLSEAsearches only a small portion of the
search space. This is probably caused by the LS repair operator which ensures that the
search is limited to the feasible search space only. TheMBF/MCEplots in 7.20 show
almost no difference between theMBF andMCEmeasures during the run. For density-
tightness combination (0.1,0.9), all runs were successfulbefore the first interval, so
these plots show only a single data point. The flatness of theMBF/MCEplots is caused
by the low number ofAESneeded by theLSEAto find a solution. The way in which
the fitness function is calculated results in a rather staticMBF measure indicating a low
selection pressure with little difference between good andbad individuals.

118

p1�p2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.936
0.5 1.0 1.0 1.0 1.0 1.0 1.0 0.776 0.796 —
0.6 1.0 1.0 1.0 1.0 0.924 0.752 — — —
0.7 1.0 1.0 0.992 0.808 — — — — —
0.8 1.0 1.0 0.812 — — — — — —
0.9 1.0 0.988 — — — — — — —

Table 7.48:SRof theLSEA.

p1�p2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 10 10 10 10 10 10 10 10 10
0.2 10 10 10 10 10 10 10 10 10
0.3 10 10 10 10 10 10 10 10 13
0.4 10 10 10 10 10 13 24 363 4097
0.5 10 10 10 11 25 389 11562 11422 —
0.6 10 10 13 88 10124 12080 — — —
0.7 10 11 1399 5935 — — — — —
0.8 10 26 9825 — — — — — —
0.9 13 540 — — — — — — —

Table 7.49:AESof theLSEA.

p1�p2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 840 868 921 951 1003 1047 1108 1158 1231
0.2 895 974 1146 1253 1436 1656 1961 2307 2791
0.3 974 1167 1477 2013 2560 3174 4066 4912 6813
0.4 1103 1602 2440 3220 4551 6468 13073 164325 2 · 106

0.5 1367 2306 3794 5347 13398 163912 5 · 106 4 · 106 —
0.6 1835 3390 6752 40279 4 · 106 5 · 106 — — —
0.7 2878 5545 619586 3 · 106 — — — — —
0.8 4539 14481 5 · 106 — — — — — —
0.9 8893 300212 — — — — — — —

Table 7.50:CC of theLSEA.

119

-1

-0.5

 0

 0.5

 1

 1.5

-1 -0.5 0 0.5 1

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.1,0.9)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.2,0.9)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.3,0.8)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.4,0.7)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.5,0.6)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.6,0.6)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.7,0.5)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.8,0.5)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.9,0.4)

Figure 7.19:UIC of theLSEA.

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1
-1

-0.5

 0

 0.5

 1

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.1,0.9)

MBF
CE

 8.9

 8.92

 8.94

 8.96

 8.98

 9

 9.02

 9.04

 9.06

 9.08

 9.1

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 8.9

 8.92

 8.94

 8.96

 8.98

 9

 9.02

 9.04

 9.06

 9.08

 9.1

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.2,0.9)

MBF
CE

 8.9

 8.92

 8.94

 8.96

 8.98

 9

 9.02

 9.04

 9.06

 9.08

 9.1

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 8.9

 8.92

 8.94

 8.96

 8.98

 9

 9.02

 9.04

 9.06

 9.08

 9.1

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.3,0.8)

MBF
CE

 8.9

 8.92

 8.94

 8.96

 8.98

 9

 9.02

 9.04

 9.06

 9.08

 9.1

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 8.9

 8.92

 8.94

 8.96

 8.98

 9

 9.02

 9.04

 9.06

 9.08

 9.1

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.4,0.7)

MBF
CE

 8.9

 8.92

 8.94

 8.96

 8.98

 9

 9.02

 9.04

 9.06

 9.08

 9.1

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 8.9

 8.92

 8.94

 8.96

 8.98

 9

 9.02

 9.04

 9.06

 9.08

 9.1

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.5,0.6)

MBF
CE

 8.975

 8.98

 8.985

 8.99

 8.995

 9

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 8.975

 8.98

 8.985

 8.99

 8.995

 9

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.6,0.6)

MBF
CE

 8.9

 8.92

 8.94

 8.96

 8.98

 9

 9.02

 9.04

 9.06

 9.08

 9.1

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 8.9

 8.92

 8.94

 8.96

 8.98

 9

 9.02

 9.04

 9.06

 9.08

 9.1

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.7,0.5)

MBF
CE

 8.92

 8.93

 8.94

 8.95

 8.96

 8.97

 8.98

 8.99

 9

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 8.92

 8.93

 8.94

 8.95

 8.96

 8.97

 8.98

 8.99

 9

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.8,0.5)

MBF
CE

 8.9

 8.92

 8.94

 8.96

 8.98

 9

 9.02

 9.04

 9.06

 9.08

 9.1

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 8.9

 8.92

 8.94

 8.96

 8.98

 9

 9.02

 9.04

 9.06

 9.08

 9.1

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.9,0.4)

MBF
CE

Figure 7.20:MBF andMCE of theLSEA.

120

7.7 Micro-genetic Iterative Descent Evolutionary Algo-
rithm

The Micro-genetic Iterative Descent Evolutionary Algorithm(MIDEA) was proposed
by G. Dozieret al. in [24] and was further refined in [14, 25]. In theMIDEA, infor-
mation about the CSP is incorporated in both genetic operators and in the objective
function. The objective function is adaptive and employs the Breakout Creating Mech-
anism developed by Morris in [66] to escape from local optima. The Micro-genetic
Iterative Descent Evolutionary Algorithmis called micro-genetic because small popu-
lations are evolved.

TheMIDEA uses a representation that includes a pivot value, the number of constraint
violations for each variable, and ah-value additional to the ordered set of values rep-
resentation. Theh-value is used to determine the pivot variable of the individual. The
pivot variable is initialised to zero.

The population is evolved using one of two genetic operators. Which operator is used
is determined by an adaptive scheme. At initialisation of the algorithm, both operators
have an equal probability of being used. After the operator is applied, the fitness values
of the children are compared to the fitness values of the parents. If the child fitness
values are better than the fitness values of the parents, the probability of using the
operator is increased proportionally to the amount of the improvement. Each genetic
operator has its own probability, called theaccumulated awardsof the operator. The
probability of using the operator is calculated by dividingthe accumulated award by
the total accumulated awards of both operators.

The MIDEA uses themultiple-point heuristicoperator ([26]) as a crossover opera-
tor. The operator recombines two parents into one child. Theoperator copies ev-
ery value from the parent which are consistent with each other. The remaining vari-
ables are added by performing a multi-point crossover with probability 0.5 · (1 +
1/constraint violations(value)), or by copying the value from the first parent. The
multi-point crossover chooses a value from a domain limitedby the values of the two
parents. As the domains of the variables are discrete, all values between the values of
the parents can be selected. For a variable with first parent value9 and second parent
value3, the operator can choose a value from the set{3, 4, 5, 6, 7, 8, 9}.

TheMIDEA uses thesingle-point heuristic mutationoperator. The operator re-labels
a single variable. Which variable is re-labelled is determined by the pivot value of the
parent. The variable is re-labelled to a value chosen uniform randomly from the family-
domain of the variable, described below. The child is then compared to its parent. If the
fitness value of the parent is better or equal to the fitness value of the child, theh-value
of the pivot variable of the child is decreased by one and the child is inspected to see
if the pivot should point to another variable. This is done bycalculating thes-value of
each variable. Thes-value of variable is the sum of the number of constraint violations
of the variable and itsh-value. The variable with the highests-value will be the new
pivot variable of the child. If the current pivot variable has an equals-value to one or
more other variables, the pivot remains unchanged. If thes-values of other variables

121

are equal, the pivot is chosen uniform randomly among them. If the fitness value of
the child is better than the fitness value of the parent, theh-value and thus the pivot
variable remains unchanged.

This method for inheriting information for choosing which variable is to be mutated
provides two mechanisms for the algorithm to exploit. First, a consecutive line of suc-
cessful children can optimise the number of constraint violations of a single variable.
Second, it allows the algorithm to switch to other variableswhen this optimising stops
or when other variables have highers-values. A drawback of the method is that after
a while it is possible that theh-values cause the algorithm to choose a variable that is
not involved in any constraint violations. This occurs whentheh-values of the vari-
ables involved in constraint violations get lower than the actual number of constraint
violations. When this happen, no further progress will be made, and to prevent this, all
h-values will be reset to zero using probability functionri for individual i:

ri =
1

|Oi| + 2
(7.3)

whereOi is the number of variables involved in constraint violations caused by indi-
vidual i.

The fitness value of an individual is determined by adding a penalty to the number of
constraint violations of the individual. The penalty is thesum of the weights of all
breakouts whose values occur in the individual. A breakout consists of two parts: a
compound label that violates a constraint and a weight associated to the compound
label. The set of breakouts is initially empty and is modifiedby increasing the weights
of the breakouts or by adding new breakouts according to the technique used in the
Iterative Descent Method ([66]).

In addition, theMicro-genetic Iterative Descent Evolutionary Algorithmuses the mech-
anism of maintaining families. The algorithm uses familiesto force the mutation opera-
tor into a more structured exploration of the search space. Each individual evaluated by
the algorithm is assigned to a family. Each family has a domain for the pivot variables
from which the mutation operator may choose when the pivot variable is re-labelled.
Initially, a family starts this domain equal to the domain ofthe corresponding variable.
When a value is used to label a family member, that value is removed from the do-
main set. This prevents future relative to reuse it. When a domain becomes empty, a
new pivot variable is chosen and a new family is founded, having a full domain. The
individual with the empty family domain becomes the first member of the new family.

7.7.1 MIDEA Characteristics and Parameter Setup

Table 7.51 shows the characteristics table of theMicro-genetic Iterative Descent Evolu-
tionary Algorithm. TheMicro-genetic Iterative Descent Evolutionary Algorithmuses
a steady state evolutionary model, a biased ranking parent selection operator, and a
replace worst survivor selection operator, explained in Chapter 5. TheMIDEA uses a
specialMIDEA representation which adds breakouts to thef1 objective function. The

122

'

&

$

%

MIDEA

Evolutionary Model Steady State
Representation SpecialMIDEA Representation
Objective Function f1and Breakouts
Crossover operator Multi-Point Heuristic
Mutation operator Single-Point Heuristic
Parent Selection Biased Ranking
Survivor Selection Replace Worst
Other Functions Families

Table 7.51: Characteristics of theMIDEA.

MIDEA

Population Size 10
Selection Size 10
Maximum Number of Evaluations100, 000
Crossover Award 1
Mutation Award 1
Ranking Bias 1.5

Table 7.52: Parameters of theMIDEA.

MIDEA uses the multi-point heuristic operator as a crossover operator and the single-
point heuristic operator as a mutation operator. The objective function and both genetic
operators are explained in the previous section.

Table 7.52 shows the parameter table of theMicro-genetic Iterative Descent Evolu-
tionary Algorithm. The Micro-genetic Iterative Descent Evolutionary Algorithmhas
a population of10 individuals (Population Size), from which10 parents are selected
(Selection Size) using the biased ranking parent selectionoperator with a bias of1.5
(Ranking Bias). The crossover operator and the mutation operator are applied based on
an award system which awards one point for an application of the crossover operator
when it improves the fitness of the individuals (Crossover Award) and one point for
an application of the mutation operator when it improves thefitness of the individuals
(Mutation Award). The experiments of theMicro-genetic Iterative Descent Evolution-
ary Algorithmare terminated after100, 000 fitness evaluations (Maximum Number of
Evaluations).

7.7.2 MIDEA Experimental Results

Table 7.53 shows that theSRof theMicro-genetic Iterative Descent Evolutionary Al-
gorithm is low in both the solvable and the mushy region of the test-set. For the mushy
region, theMIDEA did not find a solution in any run for five density-tightness combina-
tions. Table 7.54 and 7.55 therefore show undefined entries for these density-tightness

123

combinations. Given that theSRof the MIDEA is so low, both theAESandCC are
inaccurate since their average is calculated only over a fewsuccessful runs. Still, both
tables show that theMIDEA uses a largeAESand CC to find solutions to the CSP
instances in the test-set.

TheUIC plots in Figure 7.21 show that theMIDEA searches through a small portion
of the search space and that theUIC hardly increases during the run. This suggests
premature convergence of the population on a local optimum.TheMBF/MCEplots in
Figure 7.22 support this suggestion as the plots show almostno variation in both the
MBF and theMCE. Both theUIC and theCC plots are accurate because of the large
number of unsuccessful runs. Combining the two plots we mustconclude that, on av-
erage, the population of theMIDEA converges to a local optimum almost immediately
after it is started.

124

p1�p2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.996
0.2 1.0 1.0 1.0 1.0 1.0 0.976 0.956 0.884 0.772
0.3 1.0 1.0 0.976 0.944 0.796 0.692 0.548 0.332 0.14
0.4 1.0 0.996 0.896 0.732 0.36 0.14 0.044 0.024 0.0
0.5 0.996 0.928 0.532 0.284 0.06 0.02 0.0 0.0 —
0.6 0.996 0.672 0.16 0.036 0.0 0.004 — — —
0.7 0.888 0.24 0.012 0.004 — — — — —
0.8 0.544 0.052 0.0 — — — — — —
0.9 0.22 0.004 — — — — — — —

Table 7.53:SRof theMIDEA.

p1�p2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 10 10 11 13 17 26 32 42 50
0.2 10 14 29 47 77 105 189 244 349
0.3 13 33 70 137 240 394 601 613 978
0.4 19 69 201 259 1305 641 4739 575 undef.
0.5 38 138 331 1601 1655 1200 undef. undef. —
0.6 72 221 502 661 undef. 6635 — — —
0.7 185 785 803 940 — — — — —
0.8 354 375 undef. — — — — — —
0.9 413 550 — — — — — — —

Table 7.54:AESof theMIDEA.

p1�p2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 1350 1361 1501 1777 2246 3499 4255 5638 6778
0.2 1404 1928 3942 6297 10338 14239 25465 32979 47118
0.3 1766 4434 9506 18490 32405 53283 81215 82753 132108
0.4 2576 9250 27192 34982 176355 86643 640305 77633 undef.
0.5 5086 18687 44748 216372 223653 162108 undef. undef. —
0.6 9670 29810 67776 89295 undef. 896603 — — —
0.7 24958 106109 108495 126945 — — — — —
0.8 47830 50687 undef. — — — — — —
0.9 55753 74250 — — — — — — —

Table 7.55:CC of theMIDEA.

125

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.1,0.9)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.2,0.9)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.3,0.8)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.4,0.7)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.5,0.6)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.6,0.6)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.7,0.5)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.8,0.5)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.9,0.4)

Figure 7.21:UIC of theMIDEA.

 1.375

 1.38

 1.385

 1.39

 1.395

 1.4

 1.405

 1.41

 1.415

 1.42

 1.425

 1.43

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.375

 1.38

 1.385

 1.39

 1.395

 1.4

 1.405

 1.41

 1.415

 1.42

 1.425

 1.43

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.1,0.9)

MBF
CE

 3.155

 3.16

 3.165

 3.17

 3.175

 3.18

 3.185

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 3.155

 3.16

 3.165

 3.17

 3.175

 3.18

 3.185

 3.19

 3.195

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.2,0.9)

MBF
CE

 4.045

 4.05

 4.055

 4.06

 4.065

 4.07

 4.075

 4.08

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 4.04

 4.05

 4.06

 4.07

 4.08

 4.09

 4.1

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.3,0.8)

MBF
CE

 4.135

 4.14

 4.145

 4.15

 4.155

 4.16

 4.165

 4.17

 4.175

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 4.135

 4.14

 4.145

 4.15

 4.155

 4.16

 4.165

 4.17

 4.175

 4.18

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.4,0.7)

MBF
CE

 4.09

 4.095

 4.1

 4.105

 4.11

 4.115

 4.12

 4.125

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 4.095

 4.1

 4.105

 4.11

 4.115

 4.12

 4.125

 4.13

 4.135

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.5,0.6)

MBF
CE

 5.685

 5.69

 5.695

 5.7

 5.705

 5.71

 5.715

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 5.69

 5.695

 5.7

 5.705

 5.71

 5.715

 5.72

 5.725

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.6,0.6)

MBF
CE

 4.925

 4.93

 4.935

 4.94

 4.945

 4.95

 4.955

 4.96

 4.965

 4.97

 4.975

 4.98

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 4.93

 4.94

 4.95

 4.96

 4.97

 4.98

 4.99

 5

 5.01

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.7,0.5)

MBF
CE

 5.995

 6

 6.005

 6.01

 6.015

 6.02

 6.025

 6.03

 6.035

 6.04

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 5.99

 6

 6.01

 6.02

 6.03

 6.04

 6.05

 6.06

 6.07

 6.08

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.8,0.5)

MBF
CE

 4.41

 4.42

 4.43

 4.44

 4.45

 4.46

 4.47

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 4.41

 4.42

 4.43

 4.44

 4.45

 4.46

 4.47

 4.48

 4.49

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.9,0.4)

MBF
CE

Figure 7.22:MBF andMCE of theMIDEA.

126

7.8 Stepwise Adaptation of Weights Evolutionary Algo-
rithm

TheStepwise Adaptation of Weights Evolutionary Algorithm(SAWEA) was first intro-
duced by A.E. Eiben and J.K. van der Hauw in [33, 84] as improvement to the weight
adaptation mechanism of Eiben, Raué, and Ruttkay, defined in [30, 31]. TheStepwise
Adaptation of Weights Evolutionary Algorithmhas been studied in several variations
in [30, 34, 35], and a comprehensive study of different parameters and genetic oper-
ators can be found in [17]. In [42], theStepwise Adaptation of Weights Evolutionary
Algorithm is surpassed by other techniques for specific suites of satisfiability problems
(SAT), but for the constraint satisfaction problem, theStepwise Adaptation of Weights
Evolutionary Algorithmhas been found to have good performance for different con-
straint satisfaction problems.

The Stepwise Adaptation of Weights Evolutionary Algorithmdefines two equally im-
portant additions to the standard evolutionary algorithm:the decoder, and the stepwise
adaptation of weights mechanism.

The decoder in theStepwise Adaptation of Weights Evolutionary Algorithmtakes a
permutation of the variables of a constraint satisfaction problem and uses a greedy
algorithm to label these variables, in order, with values from the domains of these
variables, so that the thus constructed partial candidate solution remains consistent.
Variables that can not be labelled with a consistent value are left unlabelled. The fitness
value of an individual is the number of variables that are left unlabelled.

The stepwise adaptation of weights mechanism is based on thenotion that some con-
straints in the constraint satisfaction problem are harderto satisfy than others. Perfor-
mance of an evolutionary algorithm can be improved by focussing on satisfying these
constraints. It is assumed that constraints that have not been satisfied after a number of
iterations of the evolutionary algorithm are hard to satisfy. The stepwise adaptation of
weights mechanism uses this assumption by defining a specialobjective function: the
SAW objective function.

The SAW objective function maintains a set of weights for each constraint in the con-
straint satisfaction problem. This set is initialised by a assigning a weight of1 to each
constraint. After an interval of a number of generations, the individual with the best
fitness value in the population is used to increase the weights of the constraints that are
violated in the individual. Because the decoder labels onlyvariables that are consistent
with each other, constraints with an relevant unassigned variable are considered to be
violated. The amount with which the weight is increased is determined by parameter
∆w. Usually a value of∆w = 1 is used. The interval after which the weights are
updated is determined by another parameter: theupdate interval. A commonly used
value for the update interval parameter is25 generations of theSAWEA.

In [17] for the constraint satisfaction problem, and in [34]for the k-graph colour-
ing problem, it was found that there was no significant difference in the performance
of theStepwise Adaptation of Weights Evolutionary Algorithmwhen the fitness of an
individual was calculated based on variables that were leftunassigned instead of con-

127

straints that were violated. As such, we use the variable-weights variant of theStepwise
Adaptation of Weights Evolutionary Algorithmhere. This means that the SAW objec-
tive function maintains a set of weights over all variables of the constraint satisfaction
problem. The weights are increased when a variable is left unassigned by the decoder.
The fitness value of an individual is calculated by adding theweights of all unassigned
variables.

TheStepwise Adaptation of Weights Evolutionary Algorithmhas only a single genetic
operator: a mutation operator. The mutation operator implements a simple swap of the
values of two randomly chosen variables. It takes a single parent and produces a single
child. In [17], other mutation operators, and a number of crossover operators were
tried without significant improvement of the performance. TheStepwise Adaptation of
Weights Evolutionary Algorithmuses a biased ranked parent selection operator and a
replace worst survivor selection operator.

7.8.1 SAWEACharacteristics and Parameter Setup

Table 7.56 shows the characteristics table of theStepwise Adaptation of Weights Evo-
lutionary Algorithm. TheStepwise Adaptation of Weights Evolutionary Algorithmuses
a steady state evolutionary model, a biased ranking parent selection operator, and a re-
place worst survivor selection operator, explained in Chapter 5. TheStepwise Adapta-
tion of Weights Evolutionary Algorithmuses a permutation of variables representation
for the decoder. It has no crossover operator and uses a simple swap operator as a muta-
tion operator. The fitness function of theStepwise Adaptation of Weights Evolutionary
Algorithm is thef2 fitness function (see Chapter 5) with the addition of the stepwise
adaptation of weights mechanism, explained in the previoussection.

Table 7.57 shows the parameter table of theStepwise Adaptation of Weights Evolu-
tionary Algorithm. TheStepwise Adaptation of Weights Evolutionary Algorithmhas a
population of10 individuals (Population Size), from which10 parents are selected us-
ing the biased ranking parent selection operator with a biasof 1.5 (Ranking Bias). The
weights of the stepwise adaptation of weights mechanism areupdated every25 gen-
erations of the algorithm (Update Interval). Weights are increased by adding1 (∆w).
SinceStepwise Adaptation of Weights Evolutionary Algorithmhas no crossover oper-
ator, no crossover rate is needed. Also, the swap mutation operator has no parameter.
The experiments of theStepwise Adaptation of Weights Evolutionary Algorithmare
terminated after100, 000 fitness evaluations (Maximum Number of Evaluations).

7.8.2 SAWEAExperimental Results

Table 7.58 shows that theSAWEAhas aSRof 1.0 for all but two density-tightness
combinations in the solvable region. TheSAWEAhas reasonableSR in the mushy
region as well. Table 7.59 shows that for most of the solvableregion, theSAWEAwill
find a solution in the first generation. In the mushy region, theAESis low as well. There
has been some discussion about whether the fitness evaluations used for calculating the
weights should be counted at all. Since the calculation of the fitness value is nothing

128

'

&

$

%

SAWEA

Evolutionary Model Steady State
Representation Permutation of Variables
Objective Function f2 with SAW mechanism
Crossover operator None
Mutation operator Swap
Parent Selection Biased Ranking
Survivor Selection Replace Worst
Other Functions Decoder

Table 7.56: Characteristics of theSAWEA.

SAWEA

Population Size 10
Selection Size 10
Maximum Number of Evaluations100, 000
Update Interval 25
∆w 1
Ranking Bias 1.5

Table 7.57: Parameters of theSAWEA.

more then calculating the sum of the weights for the violatedconstraints or unassigned
variables in the individual, with a little extra storage, counting this as a full fitness
evaluation seems unfair. However, if the weights are calculated for violated constraints,
a list of violated constraints has to be stored, while if the weights are calculated for
unassigned variables, the decoded candidate solution has to be stored. When the re-
calculation of a sum argument is to be maintained therefore,the space complexity
of the algorithm is increased by the extra storage space needed. Since none of the
measures used measures the space complexity of an algorithm, we decided that to
reflect this extra complexity, the computational complexity of the algorithm should
be proportionally increased. Therefore we decided to countthe re-calculation of the
weights for all individuals in the population as a fitness evaluation. This allows for
no “tricks” to reduce the computational complexity of the algorithm at the cost of the
space complexity of the algorithm. Also, by counting all fitness evaluations equally,
different values for the update interval parameter have an effect on the efficiency of the
algorithm as shorter update interval parameter values result in more fitness evaluations
than longer ones. Since each fitness evaluation in theSAWEAuses a number of conflict
checks as well, this also has an effect on theCC measure. Overall, we believe that this
allows a fairer comparison with the other algorithms in the inventory. For those who are
interested in theAESandCC measures which do not count the fitness evaluations used
for re-calculating the fitness values of the individuals at the weight updates, subtract
one divided by the update interval parameter fitness evaluations and conflict checks
from theAESandCCmeasures for a rough estimate. Table 7.60 shows that theSAWEA

129

uses manyCC even for solving the CSP instances in the solvable region. Since conflict
checks are only used in the objective function of theSAWEA, this can only be explained
by the fact that the decoding of an individual is expensive.

The UIC plots for theSAWEAin Figure 7.23 show that it searches through a large
portion of the search space, even though that search space islimited by the use of the
permutation representation. TheMBF/MCE plots in 7.24 show that the behaviour of
theMBF and theMCE is very different during the run. The reason for this is the dif-
ference between the SAW objective function with its stepwise adaptation of weights
mechanism and the way theMCE is calculated. Weights in the SAW objective function
can only increase which results in, increasing fitness values of the individuals during
the run of theSAWEA. TheMCE shows a more erratic behaviour. This is because the
relationship between the decoder and the fitness value of theindividual. The evolution-
ary part of theSAWEAevolves permutations for the decoder to use, but a small change
in the individual can lead to a large difference in the fitnessvalue of the individual
after it has been decoded. The champion error, even when averaged, can therefore be
very different from one generation to the next. Overall however, we see a downward
trend in theMCE during the run, even though there is much oscillation in the plots.
For density-tightness combination (0.1,0.9), theMBF/MCE plot shows that theMCE
oscillates between champion individuals which at one interval have a fitness value of
one and at the next interval a fitness value of two. Which of these individuals has the
best fitness value depends on the weights of the variables that are unassigned. The
oscillations in the otherMBF/MCEplots are caused by this behaviour as well.

130

p1�p2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.828
0.5 1.0 1.0 1.0 1.0 1.0 0.96 0.32 0.396 —
0.6 1.0 1.0 1.0 1.0 0.772 0.64 — — —
0.7 1.0 1.0 0.904 0.664 — — — — —
0.8 1.0 1.0 0.6 — — — — — —
0.9 0.92 0.72 — — — — — — —

Table 7.58:SRof theSAWEA.

p1�p2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 10 10 10 10 10 10 10 10 10
0.2 10 10 10 10 10 10 10 10 10
0.3 10 10 10 10 10 10 10 12 19
0.4 10 10 10 10 11 18 72 695 3547
0.5 10 10 11 15 72 699 6481 2393 —
0.6 10 10 22 108 9511 3326 — — —
0.7 10 22 1389 5975 — — — — —
0.8 12 336 2134 — — — — — —
0.9 56 849 — — — — — — —

Table 7.59:AESof theSAWEA.

p1�p2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 5219 5249 5298 5325 5359 5401 5450 5483 5518
0.2 5274 5347 5446 5514 5514 5702 5813 5902 5982
0.3 5328 5462 5611 5764 5764 5977 6185 6502 7775
0.4 5416 5632 5830 5983 5983 7457 16701 126318 645733
0.5 5511 5775 6067 6854 6854 126795 1 · 106 438562 —
0.6 5631 5929 8044 22583 2 · 106 603370 — — —
0.7 5802 8106 246762 1 · 106 — — — — —
0.8 6213 60680 412326 — — — — — —
0.9 13679 173181 — — — — — — —

Table 7.60:CC of theSAWEA.

131

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.1,0.9)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.2,0.9)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.3,0.8)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.4,0.7)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.5,0.6)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.6,0.6)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.7,0.5)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.8,0.5)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

un
iq

ue
 in

di
vi

du
al

s
ch

ec
ke

d

evaluations

(0.9,0.4)

Figure 7.23:UIC of theSAWEA.

 0

 50

 100

 150

 200

 250

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.16

 1.17

 1.18

 1.19

 1.2

 1.21

 1.22

 1.23

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.1,0.9)

MBF
CE

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.35

 1.4

 1.45

 1.5

 1.55

 1.6

 1.65

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.2,0.9)

MBF
CE

 0

 20

 40

 60

 80

 100

 120

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

 1.6

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.3,0.8)

MBF
CE

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.4,0.7)

MBF
CE

 0

 10

 20

 30

 40

 50

 60

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 1.2

 1.22

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.5,0.6)

MBF
CE

 0

 20

 40

 60

 80

 100

 120

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.48

 1.5

 1.52

 1.54

 1.56

 1.58

 1.6

 1.62

 1.64

 1.66

 1.68

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.6,0.6)

MBF
CE

 0

 10

 20

 30

 40

 50

 60

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.7,0.5)

MBF
CE

 0

 10

 20

 30

 40

 50

 60

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.8,0.5)

MBF
CE

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

m
ea

n
be

st
 fi

tn
es

s

ch
am

pi
on

 e
rr

or

evaluations

(0.9,0.4)

MBF
CE

Figure 7.24:MBF andMCE of theSAWEA.

132

Chapter 8

Comparison of the Evolutionary
Algorithms in the Inventory

This chapter contains a comparison of the performance of theevolutionary algorithms
in the inventory given in Chapter 7. In the first section the performance of the algo-
rithms is compared on the effectivity and efficiency measures, SR, AES, andCC. The
second section compares the relative performance of the algorithms in theSR-AESand
SR-CC planes. Statistical analysis on the effectivity measureSRis used to rank the
performance of the algorithms in the third section. A preliminary conclusion based on
the comparison is presented in the final section of the chapter.

8.1 Comparison on Effectivity and Efficiency
Measures

The performance of the algorithms in the inventory is compared along the same lines
as was done in Chapter 6. The performance of all algorithms issummarised in three
tables, one for each performance measure: theSR, the AES, and theCC. The table
for theSRmeasure is shown in Table 8.1. The table for theAESmeasure is shown in
Table 8.2. The table for theCC measure is shown in Table 8.3. In each table, for each
density-tightness combination, the best value is shown in bold-face.

Table 8.1 shows that theLSEAhas the best averageSRof all algorithms in the inventory.
For density-tightness combination (0.1,0.9), theHEA1, theHEA3, theESPEA, and the
LSEAsolved all CSP instances in all runs. TheArcEA1, theHPEA, and theSAWEA
had aSRof 0.989, 0.98, and0.92 respectively. These algorithms were able to solve the
CSP instances for this density-tightness combination in nearly all runs. For density-
tightness combination (0.2,0.9), theLSEAhas the bestSR: 0.988. TheHEA3had the
second bestSRwith 0.984. The other algorithms had a significantly lowerSR. For
density-tightness combination (0.3,0.8),LSEAsolved the CSP instances in the most

133

(0.1, (0.2, (0.3, (0.4, (0.5, (0.6, (0.7, (0.8, (0.9,
0.9) 0.9) 0.8) 0.7) 0.6) 0.6) 0.5) 0.5) 0.4)

HEA1 1.0 0.892 0.556 0.572 0.504 0.42 0.4 0.428 0.504
HEA2 0.764 0.188 0.068 0.08 0.072 0.056 0.04 0.064 0.076
HEA3 1.0 0.984 0.688 0.712 0.692 0.44 0.588 0.488 0.76
ArcEA1 0.988 0.688 0.368 0.384 0.312 0.284 0.22 0.24 0.3
ArcEA2 0.708 0.12 0.016 0.02 0.016 0.024 0.008 0.008 0.012
ArcEA3 0.692 0.128 0.024 0.032 0.012 0.028 0.012 0.004 0.008
CoeEA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ESPEA 1.0 0.676 0.388 0.436 0.436 0.404 0.328 0.468 0.432
HPEA 0.98 0.564 0.256 0.228 0.188 0.188 0.152 0.204 0.156
LSEA 1.0 0.988 0.812 0.808 0.924 0.752 0.776 0.796 0.936
MIDEA 0.22 0.004 0.0 0.004 0.0 0.004 0.0 0.0 0.0
SAWEA 0.92 0.72 0.6 0.664 0.772 0.64 0.32 0.396 0.828

Table 8.1: Comparison tableSR.

runs with aSRof 0.812, all other algorithms had a lowerSRwith HEA3 having the
second bestSRof 0.688. The other density-tightness combinations in the mushy region
show a comparableSRdistribution, although sometimesHEA3had the second highest
SRwhile for other density-tightness combinations theSAWEAhad the second highest
SR. Overall, theSRof HEA3andSAWEAare fairly close to each other but not as high
asLSEA.

The comparison tables for theAESandCC measures (Tables 8.2 and 8.3) do not show
such a clear-cut advantage of one algorithm. Not only are thedifferences between the
AESandCC measures more varied, different algorithms throughout themushy region
use lessAESandCC. Overall, theArcEA2has the lowestAESandCC, however, theSR
of theArcEA2 is relatively low, making both measures less accurate. TheLSEAwith
the highestSRhas the most accurateAESandCC measures.

From all three tables it is clear that theCoeEAhas the worst performance of all algo-
rithms in the inventory. If fails to solve a single CSP instance in the mushy region in all
its runs. TheMIDEA also has poor performance. It has a lowSRthroughout the mushy
region and solves the CSP instances in the mushy region only for a small number of
runs and then only in4 out of 9 density-tightness combinations. For theCC measure,
note that both theESPEAand theLSEAuse a lot more conflict checks than the other al-
gorithms. Compared to theHEA2, another algorithm with highCC values, theESPEA
uses, on average, between2.49 ((0.1,0.9)) to57.68 ((0.9,0.4)) times as many conflict
checks to find a solution. TheLSEAuses even more conflict checks, on average, be-
tween2.23 ((0.1,0.9)) to575.74 ((0.5,0.6)) times as many. Although both theESPEA
and theLSEAhave an above averageSR, this comes at the price of a highCC.

134

(0.1, (0.2, (0.3, (0.4, (0.5, (0.6, (0.7, (0.8, (0.9,
0.9) 0.9) 0.8) 0.7) 0.6) 0.6) 0.5) 0.5) 0.4)

HEA1 37 335 3931 1448 3387 5704 1951 7603 2789
HEA2 5862 14268 13660 21876 10727 13596 14444 13596 16609
HEA3 26 419 1635 1404 2382 988 969 1258 1563
ArcEA1 279 3467 2008 4403 962 2099 2116 778 5067
ArcEA2 2804 8269 362 186 494 186 218 1953 250
ArcEA3 2036 4056 648 2906 173 8060 2720 290 1225
CoeEA undef. undef. undef. undef. undef. undef. undef. undef. undef.
ESPEA 997 6604 4982 6280 7928 5581 8599 5332 8365
HPEA 2727 15222 23212 20118 20224 22063 21258 20629 20945
LSEA 13 540 9825 5935 10124 12080 11562 11422 4097
MIDEA 413 550 undef. 940 undef. 6635 undef. undef. undef.
SAWEA 56 849 2134 5975 9511 3326 6481 2393 3547

Table 8.2: Comparison tableAES.

8.2 Comparison on the Effectivity-Efficiency
Plane

The tables in the previous section show that looking at theSR, AES, andCC separately
does not provide us with a complete picture. We already explained that there is a re-
lationship between theSRmeasure and theAESand theCC measures in that theSR
influences the accuracy of theAESandCC measures. In addition to this relationship,
there exists another relationship between the effectivityand efficiency measures. Ide-
ally, an algorithm should have both a good effectivityanda good efficiency, i.e., a high
SRand a lowAESandCC. From the tables in the previous section it is clear that this
is not the case, theLSEAhas the best overallSRof all algorithms in the inventory but
a highAESandCC.

To compare the effectivity-efficiency relationship of eachalgorithm we use plots with
on thex-axis theSRof the algorithm and on they-axis either theAESor the CC
performance. In total two sets of nine plots, one for each density-tightness combination
in the mushy region are used, one set for theSR-AESrelationship and one for theSR-
CC relationship. TheSRmeasure already has a range between0.0 and1.0, but we
normalise theAESandCC measures to this range as well. Figure 8.1 shows the first
set of plots for theSR-AESrelationship. Figure 8.2 shows the second set of plots for
the SR-CC relationship. Because of the large spread between theCC values for the
algorithms we used a logarithmic scale on they-axis in the Figure 8.2. TheCoeEAhas
aSRof 0.0 for all density-tightness combinations in the mushy regionand an undefined
AESandCC measure, and this algorithm is not represented in the plots.The same
applies for theMIDEA for 5 out of the9 density-tightness combinations. The plots
show the other algorithms as a dot labelled with the abbreviation of the algorithm.

Two methods can be used to determine the order of theSR-AESand theSR-CC rela-

135

(0.1, (0.2, (0.3, (0.4, (0.5, (0.6, (0.7, (0.8, (0.9,
0.9) 0.9) 0.8) 0.7) 0.6) 0.6) 0.5) 0.5) 0.4)

HEA1 13 167 2015 761 1721 2947 1043 4065 1502
HEA2 3980 9752 9405 15153 7481 9538 10205 8456 11885
HEA3 24 621 2489 2110 3647 1493 1472 1933 2405
ArcEA1 67 866 523 1205 261 588 569 220 1513
ArcEA2 68 352 24 15 24 254 41 51 48
ArcEA3 73 252 60 354 26 1479 597 67 333
CoeEA undef. undef. undef. undef. undef. undef. undef. undef. undef.
ESPEA 9918 118774 139361 225890 364466 301103 549994 383535 685535
HPEA 85 718 1255 1152 1102 1336 1535 1503 1420
LSEA 8893 300212 5 · 106 3 · 106 4 · 106 5 · 106 5 · 106 4 · 106 2 · 106

MIDEA 56 74 undef. 127 undef. 897 undef. undef. undef.
SAWEA 14 173 412 1111 1732 603 1170 439 646

Table 8.3: Comparison tableCC.

tionships of the algorithms in the plots.

In the first method we partition each plots into four quadrants, numbered one to four,
clockwise. The first quadrant then includes algorithms withaSRof 0.5 or more and an
AESor CCof more than half of the maximum found. In quadrant2 the algorithms with
a SRof 0.5 or more and anAESor CC of less then half the maximum can be found.
In the third quadrant the algorithms with aSRof less then0.5 and less then half the
maximumAEScan be found. In the fourth quadrant the algorithms with aSRof 0.5
and anAESandCCof more then half the maximum can be found. The algorithms with
a betterSR-AESor SR-CC relationship can thus be found in quadrant2 (bottom-right)
while the algorithms with a worse relationship are located in the fourth quadrant (top-
left). Quadrants can be further subdivided for a more fine-grained determination of the
ordering. The quadrant method is slightly more complicatedfor the plots in Figure 8.2
because of the logarithmic scale of they-axis, resulting in quadrants that are not equal
in height.

The second method to determine the order of theSR-AESand theSR-AESrelationships
of the algorithms involves moving a line at an angle to thex-axis from the bottom-left
corner to the top-right corner of each plot. The dot of the algorithm that is first crossed
by the line is then the algorithm with the bestSR-AESor SR-CC relationship. The
one that is crossed last is the algorithm with the worst relationship. The angle to the
x-axis of the plot is determined by the (relative) weight applied to the importance of
the performance measure. If theSRis equal in importance to either theAESand the
CC measure, this angle is45 degrees. The angle is decreased when the importance of
theSRin increased and the angle is increased otherwise. The line can be described by
the following formula:y = wSR

wAES
·x+a for theSR-AESrelationship andy = wSR

wCC
·x+a

for theSR-CC relationship wherewSR is the relative weight of theSRmeasure,wAES

the relative weight of theAESmeasure,wCC the relative weight of theCC measure,

136

anda is used to move the line. Here we assume equal weight of the twoperformance
measures (wSR = wAES = wCC). Again the method is slightly more complicated by the
logarithmic scale of they-axis in Figure 8.2 as the lines will show up in the plots as
logarithmic curves.

Using the first method to order theSR-AESrelationship in Figure 8.1 shows that for
density-tightness combination (0.1,0.9) most algorithmscan be found in the second
(bottom-right) quadrant. Only theHEA2and theMIDEA are outside this quadrant. For
density-tightness combination (0.2,0.9), theLSEA, theHEA3, theHEA1, theSAWEA,
theArcEA1, and theESPEAlie in the second quadrant. The plots for density-tightness
combinations (0.3,0.8) and (0.4,0.7) show that theLSEA, theHEA3, theHEA1, and the
ESPEAlie in the second quadrant. For density-tightness combinations (0.5,0.6) and
(0.9,0.4), theLSEA, the SAWEA, and theHEA3 lie in the second quadrant while for
density-tightness combinations (0.6,0.6) and (0.7,0.5),the LSEAand theHEA3 lie in
the second quadrant. For the remaining density-tightness combination, (0.8,0.5), only
theLSEAlies in the second quadrant. Overall, both theLSEAand theHEA3have both
a highSRand a lowAES. TheHPEAand theHEA2often lie in the fourth quadrant and
theArcEA2and theArcEA3lie often in the third quadrant (bottom-left).

Using the first method to order theSR-CC relationship in Figure 8.2 is more compli-
cated because of the logarithmic scale of they-axis. Nevertheless, the plots show a
very different relationship between theSRand theCC than was seen in Figure 8.1. In
Figure 8.1 theLSEAand to a lesser extend theESPEAhad relatively lowAESwhile in
Figure 8.2 both algorithms can always be found towards the top of the plots. Relative
to theCC of the other algorithms therefore, these two algorithms have a highCC in
relation to a highSR. Because they-axis of the plots in Figure 8.2 is in logarithmic
scale, this difference is large, reflecting our earlier observations in the previous section.

Figures 8.1 and 8.2 indicate a different relationship between theSRand theAESof the
algorithms then for theSRand theAES. Although theHEA3and to a lesser extend the
HEA1 and theSAWEAwere located near the bottom-left corners of both graphs, the
LSEAand theESPEAwere located in the bottom-left corner in Figure 8.1 and in the
top-left corner in Figure 8.2. This is an indication of the large amount of (hidden) work
that theLSEAand theESPEAneed to do to attain the highSRthey have. In contrast
theHEA3also has a goodSRbut needs much less conflict checks to attain this.

The use of a moving line in the second method of determining the order of the relation-
ship betweenSR-AESandSR-CCshows us that the order can also be determined by the
ratio of theSRand theAESor CC multiplied by the ratio of the weights for these mea-
sures, as in the formula:o = wSR

wAES
· SR

AES, whereo-values determine the relative order of
the algorithms. The meaning of thewSRandwAESvariables has been explained above.
The formula signifies the rewriting of the previous formula in order to finda whenx
andy are known. When we assume equal importance ofSRto AESandCC, the values
for o in Table 8.4 for theSR-AESrelationship and Table 8.5 for theSR-CC relationship
can be calculated. As in Figures 8.1 and 8.2 we used the normalised values of theAES,
and theCC. Based on theseo-values, we can determine the order of the algorithms
based on the two relationships. The orders for each density-tightness combination in
the mushy region for theSR-AESand theSR-CC relationship are shown in Table 8.6

137

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 E
va

lu
at

io
ns

 to
 S

ol
ut

io
n

Success Rate

HEA1

HEA2

HEA3

ArcEA1

ArcEA2

ArcEA3

ESPEA

HPEA

LSEA

MIDEA SAWEA

(0.1,0.9)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 E
va

lu
at

io
ns

 to
 S

ol
ut

io
n

Success Rate

HEA1

HEA2

HEA3

ArcEA1

ArcEA2

ArcEA3

ESPEA

HPEA

LSEAMIDEA SAWEA

(0.2,0.9)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 E
va

lu
at

io
ns

 to
 S

ol
ut

io
n

Success Rate

HEA1

HEA2

HEA3
ArcEA1

ArcEA2
ArcEA3

ESPEA

HPEA

LSEA

SAWEA

(0.3,0.8)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 E
va

lu
at

io
ns

 to
 S

ol
ut

io
n

Success Rate

HEA1

HEA2

HEA3

ArcEA1

ArcEA2

ArcEA3

ESPEA

HPEA

LSEA

MIDEA

SAWEA

(0.4,0.7)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 E
va

lu
at

io
ns

 to
 S

ol
ut

io
n

Success Rate

HEA1

HEA2

HEA3
ArcEA1ArcEA2

ArcEA3

ESPEA

HPEA

LSEA
SAWEA

(0.5,0.6)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 E
va

lu
at

io
ns

 to
 S

ol
ut

io
n

Success Rate

HEA1

HEA2

HEA3
ArcEA1

ArcEA2

ArcEA3

ESPEA

HPEA

LSEA

MIDEA

SAWEA

(0.6,0.6)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 E
va

lu
at

io
ns

 to
 S

ol
ut

io
n

Success Rate

HEA1

HEA2

HEA3
ArcEA1

ArcEA2
ArcEA3

ESPEA

HPEA

LSEA

SAWEA

(0.7,0.5)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 E
va

lu
at

io
ns

 to
 S

ol
ut

io
n

Success Rate

HEA1

HEA2

HEA3ArcEA1
ArcEA2
ArcEA3

ESPEA

HPEA

LSEA

SAWEA

(0.8,0.5)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 E
va

lu
at

io
ns

 to
 S

ol
ut

io
n

Success Rate

HEA1

HEA2

HEA3

ArcEA1

ArcEA2
ArcEA3

ESPEA

HPEA

LSEA
SAWEA

(0.9,0.4)

Figure 8.1: Algorithm distribution on theSR-AESplane.

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0 0.2 0.4 0.6 0.8 1

C
on

fli
ct

 C
he

ck
s

to
 S

ol
ut

io
n

Success Rate

HEA1

HEA2

HEA3
ArcEA1ArcEA2

ArcEA3

ESPEA

HPEA

LSEA

MIDEA
SAWEA

(0.1,0.9)

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0 0.2 0.4 0.6 0.8 1

C
on

fli
ct

 C
he

ck
s

to
 S

ol
ut

io
n

Success Rate

HEA1

HEA2

HEA3ArcEA1
ArcEA2
ArcEA3

ESPEA

HPEA

LSEA

MIDEA SAWEA

(0.2,0.9)

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0 0.2 0.4 0.6 0.8 1

C
on

fli
ct

 C
he

ck
s

to
 S

ol
ut

io
n

Success Rate

HEA1
HEA2

HEA3

ArcEA1

ArcEA2
ArcEA3

ESPEA

HPEA

LSEA

SAWEA

(0.3,0.8)

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0 0.2 0.4 0.6 0.8 1

C
on

fli
ct

 C
he

ck
s

to
 S

ol
ut

io
n

Success Rate

HEA1

HEA2

HEA3ArcEA1

ArcEA2

ArcEA3

ESPEA

HPEA

LSEA

MIDEA

SAWEA

(0.4,0.7)

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0 0.2 0.4 0.6 0.8 1

C
on

fli
ct

 C
he

ck
s

to
 S

ol
ut

io
n

Success Rate

HEA1

HEA2
HEA3

ArcEA1

ArcEA2
ArcEA3

ESPEA

HPEA

LSEA

SAWEA

(0.5,0.6)

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0 0.2 0.4 0.6 0.8 1

C
on

fli
ct

 C
he

ck
s

to
 S

ol
ut

io
n

Success Rate

HEA1
HEA2

HEA3
ArcEA1

ArcEA2

ArcEA3

ESPEA

HPEA

LSEA

MIDEA SAWEA

(0.6,0.6)

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0 0.2 0.4 0.6 0.8 1

C
on

fli
ct

 C
he

ck
s

to
 S

ol
ut

io
n

Success Rate

HEA1

HEA2

HEA3
ArcEA1

ArcEA2

ArcEA3

ESPEA

HPEA

LSEA

SAWEA

(0.7,0.5)

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0 0.2 0.4 0.6 0.8 1

C
on

fli
ct

 C
he

ck
s

to
 S

ol
ut

io
n

Success Rate

HEA1
HEA2

HEA3

ArcEA1

ArcEA2
ArcEA3

ESPEA

HPEA

LSEA

SAWEA

(0.8,0.5)

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0 0.2 0.4 0.6 0.8 1

C
on

fli
ct

 C
he

ck
s

to
 S

ol
ut

io
n

Success Rate

HEA1

HEA2

HEA3ArcEA1

ArcEA2

ArcEA3

ESPEA

HPEA

LSEA

SAWEA

(0.9,0.4)

Figure 8.2: Algorithm distribution on theSR-CC plane.

138

and 8.7 respectively.

Tables 8.6 and 8.7 show an entirely different picture for theSR-AESand theSR-CC
relationships. As already shown in the previous section, theLSEAand theESPEAhave
reasonably lowAESvalues for the experiments and in Table 8.6 both algorithms can be
found near the top of order for all density-tightness combinations. At the same time,
both algorithms also have highCC values and as a consequence can be found near the
bottom of the ordering in 8.7. At the same time, an algorithm like theSAWEAwhich
has about averageSRbut both lowAESandCC is found in the top of the orderings of
both Tables 8.6 and 8.7.

A word of caution for the interpretation of these tables is necessary. TheSRof an al-
gorithm, that is, the ability of the algorithm to solve the CSP, is clearly more important
than the efficiency of the algorithm. Therefore, the assumption that the importance of
both the effectivityand the efficiency is equal is probably not correct. However, with-
out extra guidance upon the relative importance of these measures, it is not possible to
set it with any degree of certainty. Furthermore, there is the implicit assumption that
all measures upon which the calculations of theo-values are based are accurate. This is
not the case. With a lowerSR, the accuracy of theAESandCC measures is also lower.
Taken together, the comparison on the effectivity-efficiency plane should be taken as
guidance towards an ordering of the algorithms more than experimental fact. Taken
as such, however, they are useful in at least quantifying therelative advantages of one
algorithm over another based on the relationship between the different performance
measures. This ties in with the use of a restart strategy for evolutionary algorithms
and the use of the relationship between the effectivity and the efficiency measures to
estimate the duration of the experiments and the number of restarts needed during the
experiments based on theSRand theAESandCC measures to attain aSRof 1.0. We
feel, however, that a further discussion of this topic (which involves a number of other
factors not discussed so far) falls outside the scope of the thesis (see [40] for more
information).

8.3 Ranking of the Evolutionary Algorithms in the In-
ventory

Although Tables 8.6 and 8.7 give an indication of a ranking ofthe algorithms according
to their relative performance in theSR-AESandSR-CC planes, the drawbacks to the
ranking mechanism given above make these rankings tentative. Especially the inabil-
ity to categorically state the relative importance of the effectivity measure (SR) to the
effectivity measures (AESandCC) has the potential to skew the rankings.

Statistical analysis on only the effectivity measure (SR) is used to rank the algorithms
more accurately. By basing the analysis on theSRmeasure only, we acknowledge that
the effectivity of an algorithm is more important than the efficiency of an algorithm.
The choice of only analysing theSRmeasure is also based on the fact that this measure
takes the whole results sample into account while theAESand theCC measures are
calculated only over the successful runs of an algorithm. This makes theSRmeasure

139

(0.1, (0.2, (0.3, (0.4, (0.5, (0.6, (0.7, (0.8, (0.9,
0.9) 0.9) 0.8) 0.7) 0.6) 0.6) 0.5) 0.5) 0.4)

HEA1 158.43 44.62 3.28 8.64 3.01 1.62 4.36 1.16 3.78
HEA2 0.76 0.20 0.12 0.08 0.14 0.09 0.06 0.10 0.10
HEA3 225.46 35.75 9.77 11.09 5.88 9.83 12.9 8.00 10.18
ArcEA1 20.76 3.02 4.25 1.91 6.56 2.99 2.21 6.36 1.24
ArcEA2 1.48 0.22 1.03 2.35 0.66 2.85 0.78 0.08 1.01
ArcEA3 1.99 0.48 0.86 0.24 1.40 0.08 0.09 0.28 0.14
CoeEA - - - - - - - - -
ESPEA 5.88 1.56 1.81 1.52 1.11 1.60 1.16 1.81 1.08
HPEA 2.11 0.56 0.26 0.25 0.12 0.19 0.20 0.20 0.16
LSEA 450.92 27.85 1.92 2.98 1.85 1.37 1.46 1.44 4.79
MIDEA 3.12 0.11 - 0.09 - 0.01 - - -
SAWEA 96.30 12.91 6.53 2.43 1.64 4.25 1.30 3.41 4.89

Table 8.4:o-values for the algorithms on theSR-AESplane.

(0.1, (0.2, (0.3, (0.4, (0.5, (0.6, (0.7, (0.8, (0.9,
0.9) 0.9) 0.8) 0.7) 0.6) 0.6) 0.5) 0.5) 0.4)

HEA1 763.0 1603.5 1300.8 1985.6 1261.4 651.7 1792.5 450.6 567.0
HEA2 1.9 5.8 34.1 14.0 41.5 26.9 18.3 32.4 10.8
HEA3 413.3 475.7 1303.1 891.4 817.3 1347.7 1867.0 1080.4 534.0
ArcEA1 146.3 238.5 3317.1 841.8 5148.8 2208.7 1807.1 4668.5 335.1
ArcEA2 103.3 102.4 3142.9 3522.1 2871.4 432.1 912.0 671.3 422.5
ArcEA3 94.0 152.5 1885.8 238.8 1987.9 86.6 94.0 255.5 40.6
CoeEA - - - - - - - - -
ESPEA 1.0 1.7 13.1 5.1 5.2 6.1 4.0 5.2 1.1
HPEA 114.4 235.8 961.7 522.8 461.2 643.5 621.2 580.9 185.6
LSEA 1.1 1.0 0.8 0.8 0.9 0.8 0.8 0.8 0.9
MIDEA 39.0 16.2 - 83.2 - 20.4 - - -
SAWEA 651.7 1249.4 6865.5 1578.8 1919.8 4853.6 1581.9 3860.4 2165.8

Table 8.5:o-values for the algorithms on theSR-CC plane.

140

(0.1, (0.2, (0.3, (0.4, (0.5, (0.6, (0.7, (0.8, (0.9,
0.9) 0.9) 0.8) 0.7) 0.6) 0.6) 0.5) 0.5) 0.4)

LSEA HEA1 HEA3 HEA3 ArcEA1 HEA3 HEA3 HEA3 HEA3
HEA3 HEA3 SAWEA HEA1 HEA3 SAWEA HEA1 ArcEA1 SAWEA
HEA1 LSEA ArcEA1 LSEA HEA1 ArcEA1 ArcEA1 SAWEA LSEA
SAWEA SAWEA HEA1 SAWEA LSEA ArcEA2 LSEA ESPEA HEA1
ArcEA1 ArcEA1 LSEA ArcEA2 SAWEA HEA1 SAWEA LSEA ArcEA1
ESPEA ESPEA ESPEA ArcEA1 ArcEA3 ESPEA ESPEA HEA1 ESPEA
MIDEA HPEA ArcEA2 ESPEA ESPEA LSEA ArcEA2 ArcEA3 ArcEA2
HPEA ArcEA3 ArcEA3 HPEA ArcEA2 HPEA HPEA HPEA HPEA
ArcEA3 ArcEA2 HPEA ArcEA3 HEA2 HEA2 ArcEA3 HEA2 ArcEA3
ArcEA2 HEA2 HEA2 MIDEA HPEA ArcEA3 HEA2 ArcEA2 HEA2
HEA2 MIDEA MIDEA HEA2 MIDEA MIDEA MIDEA MIDEA MIDEA
CoeEA CoeEA CoeEA CoeEA CoeEA CoeEA CoeEA CoeEA CoeEA

Table 8.6: Order of the algorithms on theSR-AESplane.

(0.1, (0.2, (0.3, (0.4, (0.5, (0.6, (0.7, (0.8, (0.9,
0.9) 0.9) 0.8) 0.7) 0.6) 0.6) 0.5) 0.5) 0.4)

HEA1 HEA1 SAWEA ArcEA2 ArcEA1 SAWEA HEA3 ArcEA1 SAWEA
SAWEA SAWEA ArcEA1 HEA1 ArcEA2 ArcEA1 ArcEA1 SAWEA HEA1
HEA3 HEA3 ArcEA2 SAWEA ArcEA3 HEA3 HEA1 HEA3 HEA3
ArcEA1 ArcEA1 ArcEA3 HEA3 SAWEA HEA1 SAWEA ArcEA2 ArcEA2
HPEA HPEA HEA3 ArcEA1 HEA1 HPEA ArcEA2 HPEA ArcEA1
ArcEA2 ArcEA3 HEA1 HPEA HEA3 ArcEA2 HPEA HEA1 HPEA
ArcEA3 ArcEA2 HPEA ArcEA3 HPEA ArcEA3 ArcEA3 ArcEA3 ArcEA3
MIDEA MIDEA HEA2 MIDEA HEA2 HEA2 HEA2 HEA2 HEA2
HEA2 HEA2 ESPEA HEA2 ESPEA MIDEA ESPEA ESPEA ESPEA
LSEA ESPEA LSEA ESPEA LSEA ESPEA LSEA LSEA LSEA
ESPEA LSEA MIDEA LSEA MIDEA LSEA MIDEA MIDEA MIDEA
CoeEA CoeEA CoeEA CoeEA CoeEA CoeEA CoeEA CoeEA CoeEA

Table 8.7: Order of the algorithms on theSR-CC place.

141

intrinsically more accurate.

The following symbols are used to denote the relative performance of two algorithms:
A1 > A2 indicates that algorithmA1 has a higherSRthan algorithmA2, A1 & A2

indicates that algorithmA1 has higher or similarSR than algorithmA2, A1 ⋍ A2

indicates that algorithmA1 has approximately similarSRthan algorithmA2, andA1 ≫
A2 indicates that algorithmA1 has far higherSRthan algorithmA2. The symbols are
transitive in an ordering of more than two algorithms.

The statistical analysis uses the two samplet-test to compare the performance of two
algorithms. Only theSRmeasure will be considered for the statistical analysis. The
same three hypotheses are used for the two samplet-test as were used in Chapter 6:

H0 :SRA1
= SRA2

(8.1)

Ha1
:SRA1

6= SRA2
(8.2)

Ha2
:SRA1

> SRA2
(8.3)

whereA1 stands for the first algorithm andA2 for the second. For a full analysis,t-
tests for all algorithm combinations have to be done. We reduce the number oft-tests
needed by first ordering the algorithms based to theSRresults from Table 8.1 and then
re-ordering the algorithms them when necessary. Eventually, the following ranking
was found:

LSEA> HEA3& HEA1& ESPEA& . . .

. . . & ArcEA1& SAWEA& HPEA> HEA2> . . .

. . . > ArcEA2⋍ ArcEA3≫ MIDEA > CoeEA (8.4)

The results of thet-tests for every algorithm pair in the ranking,11 in total, are given
in Table 8.8. At-test for every density-tightness combination in the mushyregion was
done. Thet-test results for every algorithm pair are shown in three lines. The first gives
thep-value for thet-test onh0 andha1

, the second gives thep-value for thet-test on
h0 andha2

. The interpretation of the twop-values is given on the third line, using the
symbols=, when theSRresults of both algorithms are equal,> when theSRresults
of algorithmA1 are better than those of algorithmA2, and< when theSRresults of
algorithmA1 are worse than those of algorithmA2. The symbols& and. are used
when the difference between theSRresults are similar but better or worse for algorithm
A1 than for algorithmA2 respectively. Thep-values are interpreted as follows: when
the p-value of at-test is low, say below0.5, than the possibility ofh0 being correct
is also low, and therefore the possibility of the alternative hypothesis, eitherha1

or
ha2

, being correct is high. The opposite is true when thep-value is high. Therefore,
when thep-value of at-test is high, there is no significant difference between theSR
results of the two compared algorithms. When it is low there isa significant difference
between theSRresults of the algorithm. For the secondt-test, betweenh0 andha2

, a

142

low p-value means that theSRresults of the first algorithm are significantly better than
theSRresults of the second algorithm. Not-test is possible when there are no results
for both algorithms (aSRof 0.0). When both algorithms solve all CSP instances in
all runs, there is no difference between theSRresults of the two algorithms, and no
p-value can be calculated. In both cases the absence of ap-value is interpreted with an
= symbol.

Thet-test results in Table 8.8 for each algorithm pair is discussed below:

LSEA > HEA3 TheLSEAhas betterSRresults than theHEA3 for density-tightness
combinations (0.3,0.8) to (0.9,0.4). Both algorithms solved all CSP instances in
all runs for density-tightness combination (0.1,0.9). Fordensity-tightness com-
bination (0.2,0.9) the difference between the two algorithms is not as large, there
is a 0.70 probability of theSRresults of the two algorithms being equal and a
0.65 probability of theSRresults of theLSEAbeing better than theSRresults of
theHEA3.

HEA3 & HEA1 Both theHEA3and theHEA1solved all CSP instances in all runs for
density-tightness combination (0.1,0.9). For all other density-tightness combi-
nations with the exception of (0.6,0.6) theHEA3 has betterSRresults than the
HEA1. For density-tightness combination (0.6,0.6), the probability of the HEA3
having equalSRresults than theHEA1 is 0.65, the probability of theHEA3hav-
ing betterSRresults for that density-tightness combination is0.67.

HEA1 & ESPEA Both theHEA1and theESPEAsolved all CSP instances in all runs
for density-tightness combination (0.1,0.9). For all other density-tightness com-
binations with the exception of (0.6,0.6), theHEA1has betterSRresults than the
ESPEA. For density-tightness combination (0.6,0.6), the probability of the HEA1
having equalSRresults thanESPEAis 0.72 while the probability of theHEA1
having betterSRresults than theESPEAis 0.64.

ESPEA& ArcEA1 TheESPEAhas betterSRresults than theArcEA1for all density-
tightness combinations in the mushy region except for (0.2,0.9) and (0.3,0.8),
where the probability of theESPEAhaving equalSRresults with theArcEA1is
0.77 and0.65 respectively while the probability of theESPEAhaving betterSR
results is0.29 and0.68 respectively.

ArcEA1 & SAWEA The ArcEA1has betterSRresults than theSAWEAfor density-
tightness combinations (0.1,0.9) to (0.3,0.8) but worseSRresults for all other
density-tightness combinations. The probabilities for the betterSRresults in the
first three density-tightness combinations are however higher than the probabil-
ities for the worseSRresults in the other density-tightness combinations. Also,
when theArcEA1 was compared with theHPEA, it showed clearly betterSR
results for all density-tightness combinations (not shownin the table). This indi-
cates that the position where theArcEA1is ranked is correct although for some
density-tightness combinations in the mushy region theSAWEAis actually better
than theArcEA1.

143

(0.1, (0.2, (0.3, (0.4, (0.5, (0.6, (0.7, (0.8, (0.9,
0.9) 0.9) 0.8) 0.7) 0.6) 0.6) 0.5) 0.5) 0.4)

LSEA> HEA3 - 0.70 0.0 0.01 0.0 0.0 0.0 0.0 0.0
- 0.35 0.0 0.01 0.0 0.0 0.0 0.0 0.0
= & > > > > > > >

HEA3& HEA1 - 0.0 0.0 0.0 0.0 0.65 0.0 0.18 0.0
- 0.0 0.0 0.0 0.0 0.33 0.0 0.09 0.05
= > > > > & > > >

HEA1& ESPEA - 0.0 0.0 0.0 0.13 0.72 0.09 0.37 0.11
- 0.0 0.0 0.0 0.06 0.36 0.05 0.82 0.05
= > > > > & > < >

ESPEA& ArcEA1 0.08 0.77 0.65 0.24 0.0 0.0 0.01 0.0 0.0
0.04 0.61 0.32 0.12 0.0 0.0 0.0 0.0 0.0
> = & > > > > > >

ArcEA1& SAWEA 0.0 0.0 0.0 0.0 0.04 0.0 0.12 0.19 0.0
0.0 0.0 0.0 1.0 0.98 1.0 0.94 0.91 1.0
> > > < < < < < <

SAWEA& HPEA 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.02 0.0
1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.01 0.0
< < < > > > > > >

HPEA> HEA2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
> > > > > > > > >

HEA2> ArcEA2 0.16 0.04 0.0 0.0 0.0 0.07 0.02 0.0 0.0
0.08 0.02 0.0 0.0 0.0 0.03 0.01 0.0 0.0
> > > > > > > > >

ArcEA2⋍ ArcEA3 0.70 0.79 0.52 0.40 0.70 0.78 0.65 0.56 0.65
0.35 0.61 0.74 0.80 0.35 0.61 0.67 0.28 0.33
& & . . & . . & &

ArcEA3≫ MIDEA 0.0 0.0 0.01 0.02 0.08 0.09 0.08 0.32 0.16
0.0 0.0 0.01 0.01 0.04 0.05 0.04 0.16 0.08
> > > > > > > > >

MIDEA > CoeEA 0.0 0.0 - 0.32 - 0.16 - - -
0.0 0.16 - 0.16 - 0.08 - - -
> > = > = > = = =

Table 8.8:t-test results for the ranking of the EAs in the inventory.

144

SAWEA& HPEA TheSAWEAhas betterSRresults than theHPEA for density-tight-
ness combination (0.4,0.7) to (0.9,0.4)(0.9, 0.4) but worseSRresults for density-
tightness combinations (0.1,0.9) to (0.3,0.8). When theSAWEAwas compared
with theHEA2 it showed betterSRresults for all density-tightness combinations
(not shown in the table), indicating that its position in theranking is correct,
even though for some density-tightness combinations in themushy region, the
HPEA actually has betterSRresults than theSAWEA. The differences between
theArcEA1, theSAWEA, and theHPEAare more complex than can be expressed
through statistical tests between two algorithms. For somedensity-tightness
combinations one algorithm has the betterSRresults while for other density-
tightness combinations another algorithm performs best. The ranking given for
these three algorithms therefore is less accurate than for the other algorithms. It
is however the best interpretation that can be given using these measures.

HPEA > HEA2 TheHPEAhas betterSRresults than theHEA2 for all density-tight-
ness combinations in the mushy region.

HEA2 > ArcEA2 The HEA2 has betterSRresults than theArcEA2 for all density-
tightness combinations in the mushy region.

ArcEA2 ⋍ ArcEA3 The difference between theSR results of theArcEA2 and the
ArcEA3 are small for all density-tightness combinations in the mushy region.
For density-tightness combinations (0.1,0.9), (0.2,0.9), (0.5,0.6), (0.8,0.5), and
(0.9,0.4), the probability of theHPEAhaving betterSRresults than theHEA2 is
higher than for the other density-tightness combinations.We conclude that the
SRresults over the whole mushy region for theArcEA2and theArcEA3were
approximately equal, even though there were local differences. This result does
not come as a surprise since the only difference between the two algorithms is
the adaptability of the arc-crossover operator in theArcEA3.

ArcEA3 ≫ MIDEA TheArcEA3has betterSRresults then theMIDEA for all density-
tightness combinations in the mushy region.

MIDEA > CoeEA For 5 density-tightness combinations in the mushy region, both
theMIDEA and theCoeEAfailed to solve any of the CSP instances in all their
runs. Not-test can be performed on these results. For the other density-tightness
combinations, the theMIDEA clearly outperformed the theCoeEA, as at least
theMIDEA was able to solve some CSP instances in some of the runs.

The ranking given in equation 8.4 corresponds closely to theone we found in section
8.1 when based on theSRmeasure alone. It differs from the rankings we got in section
8.2 mostly because those were based on the relationships between theSR-AESand the
SR-CC. The ranking given in equation 8.4 however is more accurate than the one given
in section 8.1 because through thet-tests it is based on the whole sample of runs and
not just on the average of all runs.

145

8.4 Preliminary Conclusion

The comparison above, as well as the ranking, allows us to give a preliminary con-
clusion about what we have discovered about evolutionary algorithms for solving con-
straint satisfaction problems so far. As was to be expected,some algorithms performed
consistently better than others. The ranking of the algorithms in the previous section is
a reliable indication which algorithms solve more CSP instances in more runs. It does
not tell us everything however, for a complete picture the efficiency measures (AES
andCC) have to be considered as well. Common among most algorithmshigh in the
ranking is that they are lower in the ranking when compared intheSR-AESand espe-
cially in theSR-CCplane. This suggests that algorithms which are good at solving CSP
instances also need to do a lot of work. In some cases, much of this work is hidden.

Some algorithms performed poorly, notably theMIDEA and theCoeEA. This in spite
of the good performance reported in the papers in which thesealgorithms were pro-
posed. One reason for this lack of performance could lie in the fact that in this thesis
a different CSP test-set was used. We, however, believe, that a good algorithm should
perform well on any reasonable test-set of CSP instances, a belief that is supported by
the comparable performance of the other algorithms.

The comparison and the ranking also tell us about the effectiveness of the underly-
ing techniques, irrespective of the algorithm which uses it. We found that the co-
evolutionary approach, used in theHPEAand theCoeEA, did not perform well. The
co-evolutionary approach necessitates the maintenance oftwo populations of individ-
uals simultaneously throughout the run. This divides the available amount of fitness
evaluations over the two populations and also uses conflict checks for both populations.
To offset this investment, the combination of both populations in the co-evolutionary
algorithm has to increase performance sufficiently to make it worth while. The co-
evolutionary algorithms in the inventory did not show this.Although there is an el-
ement of danger of basing conclusions on examples, because of the relatively poor
performance of the co-evolutionary algorithms in the inventory, we believe it is safe
to conclude that the co-evolutionary approach is not the best technique for solving the
constraint satisfaction problem .

Generalising the other techniques used, we believe that allother algorithms in the in-
ventory enhanced the performance of the evolutionary algorithm with the application
of some sort of heuristic or local-search technique. From the comparison in Chapter 6
it should be clear why the authors of the algorithms in the inventory have decided to do
so. TheIEA itself does not have enough search power to the problem with areasonable
amount of effort. Although theIEA is found to be good at maintaining diversity in
the population and thus searches through a large enough portion of the search space, it
lacks the depth of search displayed by theHCAWRto find solution fast enough. It is
only reasonable that the depth-first search of an iterated local-search technique should
be combined with the diversity maintaining ability (or breadth-first search) in an evo-
lutionary algorithm as this could improve the performance of the resulting algorithm to
supersede both separate algorithms.

A good example of this approach can be found in the three versions of theHeuristicEA,

146

where two heuristics were used in two different genetic operators. In the comparison
given above, we see that this setup works very well. The heuristics in the genetic
operators are used to find good individuals, in effect doing the depth-first search, while
the evolutionary mechanism is used to maintain diversity inthe population in order to
avoid convergence toward a local optimum. In order to get good results however, a
delicate balance between the two mechanisms has to be found.

The three versions of theArcEA are also an example of this approach. In these al-
gorithms, progressively more complicated local-search techniques are introduced, un-
fortunately with progressively less good results. The difference betweenArcEA1and
HEA1 is small. The different method use for calculating the fitness does not seem to
improve the performance however and the performance of theArcEA1 seems to be
mostly dependent on the asexual heuristic operator fromHEA1. The exchange of the
asexual heuristic operator with the arc genetic operators does not increase the perfor-
mance, even though inArcEA3, the static arc crossover operator is made dynamic and
both arc crossover operators include an intelligent construction method of the individ-
ual. We performed a number of parameter adjustment experiments for this algorithm
but found no way of improving the performance from the one given, therefore we must
conclude that the additions of theArcEAalgorithms are not sufficient to ensure better
performance. Note, however, that the additions of theArcEAalgorithms focus on di-
recting the search on solving constraints that are harder tosatisfy while, in our test-set,
the tightness of the constraints is approximately equal. Ona test-set where there is
variance between the tightness constraints in the the CSP instance, theArcEAmay well
have an edge over the other algorithms in the inventory.

Both theESPEAand theLSEAare the most explicit in incorporating a local-search
technique. Both algorithms introduce a third operator in the form of a repair operator.
There is a drawback in doing this that has to be recognised: because both operators are
applied after the genetic operators, there is the possibility of undoing (at least some of)
the work of the genetic operators. This is most clear in theESPEA, where a simple
repair rule is used to re-label some of the variables in the individual to values that do
not conflict with the constraints. In theLSEA, although more complicated, the same
thing happens because it searches for individuals with a maximum length consistent
compound label, removing the other values from the domain sets of the variables. The
local-search techniques in both theESPEAand theLSEAare very strong, in that the
possibility of undoing changes made by the (other) genetic operators is large. Because
of this, they can render the genetic operators superfluous, anotion we will investigate
further in the next chapter. Of note here is that both local-search techniques used in
theESPEAand theLSEAcan not be tweaked and both use a lot of conflict checks, i.e.,
hidden work.

The SAWEAis different from the other algorithms in that it takes the most direct ap-
proach to implementing a local-search technique and uses the evolutionary part of the
algorithm only as a way to supply the permutation for decoder. This division of labour
has its advantages: the decoder only searches through the viable search-space, dis-
carding domain values that are inconsistent with domain values already labelled. This
reduces the search space and makes the algorithm more efficient. However, theSAWEA

147

also relegates the evolutionary search process to finding suitable permutations for the
decoder and the relation between the fitness value of an individual and the genotype of
the individual is less clear as it is obscured by the decoder.Nevertheless, the addition
of a local-search technique in the decoder of theSAWEAis essential for increasing the
performance of the algorithm.

All in all, we found that if one wants to solve constraint satisfaction problems with
evolutionary algorithms, the addition of a local-search technique to the algorithm, in
order to give it the ability to find good individuals during the run, is important, and
from the ranking found in the previous section, the best place to add the local-search
technique would be in either the genetic algorithms, as shown by theHeuristicEA, or in
a third operator that acts as a repair operator, as in theESPEAor theLSEA. An outlier
so far, but still performing well, is theSAWEAwhich adds a local-search technique in
a decoder.

For further study in the thesis we want to reduce the number ofalgorithms to a more
manageable amount, concentrating on the algorithms with the best performance. The
algorithms chosen for further study are found through a process of elimination. First
and most obvious we eliminate theMIDEA and theCoeEA. Both algorithms have poor
performance in the mushy region of the test-set,CoeEAbeing unable to solve the CSP
instance in any of its runs andMIDEA unable to solve them in five of the nine density-
tightness combinations in the mushy region. Next we eliminate versions of the same
algorithm with poorer performance, so for theHeuristicEAwe only considerHEA3and
for ArcEAwe only considerArcEA1. The difference between theHEA3and theArcEA1
however is small, both share the asexual heuristic operatorfrom theHeuristicEA. The
performance of theArcEA1 is also consistently lower than that of theHEA3, so we
eliminateArcEA1. The difference between theSAWEAand theHPEA is not so clear-
cut, however, when we look at the rankings based on theSR-AESand theSR-CCplane,
we find that theSAWEAhas is consistently higher in the ranking than theHPEA for
both the effectivity-efficiency plane comparisons, so we eliminateHPEAas well. For
the rest of the thesis we therefore consider only the following four algorithms (in order
of the ranking given in equation 8.4):

1. theLSEA;

2. theHEA3;

3. theESPEA; and

4. theSAWEA.

148

Chapter 9

De-Evolutionarising
Evolutionary Algorithms,
Memetic Overkill, and the
Superior Evolutionary
Algorithm

This chapter describes the notion ofde-evolutionarisingevolutionary algorithms to find
out if they are susceptible to what we termmemetic overkill. Of the four best perform-
ing evolutionary algorithms in the inventory, onlySAWEAis found not to suffer from
memetic overkill. This algorithm is then adjusted to construct the superior evolutionary
algorithm for solving the constraint satisfaction problemby introducing four variants.
None of the variants was found to suffer from memetic overkill. The best performing
variant is selected as the superior performing evolutionary algorithm.

9.1 De-evolutionarising Evolutionary
Algorithms

In Chapter 8 we found that the four algorithms with the best performance all include
a heuristic or a local-search technique. The power of the heuristic and local-search
technique and the way they are used, both influence the amountof improvement of
the performance. Here, we investigate the influence of the evolutionary components of
these algorithms on their performance. This is done by removing the evolution from
the algorithms, a process we termde-evolutionarisingthe algorithm. The influence of
the evolutionary component is determined by comparing the performance of the orig-

149

inal algorithm with the de-evolutionarised variant. Technically speaking the question
is how to de-evolutionarise the algorithms. To answer this question, we consider the
essential features of the evolutionary algorithm for whichit holds that after remov-
ing these features, the algorithm would not be evolutionary. There are three essential
features that make an algorithm evolutionary:

1. a population of candidate solutions;

2. variation operators (e.g., crossover and mutation); and

3. natural selection (i.e., selection based on the fitness ofan individual).

Although all three features are closely related, the first two are in part dependent on
each other, because without a population of candidate solutions, the crossover opera-
tor can not be used. Furthermore, examples exist of evolutionary algorithms without
these features. In evolutionary strategies ([7, 80]) examples exist that do not maintain
a population of candidate solutions. These examples have a population of only one
individual. Evolutionary programming ([39, 37]) does not have crossover operators, or
any other form of recombination, although they use a mutation operator.

Taking these considerations into account, we de-evolutionarise evolutionary algorithms
by removing first natural selection and second the population (by setting the population
size to one). When an evolutionary algorithm includes a crossover operator, this is
removed together with the population.

As for natural selection, recall that there are two selection steps in the general evo-
lutionary algorithm framework: parent selection and survivor selection. For either of
them we say that it represents natural selection if a fitness-based bias is incorporated,
favouring better candidates. Note, that an evolutionary algorithm does not need to have
natural selection in both steps. For instance, generational genetic algorithms use only
parent selection (and all children survive), while evolutionary strategies use only sur-
vivor selection (and parents are selected uniform randomly). However, an evolutionary
algorithm must have fitness-bias in at least one of these steps. If neither parent selec-
tion nor survivor selection are performed by using fitness-bias (e.g., by uniform random
selection) then no natural selection is done and random walkis obtained.

Considering the role of the population, the common evolutionary computation wisdom
states that population size of one is a singularity, i.e., itis a special case of the general
scheme, for ‘real’ evolution more individuals are needed.

In practice wede-evolutionarisethe evolutionary algorithms in two steps and create
two new variants for each algorithm. In the first variant we use uniform random se-
lection for both parent and survivor selection, thereby switching off natural selection.
In the second variant we switch off natural selectionand use a population size of one
(and consequently cease to use crossover when necessary). In the following overview
we denote these variants asEA, EA-sel, EA-sel-pop.

Based on the observations in the previous chapter we de-evolutionarise only the best
performing algorithms in the inventory. In order of the ranking given in the previous

150

LSEA LSEA-sel LSEA-sel-pop
(p1, p2) SR AES CC SR AES CC SR AES CC

(0.1, 0.9) 1.0 13 8893 1.0 13 8893 1.0 9 4387
(0.2, 0.9) 0.988 540 300212 0.988 540 300212 1.0 154 87068
(0.3, 0.8) 0.812 9825 47143030.812 9825 47143031.0 1058 568152
(0.4, 0.7) 0.808 5935 26415890.808 5935 26415891.0 1024 533308
(0.5, 0.6) 0.924 10124 43071450.924 10124 43071451.0 910 461629
(0.6, 0.6) 0.752 12080 45730460.752 12080 45730461.0 1360 781702
(0.7, 0.5) 0.776 11562 46739160.776 11562 46739161.0 1618 861174
(0.8, 0.5) 0.796 11422 42795120.796 11422 42795121.0 1377 794020
(0.9, 0.4) 0.936 4097 16897600.936 4097 16897601.0 738 381452

Table 9.1: Comparison of theLSEA, LSEA-sel, andLSEA-sel-pop.

chapter, the following algorithms were de-evolutionarised: theLSEA, theHEA3, the
ESPEA, and theSAWEA. The results of the experiments are shown in Tables 9.1, 9.2,
9.3, and 9.4. We experimented only on the density-tightnesscombinations in the mushy
region of the test-set and the tables include theSR, AES, andCC measures. The first
column indicates the density-tightness combinations for which the results are given.
The results in the second to fourth column of each table are copied from the inventory.
The fifth to seventh column show the results of the first variant of each algorithm (EA-
sel) and the eighth to tenth column show the results for the second variant of each
algorithm (EA-sel-pop).

Table 9.1 shows no difference between theSR, theAES, and theCC values of the orig-
inal LSEAand theLSEA-sel. This suggests that natural selection is completely over-
ruled by the repair operator in theLSEA. The table also shows that the performance
of the LSEA-sel-pop is better than both the originalLSEAandLSEA-sel. TheLSEA-
sel-pop solves all CSP instances in all runs for all density-tightness combinations in
the mushy region of the test-set and does so using (on average) fewer evaluations and
fewer conflict checks. The decrease ofAESandCC is significant, sometimes as much
as nearly one tenth of the evaluations or conflict checks are used. From the results it is
clear that the repair operator of theLSEAon its own is powerful enough to solve the
CSP instances in the test-set and that natural selection andthe use of a population (and
a crossover operator) actually decrease the performance ofthe algorithm. As such,
the ability of theLSEAto solve the CSP comes from the local-search technique used
while the evolutionary components of natural selection andthe use of a population are
actually harmful to the performance of the algorithm.

Table 9.2 shows that the performance of theHEA3-sel is better than the performance
of the originalHEA3. For some density-tightness combinations in the mushy region
of the test-set (e.g.,(0.6, 0.6)) the theSRis more than doubled (going from0.44 to
0.956). This shows that natural selection is actually harmful forthe performance
of the HEA3 and that the local-search techniques in the heuristic operators are pow-
erful enough to find solutions to the CSP instance in almost all runs. The differ-

151

HEA3 HEA3-sel HEA3-sel-pop
(p1, p2) SR AES CC SR AES CC SR AES CC

(0.1, 0.9) 1.0 26 23899 1.0 27 25138 1.0 7 5364
(0.2, 0.9) 0.984 419 621391 1.0 221 320560 1.0 62 51241
(0.3, 0.8) 0.688 1635 2489261 1.0 952 1435814 1.0 185 156040
(0.4, 0.7) 0.712 1404 2110238 1.0 404 603560 0.988 140 118541
(0.5, 0.6) 0.692 2382 3647367 0.996 717 1083481 0.956 99 83752
(0.6, 0.6) 0.44 988 1493377 0.956 1618 2467666 0.948 220 187711
(0.7, 0.5) 0.588 969 1472759 0.988 1960 2982026 0.972 202 172835
(0.8, 0.5) 0.488 1258 1932541 0.976 3601 5538668 0.972 211 182419
(0.9, 0.4) 0.76 1563 2404978 1.0 912 1393405 0.972 121 104850

Table 9.2: Comparison of theHEA3, HEA3-sel, andHEA3-sel-pop.

ences between theAESand theCC measures of the two variants is more varied. Al-
though theAESof the HEA3-sel is less in density-tightness combinations(0.2, 0.9),
(0.3, 0.8), (0.4, 0.7), (0.5, 0.6), and (0.9, 0.4), it is increased for density-tightness
combinations(0.1, 0.9), (0.6, 0.6), (0.7, 0.5), and(0.8, 0.5). For theCC measure, in
density-tightness combinations(0.1, 0.9), (0.2, 0.9), (0.3, 0.8), (0.4, 0.7), (0.5, 0.6),
and(0.9, 0.4) theHEA3-sel used fewer conflict checks while for density-tightnesscom-
binations(0.6, 0.6), (0.7, 0.5), and(0.8, 0.5) is increased. Although the performance
of the HEA3-sel-pop is slightly lower than that of theHEA3-sel, it is still much bet-
ter than that of the originalHEA3. The reason for the slight decrease is probably the
removal of the heuristic multi-parent crossover operator when the population of the
HEA3-sel-pop was set to one. Still, the performance of theHEA3-sel-pop is better
that that of the originalHEA3, so also in this case, we conclude that the local-search
technique used in the remaining heuristic operator is powerful enough to solve CSP
instances on its own. Therefore, although the use of a population through the heuristic
multi-parent operator is still useful, natural selection decreases the performance of the
algorithm.

Table 9.3 shows a dramatic improvement of the performance oftheESPEA-sel over the
originalESPEA. Without natural selection, theESPEAis able to solve all CSP instance
in the mushy region of the test-set in all runs. Apart from density-tightness combina-
tion (0.1, 0.9) the efficiency measured by theAESandCCalso shows an improvement.
There is no more improvement inSRbetween theESPEA-sel and theESPEA-sel-pop,
but since all CSP instances in the mushy region of the test-set are solved by both the
ESPEA-sel and theESPEA-sel-pop, this is not possible. However, theESPEA-sel-pop
improved the efficiency of the algorithm even further, probably because no evaluations
and conflict checks are used to maintain the population. Overall, the increase in per-
formance in theESPEA-sel andESPEA-sel-pop variants is dramatic, which suggests
that the local-search technique used in the repair operatorof the ESPEAis powerful
enough to solve the CSP on its own. The use of the evolutionarycomponents of natural
selection and the use of a population are harmful to the performance of theESPEA.

152

ESPEA ESPEA-sel ESPEA-sel-pop
(p1, p2) SR AES CC SR AES CC SR AES CC

(0.1, 0.9) 1.0 45 14920 1.0 48 17598 1.0 18 6231
(0.2, 0.9) 0.952 2404 924530 1.0 275 179191 1.0 137 80635
(0.3, 0.8) 0.728 6165 2670936 1.0 629 423241 1.0 222 132072
(0.4, 0.7) 0.844 6021 2785182 1.0 529 346895 1.0 170 99313
(0.5, 0.6) 0.844 4839 2415945 1.0 442 297149 1.0 170 96408
(0.6, 0.6) 0.8 6015 3039882 1.0 736 492493 1.0 238 152962
(0.7, 0.5) 0.772 9241 4738977 1.0 839 557504 1.0 275 162950
(0.8, 0.5) 0.84 9241 2497913 1.0 1218 788666 1.0 236 155603
(0.9, 0.4) 0.944 3589 2085063 1.0 374 272451 1.0 161 96214

Table 9.3: Comparison of theESPEA, ESPEA-sel, andESPEA-sel-pop.

SAWEA SAWEA-sel SAWEA-sel-pop
(p1, p2) SR AES CC SR AES CC SR AES CC

(0.1, 0.9) 0.92 56 13679 0.0 undef. undef.0.28 693 115256
(0.2, 0.9) 0.72 849 1731811.0 165 27925 0.08 18709 3441713
(0.3, 0.8) 0.6 2134 4123260.257 27946 53430480.08 16704 3012739
(0.4, 0.7) 0.664 5975 11110190.422 11239 19556420.296 17066 2950401
(0.5, 0.6) 0.772 9511 17315870.633 12422 21533960.26 18497 3169435
(0.6, 0.6) 0.64 3326 6033700.368 7820 13715090.192 24009 4152730
(0.7, 0.5) 0.32 6481 11702290.071 30848 54500220.14 13126 2289924
(0.8, 0.5) 0.396 2393 4385620.284 5239 8998060.204 19084 3274588
(0.9, 0.4) 0.828 3547 6457330.633 21519 38234960.304 10159 1809621

Table 9.4: Comparison of theSAWEA, SAWEA-sel, andSAWEA-sel-pop.

In contrast to the first three algorithms, Table 9.4 shows that the performance of both
theSAWEA-sel and theSAWEA-sel-pop decreases when natural selection and the use of
a population is removed. Both evolutionary components benefit the performance of the
SAWEA. This is especially clear for density-tightness combination (0.1, 0.9) where the
originalSAWEAsolved the CSP instance in almost all runs while for both theSAWEA-
sel and theSAWEA-sel-pop none (forSAWEA-sel) or few (forSAWEA-sel-pop) were
solved. Comparing the originalSAWEAand theSAWEA-sel, only for density-tightness
combination(0.2, 0.9) was there an improvement in theSR, theAES, and theCC. There
is no clear reason for this improvement and we see it as a random occurrence. Overall,
however, the performance decreases from the originalSAWEAto theSAWEA-sel, and
again to theSAWEA-sel-pop, and we conclude that natural selection and the useof a
population is beneficial to the performance of theSAWEAand that the power to solve
the CSP comes not only from the local-search technique used in the decoder but also
from the evolutionary components of the algorithm.

153

9.2 Memetic Overkill

In section 8.4 we concluded that the best way to improve the performance of an evo-
lutionary algorithm is to incorporate a heuristic or local-search mechanism. In the
previous section however, we showed that for the best four algorithms in the inventory,
three of them increased performance when we de-evolutionarised them. Obviously
great care has to be taken when incorporating a heuristic or local-search technique in
an evolutionary algorithm because when the heuristic or local-search technique is too
strong the evolutionary components of the algorithm may actually reduce performance.

The best examples of this are theLSEAand theESPEA. Both algorithms incorporate
powerful local-search techniques in a third (repair) operator. The results shown in
the previous section show that the local-search techniqueson their own are powerful
enough to solve the CSP instances in the test-set and that, infact, the evolutionary
components of natural selection and the use of a population decreases the performance
of the algorithm.

TheHEA3differs from theLSEAand theESPEAin that the heuristics are incorporated
in the variation operators of the algorithm itself. The heuristics themselves are well-
known and commonly used but as in theLSEAand theESPEA, when natural selection
was removed from the algorithm, the performance of the algorithm increased. When in
addition the use of a population was removed from the algorithm, and consequently the
use of the (multi-parent) crossover operator as well, the performance of the algorithm
decreased somewhat but was still superior to the original algorithm. As with theLSEA
and theESPEA, the evolutionary components of natural selection, and to alesser extend
the use of a population decreases the performance of theHEA3.

Only theSAWEAshowed a decrease in performance when natural selection andthe use
of a population is removed from the algorithm. This leads to the conclusion that in the
SAWEA, these evolutionary components still have a positive effect on the performance
of the algorithm.

The effect of the evolutionary components having a negativeeffect on the performance
of the algorithm we callmemetic overkill. The term is derived from the term used
to describe evolutionary algorithms incorporating heuristic or local-search techniques:
memetic algorithms. As said before, the incorporation of heuristic or local-search tech-
niques in evolutionary algorithms in order to improve theirperformance is common
place. However, when the incorporated techniques are too powerful, their incorporation
in an evolutionary algorithm can actually hamper the performance of these techniques,
resulting in memetic overkill.

Although the consequences of memetic overkill and the ways of testing whether it
occurs are explained above, the reason for it to occur is not.We believe that there are
two interrelated reasons for memetic overkill to occur: theway in which the local-
search techniques are used, and the power of the local-search technique itself.

In the best examples of memetic overkill, theLSEAand theESPEA, the local-search
technique is incorporated in a third (repair) operator. This operator is applied after the
variation operators of the algorithms and is therefore allowed to over-rule the (quite)

154

random choices of these variation operators. As such, thereis a chance that the re-
pair operator will undo some of the changes that the variation operators have made.
Because the local-search technique makes its choices (in part) deterministic, their ap-
plication after the variation operators makes the search less random, in effect making
the search less diverse. In this respect, the local-search techniques provide a more
depth-first search while the evolutionary components of natural selection and the use
of a population provide a more breadth-first search. In theLSEAand theESPEA, the
constant struggle of the local-search techniques to do a depth-first search (in order to
find a solution fast) with the evolutionary components to do abreadth-first search (in
order to maintain diversity) leads to a lower performance ofthe algorithm as a whole.
When the breadth-first search of the evolutionary componentsis removed, therefore,
the performance is improved.

This is closely related to the power of the local-search technique, for if the local-search
technique is not powerful enough to find the solution of the problem on its own, the
breadth-first search of the evolutionary components allow the algorithm more avenues
for the local-search technique to solve the problem. This should increase the overall
performance of the algorithm. The power of the local-searchtechnique on its own,
independent of the way it is incorporated in the algorithm, can be enough to lead to
memetic overkill. TheHEA3 is a clear example of this. In theHEA3, the heuristics are
incorporated in the variation operators of the algorithm, so the way in which the tech-
niques are incorporated does not pose a problem. The heuristics themselves, however,
are so capable of finding a solution, that the evolutionary components attempts to do
a breadth-first search (that is, to maintain diversity) reduces the performance of the al-
gorithm. We believe that the randomising effect of the evolutionary components harms
the performance because of the different avenues the algorithms investigates ultimately
either do not lead to a solution of the problem, or use up so many of the available search
steps that the algorithm is terminated before it can find a solution.

So, how to reconcile the incorporation of a heuristic or local-search technique with
memetic overkill? Apparently, the heuristic or local-search technique must be placed
in such a way that it can not undo too many (random) changes of the variation operators,
and, it must not be overly powerful in its guidance toward solving the problem (in this
case, the CSP). In short, the focus that the depth-first search of a heuristic or local-
search technique provides must be balanced with the diversity or breadth-first search
that the evolutionary components provide.

An algorithm wherein this balance has been achieved is theSAWEA. Although the
SAWEAdoes not have as good a performance as theLSEA, theHEA3, and theESPEA,
it does not suffer from memetic overkill. We believe that thereason for this is that the
SAWEAconsists of two parts: the local-search decoder and the evolutionary permuta-
tion searcher to supply the decoder. Although the performance of theSAWEAdepends
on both parts of the algorithm, they are independent in that the local-search technique in
the decoder is not directly incorporated in the evolutionary part of the algorithm. Also,
the local-search technique used in the decoder is not powerful enough to solve the CSP
on its own. The two parts of theSAWEAalgorithm are connected through the step-
wise adaptation of weights fitness function, which focussesthe evolutionary part of

155

Evolution
With Without

Heuristics Weak Good Poor
Strong Inferiour Good

Table 9.5: Performance of algorithms that incorporate weak, strong, or no heuristics
and evolution.

theSAWEAtowards finding better permutations for the decoder throughthe candidate
solutions that the decoder provides. The result of this is that the local-search technique
used in the decoder is balanced against the evolutionary part of the algorithm, neither
has the upper hand and both can work together to achieve a higher performance.

We can generalise the relative performance of algorithms based on whether they in-
corporate either weak or strong heuristics and evolution ornot. Table 9.5 shows the
four possible combinations and they relative performance.Unsurprisingly, algorithms
that incorporate weak heuristics and no evolution have a poor performance. The de-
evolutionarised variants of theLSEA, the HEA3, and theESPEAshow that when an
algorithm incorporates a strong heuristic but no evolutionthe performance is (or rather,
can be) good. When an algorithm combines strong heuristics with evolution however,
the performance is inferior to the algorithm which does not incorporate evolution. The
SAWEAon the other hand showed that an algorithm incorporating weak heuristic and
evolution can still have good performance.

A strange situation can arise when one wants to increase the performance of an evolu-
tionary algorithm by incorporating either more and more local-search techniques or in-
corporating more and more powerful local-search techniques into the algorithm. There
is a point in this process where incorporating more, or more powerful local-search
techniques actually makes the evolutionary components of the algorithm have a neg-
ative effect on the performance. At this stage one is better off continuing without the
evolutionary components, i.e., using the algorithm as a pure iterated local-search algo-
rithm instead of an evolutionary algorithm. Because in thisdesign process one starts of
with a simple evolutionary algorithm and progressively embellishes it with local-search
techniques, the effect described above is also known as thestone soupeffect (see also
[68]). It is historically ironic to find out that when researchers started to incorporate
more, or more powerful heuristics in their evolutionary algorithms as way of boosting
their performance, they would have been, in the end, better off without the evolutionary
components of their evolutionary algorithms.

9.3 Adjustments to make the Superior EA

Since theLSEA, theESPEA, and theHEA3 all suffer from memetic overkill, further
tweaking of these algorithms in order to improve their performance as evolutionary
algorithms seems pointless. Although theSAWEAhad the poorest performance of the

156

four algorithms tested, it still is the best candidate to adjust in order to construct a
superior performance evolutionary algorithm, the main goal of this thesis. There are
several ways of doing this. The most obvious method is to increase the power of the
local-search technique in the decoder. However, increasing the power of the local-
search technique, for example by incorporating a backtracking algorithm, makes the
SAWEAvulnerable to memetic overkill, so this is not a viable option. We already tried
to increase the performance of theSAWEAby making adjustments to the evolutionary
part of the algorithm in [17] without much success. Now, we opt for focussing on using
information gained during the run of the algorithm to improve the performance. We
hope that this increases the performance of the algorithm without increasing the risk of
memetic overkill.

In order to describe how we want to improve the performance oftheSAWEA, we have
to describe in more detail how the greedy local-search technique of the decoder works.
The decoder in theSAWEAtakes a permutation evolved by the evolutionary part of the
algorithm and uses a greedy algorithm to convert this into a,possibly partial, solution
of the CSP instance to solve. This is done by iteratively labelling a variable in the
permutation, in order, with a value from its domain. The value is taken from the domain
set of that variable. In the originalSAWEA, the domain set is ordered by the value of the
domain value in ascending order. For example, the test-set used in this thesis includes
CSP instances with a uniform domain size of10, the the domain set used by theSAWEA
is: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. As a result, the first time a variable in the permutation
is labelled by the decoder, it is labelled with the value1.

The greedy algorithm in the decoder itself is clearly not powerful enough to solve a
complex CSP instance, i.e., a CSP instance in the mushy region. When the greedy
algorithm has to label a variable for which all domain valuesin the domain set violates
a constraint relevant to an already labelled variable, it leaves it unlabelled. The number
of unlabelled variables of a decoded individual is then usedas the basis for the fitness
value of that individual.

The variants of theSAWEArecognise that the ordering of the elements of the domain
sets is chosen quite arbitrarily. Prior knowledge about howto order the elements of
the domain sets, however, is easy to obtain, although this will cost a certain number of
conflict checks. This cost, however, will be incurred only once, at the initialisation of
the algorithm. The idea is to use the restrictiveness of a value to order the domain set
of a variable. This is calculated by counting the number of constraint violations when
that value is checked against all other values of all other variables. This is analogous to
counting the number of times that a certain label is in the setof compound labels of all
constraints of a CSP instance. By excluding double counting, the number of conflict
checks needed can be decreased. If the label is in more constraints it is more restrictive
than if it is not.

We investigate two domain set orderings: one where the values are ordered in ascending
restrictiveness; and one where the values are ordered in descending restrictiveness.
The idea behind the first ordering is that values which are less restricted are better
candidates for labelling that variable. The idea behind thesecond ordering is that values
which are more restricted should be used earlier in the search. One could say that the

157

SAWEA r1 SAWEA r1-sel SAWEA r1-sel-pop
(p1, p2) SR AES CC SR AES CC SR AES CC

(0.1, 0.9) 0.948 654 1049011.0 836 1326761.0 851 140990
(0.2, 0.9) 0.956 3716 7438560.996 10559 19497750.744 24149 4408818
(0.3, 0.8) 0.92 7201 13595340.936 13750 24611210.6 24282 4341539
(0.4, 0.7) 1.0 4861 8725890.92 8650 15086640.648 22563 3972954
(0.5, 0.6) 1.0 5945 10588571.0 7859 13635490.82 20587 3590547
(0.6, 0.6) 1.0 6474 11567920.996 8972 15544200.708 25492 4457152
(0.7, 0.5) 1.0 7325 13021190.988 10185 17780850.684 27640 4835898
(0.8, 0.5) 1.0 5882 10394371.0 11068 19249340.72 24612 4297115
(0.9, 0.4) 1.0 4292 7619931.0 4471 7888150.932 17540 3115641

Table 9.6: Comparison of theSAWEA r1, SAWEA r1-sel, andSAWEA r1-sel-pop.

first ordering is an easiest-first ordering while the second ordering is a hardest-first
ordering. Apart from the original ordering of the domain sets, we also included a test
ordering, in which the domain sets were ordered randomly. Intotal four variants will
be considered:

1. ascending domain set ordering by value;

2. random domain set ordering;

3. ascending domain set ordering based on restrictiveness;and

4. descending domain set ordering based on restrictiveness.

Note that the first two orderings are problem independent while the last two orderings
are problem dependent.

We added another alteration to the originalSAWEA. This involves intermittently re-
ordering the values in the domain sets during the run of the algorithm. At intervals
equal to the update interval for the weights of the stepwise adaptation of weights mech-
anism, the domain sets of the variables that remained unlabelled in the individual with
the best fitness value are rotated. Rotating a domain sets means that the first value
(element) in the domain set replaces the last value in the domain set and that all other
values in the domain set replace the one preceding it. In essence, the first domain value
in the domain set becomes the last, the second the first, and soon. Other re-orderings
of the domain sets were tried as well but the naive rotating ofdomain sets had the best
results. Rotating domain sets explicitly uses informationgained during the run of the
algorithm, namely which variables so far have been difficultto label using the current
domain sets ordering. The idea is that by using this information, the performance of
the algorithm will be improved.

Combining the rotation method with the four domain set orderings we get four variants:

SAWEA r1dynamically rotates domain sets ordered in ascending orderby value;

158

SAWEA r2 SAWEA r2-sel SAWEA r2-sel-pop
(p1, p2) SR AES CC SR AES CC SR AES CC

(0.1, 0.9) 1.0 64 9665 1.0 103 16432 1.0 294 48093
(0.2, 0.9) 0.988 1750 3507890.992 5646 10436250.752 23471 4338731
(0.3, 0.8) 0.956 3986 7639030.952 9801 17613840.624 25697 4623096
(0.4, 0.7) 0.976 3598 6520450.972 5088 8973870.688 20651 3639388
(0.5, 0.6) 1.0 3166 5570261.0 3859 6698030.868 19695 3396530
(0.6, 0.6) 1.0 4024 7151220.992 5298 9214810.732 21208 3661156
(0.7, 0.5) 1.0 4878 8642491.0 7153 12499320.7 20746 3610806
(0.8, 0.5) 1.0 5762 10120821.0 7139 12402970.712 21344 3701840
(0.9, 0.4) 1.0 2333 4080161.0 2609 4618360.94 15529 2741701

Table 9.7: Comparison of theSAWEA r2, SAWEA r2-sel, andSAWEA r2-sel-pop.

SAWEA r3 SAWEA r3-sel SAWEA r3-sel-pop
(p1, p2) SR AES CC SR AES CC SR AES CC

(0.1, 0.9) 1.0 106 22026 1.0 233 42641 1.0 644 113599
(0.2, 0.9) 1.0 2263 4626300.996 6020 11243970.76 25278 4664481
(0.3, 0.8) 0.992 5476 10455480.992 8890 16035120.62 31127 5560629
(0.4, 0.7) 0.96 5208 9485320.96 6163 10944120.752 21072 3727604
(0.5, 0.6) 1.0 3549 6303590.988 5283 9241500.824 21214 3686307
(0.6, 0.6) 1.0 5727 10077680.996 6546 11420490.692 22902 3998333
(0.7, 0.5) 1.0 8155 14501300.996 7732 13550250.66 24453 4274086
(0.8, 0.5) 1.0 6090 10622790.996 8364 14532610.724 21930 3832569
(0.9, 0.4) 1.0 2833 5046221.0 2333 4160260.888 16717 2960015

Table 9.8: Comparison of theSAWEA r3, SAWEA r3-sel, andSAWEA r3-sel-pop.

SAWEA r4 SAWEA r4-sel SAWEA r4-sel-pop
(p1, p2) SR AES CC SR AES CC SR AES CC

(0.1, 0.9) 1.0 52 12193 1.0 87 18209 1.0 191 35730
(0.2, 0.9) 0.964 1925 3895640.996 5597 10465140.708 21787 4034458
(0.3, 0.8) 1.0 3495 6742480.992 7360 13361690.652 25496 4558643
(0.4, 0.7) 0.96 4169 7587860.956 5157 9100490.704 23412 4098368
(0.5, 0.6) 1.0 2944 5238721.0 3369 5862910.868 19864 3462682
(0.6, 0.6) 1.0 2951 5311290.992 5661 9904330.712 22056 3853155
(0.7, 0.5) 1.0 4424 7892531.0 5281 9270720.736 21837 3810733
(0.8, 0.5) 1.0 5434 9627421.0 6319 11028680.772 22875 3966539
(0.9, 0.4) 1.0 2324 4164411.0 1780 3192680.92 13545 2398367

Table 9.9: Comparison of theSAWEA r4, SAWEA r4-sel, andSAWEA r4-sel-pop.

159

(0.1, (0.2, (0.3, (0.4, (0.5, (0.6, (0.7, (0.8, (0.9,
0.9) 0.9) 0.8) 0.7) 0.6) 0.6) 0.5) 0.5) 0.4)

SAWEA r1< SAWEA r2 - 0.01 1.0 0.0 - - - - -
- 0.99 0.5 1.0 - - - - -
= < = < = = = = =

SAWEA r1< SAWEA r3 - 0.0 0.01 0.06 - - - - -
- 1.0 0.99 0.97 - - - - -
= < < < = = = = =

SAWEA r1< SAWEA r4 - 0.38 0.0 0.06 - - - - -
- 0.81 1.0 0.97 - - - - -
= < < < = = = = =

SAWEA r2> SAWEA r3 - 0.08 0.01 0.31 - - - - -
- 0.096 0.99 0.16 - - - - -
= > < > = = = = =

SAWEA r2> SAWEA r4 - 0.08 0.0 0.31 - - - - -
- 0.04 1.0 0.16 - - - - -
= > < > = = = = =

SAWEA r3= SAWEA r4 - 0.0 0.16 1.0 - - - - -
- 0.0 0.92 0.5 - - - - -
= > < = = = = = =

Table 9.10: t-test results for the rankingSAWEA r1, SAWEA r2, SAWEA r3, and
SAWEA r4onSR.

SAWEA r2dynamically rotates domain sets ordered randomly;

SAWEA r3dynamically rotates domain sets ordered in ascending restrictiveness; and

SAWEA r4dynamically rotates domain sets ordered in descending restrictiveness.

We used the same test-set as used before for our experiments on these four variants.
We also de-evolutionarised each variant, introducing two de-evolutionarised variants
for each variant, one where natural selection is removed, and one where both natural
selection and the population are removed. As before, we termthese variants-seland
-sel-pop. The results of these experiments are shown in Tables 9.6, 9.7, 9.8, and 9.9.

Tables 9.6, 9.7, 9.8, and 9.9 show that all four variants of the SAWEAhave higher
SRthan the originalSAWEA. The biggest improvement was seen for density-tightness
combinations(0.7, 0.5) and(0.8, 0.5) where theSRwent from0.32 and0.396 respec-
tively to 1.0 for all four variants. The efficiency of the four variants however was lower
than the originalSAWEA, both theAESand theCC are higher. The big increase inSR
however outweighs the relatively small increase of theAESandCC.

To answer the question of which variant performed best we return to a statistical anal-
ysis of the results throught-tests. Because theSRresults of the experiments are so
close together we analyse theAESandCC results as well as theSRresults of the ex-
periments. Table 9.10 shows the analysis of theSRresults, Table 9.11 the analysis of

160

(0.1, (0.2, (0.3, (0.4, (0.5, (0.6, (0.7, (0.8, (0.9,
0.9) 0.9) 0.8) 0.7) 0.6) 0.6) 0.5) 0.5) 0.4)

SAWEA r1> SAWEA r2 0.0 0.0 0.0 0.05 0.0 0.0 0.0 0.86 0.0
0.0 0.0 0.0 0.02 0.0 0.0 0.0 0.43 0.0
> > > > > > > = >

SAWEA r1& SAWEA r3 0.0 0.0 0.1 0.46 0.0 0.4 0.27 0.75 0.0
0.0 0.0 0.05 0.77 0.0 0.2 0.86 0.63 0.0
> > > . > > < = >

SAWEA r1> SAWEA r4 0.0 0.0 0.0 0.39 0.0 0.0 0.0 0.47 0.0
0.0 0.0 0.0 0.19 0.0 0.0 0.0 0.24 0.0
> > > > > > > & >

SAWEA r2< SAWEA r3 0.02 0.14 0.04 0.03 0.39 0.03 0.0 0.67 0.09
0.99 0.93 0.98 0.99 0.81 0.98 1.0 0.66 0.96
< < < < < < < . <

SAWEA r2& SAWEA r4 0.41 0.70 0.51 0.32 0.56 0.01 0.37 0.67 0.98
0.2 0.65 0.26 0.84 0.28 0.01 0.19 0.33 0.49
> . & < & > > & &

SAWEA r3> SAWEA r4 0.0 0.3 0.01 0.17 0.15 0.0 0.0 0.37 0.11
0.0 0.15 0.0 0.08 0.07 0.0 0.0 0.19 0.05
> > > > > > > > >

Table 9.11: t-test results for the rankingSAWEA r1, SAWEA r2, SAWEA r3, and
SAWEA r4onAES.

theAESresults, and Table 9.12 the analysis of theCC results. Based on this analysis a
ranking for each of the three measures can be given. TheSRmeasure, in this respect,
has to be maximised, while theAESandCC measures have to be minimised.

The ranking for theSAWEAvariants based on theSRmeasure is shown in equation 9.1.
In Table 9.10 however, it is seen that for6 out of the9 density-tightness combinations
in the mushy region, theSRresults of the four variants are equal. For these6 density-
tightness combinations all four variants solve all CSP instances in all runs. Therefore,
the difference upon which theSRranking is based is calculated over3 density-tightness
combinations only. Overall,SAWEA r2showed the bestSRof all four variants while
SAWEA r3andSAWEA r4had about equalSR, SAWEA r1had the lowestSRof all four
variants.

SAWEA r2 > SAWEA r3 = SAWEA r4 > SAWEA r1 (9.1)

Table 9.11 shows that theAESresults of the four variants had more variance over all
density-tightness combinations in the mushy region. The ranking of the four variants
based on theAESmeasure is found in equation 9.2. As before, the best performing
algorithm is shown to the left of the ranking but as theAES(as theCC) measure is to be
minimised the comparative signs between the algorithms arereversed. TheSAWEA r4

161

(0.1, (0.2, (0.3, (0.4, (0.5, (0.6, (0.7, (0.8, (0.9,
0.9) 0.9) 0.8) 0.7) 0.6) 0.6) 0.5) 0.5) 0.4)

SAWEA r1> SAWEA r2 0.0 0.0 0.0 0.06 0.0 0.0 0.0 0.82 0.0
0.0 0.0 0.0 0.03 0.0 0.0 0.0 0.41 0.0
> > > > > > > . >

SAWEA r1& SAWEA r3 0.0 0.0 0.12 0.4 0.0 0.34 0.27 0.84 0.0
0.0 0.0 0.06 0.8 0.0 0.17 0.87 0.58 0.0
> > > > > > < . >

SAWEA r1> SAWEA r4 0.0 0.0 0.0 0.45 0.0 0.0 0.0 0.49 0.0
0.0 0.0 0.0 0.23 0.0 0.0 0.0 0.24 0.0
> > > & > > > & >

SAWEA r2< SAWEA r3 0.0 0.11 0.04 0.03 0.35 0.04 0.0 0.71 0.06
1.0 0.94 0.98 0.99 0.82 0.98 1.0 0.64 0.97
< < < < < < < . <

SAWEA r2. SAWEA r4 0.21 0.67 0.56 0.31 0.63 0.02 0.41 0.72 0.88
0.9 0.66 0.28 0.85 0.32 0.01 0.21 0.36 0.56
< . & < & < . & &

SAWEA r3> SAWEA r4 0.0 0.29 0.01 0.16 0.15 0.0 0.0 0.44 0.12
0.0 0.14 0.01 0.08 0.08 0.0 0.0 0.22 0.06
> > > > > > > & >

Table 9.12: t-test results for the rankingSAWEA r1, SAWEA r2, SAWEA r3, and
SAWEA r4onCC.

algorithm used less than or similar amounts ofAESthan theSAWEA r2algorithm. The
SAWEA r2algorithm was more efficient than theSAWEA r3algorithm which in turn
used less than or similar amounts ofAESthan theSAWEA r1algorithm.

SAWEA r4 . SAWEA r2 < SAWEA r3 . SAWEA r1 (9.2)

The ranking based on theCC measure is shown in equation 9.3. Based on the analysis
shown in Table 9.12, the ranking is very similar to theAESranking shown in equation
9.2 except for theCC measure theSAWEA r2andSAWEA r4algorithms are reversed.

SAWEA r2 . SAWEA r4 < SAWEA r3 . SAWEA r1 (9.3)

Based on the statistical analysis we can conclude that theSAWEA r2is the best per-
forming variant ofSAWEA. Although it was ranked second on theAESmeasure, it
was ranked first on theCC measure and more importantly, first on theSRmeasure.
The fact thatSAWEA r1was ranked last on all three measures demonstrates that the
original domain sets ordering (in ascending order by value)is not the best ordering
to use and that the decision to reorder the elements of the domain sets resulted in an

162

(p1,p2) LSEA ESPEA HEA3 SAWEA r2

(0.1,0.9) 1.0 1.0 1.0 1.0
(0.2,0.9) 0.988 0.984 0.952 0.988
(0.3,0.8) 0.812 0.688 0.728 0.956
(0.4,0.7) 0.808 0.712 0.844 0.976
(0.5,0.6) 0.924 0.692 0.844 1.0
(0.6,0.6) 0.752 0.44 0.8 1.0
(0.7,0.5) 0.776 0.588 0.772 1.0
(0.8,0.5) 0.796 0.488 0.84 1.0
(0.9,0.4) 0.936 0.76 0.944 1.0

Table 9.13: Comparison of theSRof theLSEA, ESPEA, HEA3, and theSAWEA r2.

increased performance. Comparing the ordering based on therestrictiveness of a value
in the domain set of a variable (inSAWEA r3andSAWEA r4) the orderings show that
ordering the domain set in descending restrictiveness increased the performance more
the ordering the domain set in ascending restrictiveness. It appears that re-labelling
hardest-first outperforms easiest-first. In general, however, ordering the domain sets
randomly outperformed all other variants. Although surprising, this domain set or-
dering is bias-free and does not use conflict checks to come toan ordering (as do the
orderings inSAWEA r3andSAWEA r4) and we recommend this ordering for further
use.

TheSAWEA r2is then the superior evolutionary algorithm. Comparing theSRof the
LSEA, ESPEA, and theHEA3and theSAWEA r2in Table 9.13 shows that theSAWEA r2
has a superior performance when these algorithms are not de-evolutionarised. Also, the
SAWEA r2does not suffer from memetic overkill, which the other threealgorithm do
suffer from. A further boon is that theSAWEA r2is a variant that does not need problem
dependent information to achieve its good performance.

163

164

Chapter 10

Conclusions

The main motivation for writing this thesis is our belief that for many problems evolu-
tionary computation can provide a viable alternative to other algorithms. In this thesis
we test if this also holds for the constraint satisfaction problem. The test we use is to
construct a superior evolutionary algorithm and compare its performance to alternative
methods for solving the constraint satisfaction problem.

An evolutionary algorithm is not the most obvious method to solve the constraint sat-
isfaction problem since it does not contain a built-in objective function to optimise.
Because of the many applications based on the problem however, the problem has re-
ceived a lot of attention from the evolutionary computationcommunity. A large num-
ber of evolutionary algorithms for solving the constraint satisfaction problem have been
proposed in the last two decades.

Comparing the performance of these algorithms based on literature was hampered be-
cause of the different test-sets used, some of which were found to be deficient in some
respects. Additionally, different ways to measure the performance of the algorithms
were used further obscuring the relative performance of thealgorithms.

In this thesis we offer a solution to these problems by the construction of a new test-
set using the latest random constraint satisfaction problem generator and explicitly
defining the measures on which the performance of the evolutionary algorithms are
compared. A representative subset of the algorithms proposed in literature was re-
implemented in a uniform manner using a basic experimentation platform thus making
a fair comparison possible.

The relative performance of the algorithms was compared based on the defined mea-
sures, statistical analysis of the measurements and different performance measures
were compared relative to each other as well. Further experimentation on the four
best performing algorithms revealed that three of them suffered from memetic overkill.
Memetic overkill occurs when an evolutionary algorithm incorporating a strong heuris-
tic or local-search technique has inferior performance to the algorithm without the evo-
lutionary components. As three out of the four best performing algorithms suffer from

165

memetic overkill, constructing the superior evolutionaryalgorithm by combining the
effective components from these algorithms is of no use, since it would only result in a
new algorithm suffering from memetic overkill.

Instead the superior evolutionary algorithm was constructed from the one algorithm not
suffering from memetic overkill. Because the incorporation of more or more powerful
heuristics would probably lead to this algorithm also suffering from memetic overkill,
the decision was made to instead use information gained during the run to enhance the
performance of the algorithm. Earlier investigation of thealgorithm has already shown
that modifications to the evolutionary components do not increase the performance of
the algorithm.

From the four proposed variants of the algorithm, one was found to have superior
performance. The algorithm uses randomly ordered domain elements and rotation to
label variables in the decoder part of the algorithm. The algorithm is calledSAWEA r2
and was found not to suffer from memetic overkill and have superior performance to
the evolutionary algorithms previously investigated.

What remains is to compare the performance of this algorithm with alternative methods
to solving the constraint satisfaction problem to see if ourabove mentioned belief is
justified.

10.1 Evolutionary and Classical Algorithms

The performance of theSAWEA r2is compared to theHill Climber with Restart Al-
gorithm (HCAWR) from Chapter 5, and theChronological Backtracking Algorithm
(CBA), and theForward Checking with Conflict-Directed Backjumping Algorithm (FC-
CDBA) from Chapter 3. TheHCAWRis an iterated local-search algorithm while both
the CBA and theFCCDBAare classical algorithms. TheCBA and theFCCDBAare
both complete algorithms and because the constructed test-set from Chapter 4 includes
only solvable instances, theSRperformance measure will always be1.0 for these algo-
rithms. Also note that because theCBAand theFCCDBAare deterministic algorithms,
only one run for each CSP instance in the test-set is necessary, additional runs will
show the same results. TheAESperformance measure, although in some measure ap-
plicable to theHCAWR, is not applicable to the classical algorithms. This leavesonly
theCC measure to compare the performance of the four algorithms.

Table 10.1 shows the results from the experiments with theSAWEA r2, theHCAWR,
the CBA, and theFCCDBAon the mushy region of the test-set. Only theSAWEA r2
has anSRof less than1.0 for density-tightness combinations(0.2, 0.9), (0.3, 0.8), and
(0.4, 0.7), all other algorithms, and for theCBAand theFCCDBAwe knew this, solve
all the CSP instances in all their runs. TheSRof theSAWEA r2however is very close to
1.0, only 3, 11, and6 runs out of a total of250 were unsuccessful for density-tightness
combinations(0.2, 0.9), (0.3, 0.8), and(0.4, 0.7) respectively.

For theCC performance measure we find that theSAWEA r2is more efficient than the
HCAWRbut less than theFCCDBA. For density-tightness combination(0.1, 0.9), the

166

SAWEA r2 HCAWR CBA FCCDBA
(p1, p2) SR CC SR CC SR CC SR CC

(0.1, 0.9) 1.0 9665 1.0 234242 1.0 3800605 1.0 930
(0.2, 0.9) 0.988 350789 1.0 1267015 1.0 335166 1.0 3913
(0.3, 0.8) 0.956 763903 1.0 2087947 1.0 33117 1.0 2186
(0.4, 0.7) 0.976 652045 1.0 2260634 1.0 42559 1.0 4772
(0.5, 0.6) 1.0 557026 1.0 2237419 1.0 23625 1.0 3503
(0.6, 0.6) 1.0 715122 1.0 2741567 1.0 44615 1.0 5287
(0.7, 0.5) 1.0 864249 1.0 3640630 1.0 35607 1.0 4822
(0.8, 0.5) 1.0 1012082 1.0 2722763 1.0 28895 1.0 5121
(0.9, 0.4) 1.0 408016 1.0 2465975 1.0 15248 1.0 3439

Table 10.1: Comparison of theSAWEA r2, theHCAWR, theCBA, and theFCCDBA.

SAWEA r2is more efficient than theCBA, but for the other density-tightness combi-
nations this is reversed. Note here that theSRof the SAWEA r2can be increased by
increasing the maximum number of evaluations allowed or alternatively by running
the SAWEA r2multiple times. Given the disparity between theCC of the SAWEA r2
and theHCAWR, theSAWEA r2could be applied several times before the numberCC
of the HCAWRwould be exhausted. However, the difference between theCC of the
SAWEA r2and the classical algorithms significant, theFCCDBA in particular being
more efficient by a large margin.

So are evolutionary algorithms a viable alternative to other algorithms for solving the
CSP? Yes, and no. TheSAWEA r2does have almost the sameSRas classical algo-
rithms, and by allowing longer runs, we believe that it can attain anSRof 1.0 for all
density-tightness combinations in the mushy region of the test-set. However, although
the SAWEA r2is more efficient than theHCAWR, it is far less efficient than theFC-
CDBA. Of note here is that were theSAWEA r2is the best performing algorithm of its
class, theHCAWRis probably not. Better (read more efficient) iterated local-search
algorithms do exist. The conclusion therefore must be that if getting a solution fast
(efficient), theSAWEA r2, and in general an evolutionary algorithm isnot a viable
alternative.

So far in the thesis we have concentrated our comparison of methods to solve the CSP
purely on performance. Within a scientific context this makes sense. However, from the
standpoint of a user, other factors besides performance might be of importance. In that
context, evolutionary algorithms have two things in their favour: general applicability
and ease of design.

Although all evolutionary algorithms in this thesis were specifically designed to solve
the CSP, they are usually also applicable to other related problems. TheSAWEA, for
example, has been used to solve the satisfiability problem and the graph colouring
problem and has shown good performance there. It has also been shown to be useful in
solving data mining problems, much less related to the constraint satisfaction problem.
The classical algorithms in this thesis however are less applicable to solve other prob-

167

lems than the ones for which they were designed, although thebasic techniques used
in them might still be useful.

In general, evolutionary algorithms are also easy to inventand design. TheSAWEA,
although more difficult than an off-the-shelf evolutionaryalgorithm like theIEA, is
still relatively easy to design. Although evolutionary algorithms have a fair amount
of parameters to fine-tune, some guidelines for setting these parameters are available,
while overall, the evolutionary paradigm used in the algorithms is quite robust for all
but the most outlandish parameter settings. In the end, evolution has the tendency to
find a solution to a problem eventually, as can be observed in nature. And although
theCBA is also easy to design (and implement), the length of the pseudo-code for the
FCCDBA(given in Chapter 3) clearly indicates that it is not. The increase in efficiency
of theFCCDBAthen comes from more research a-priori into solving the problem. For
the user unwilling to invest in this, evolutionary algorithms are an alternative with the
additional benefit that they can be applied to a wider varietyof problems.

Thus, for the user interested primarily in finding a solutionto a problem and unwilling
to invest much effort in trying to understand the intricacies of it, evolutionary algo-
rithmsare a viable alternative. TheSAWEA r2then is an illustration that evolutionary
algorithms are up to this task.

10.2 Main Contributions of the Thesis

In the course of the investigation presented in this thesis,the following main contribu-
tions to the scientific community were made:

• a methodology for constructing a test-set of CSP instances,tailored especially
for comparing the performance of iterated local-search algorithms, evolutionary
algorithms in particular;

• a comprehensive inventory of eight evolutionary algorithms for solving the con-
straint satisfaction problem including full descriptionsof the algorithms and ex-
perimental results for accessing their performance.

• a methodology for comparing and ranking the performance of evolutionary al-
gorithms using traditional and statistical methods, and comparison of the relative
performance in the effectivity-efficiency plane;

• offering the notion of memetic overkill and a methodology for identifying if an
algorithm suffers from memetic overkill by de-evolutionarising it;

• a platform for experimental research into evolutionary algorithms for solving the
constraint satisfaction problem including a uniform implementation of a com-
prehensive inventory of evolutionary algorithms; and

• a well-founded conclusion on a superior performing evolutionary algorithm for
solving the randomly generated binary constraint satisfaction problem.

168

10.3 Future Research

Although we hope that the contributions made in this thesis,because of the solid ex-
perimental basis on which they are founded, will be useful for researchers, they also
pose a number of new avenues for future research.

Memetic overkill is probably not only a problem for evolutionary algorithms solving
the constraint satisfaction problem. It has to be expected that it occurs for evolutionary
algorithms solving other problems as well. Further research into the extent of memetic
overkill happening in evolutionary algorithms for other problems might therefore pro-
vide interesting results.

No research was done on the performance of the evolutionary algorithms when the size
of the CSP instances was increased. These scale-up experiments will provide valuable
insight in how, for example, theSAWEA r2can handle an increase in problem size.
Classical algorithms encounter a performance barrier withthe increase of combinato-
rial complexity. It is possible that evolutionary algorithms are less affected by this and
that they will outperform classical algorithms in scale-upexperiments.

And finally, the constraint satisfaction problems solved bythe algorithms were ‘artifi-
cial’, in that they were all generated by a random CSP generator. For scientific research
this works best, but in real-life, problems often contain structures that make them dif-
ferent from randomly generated ones. Although theSAWEA r2has good performance
on randomly generated CSP instances, comparing its performance on real-life prob-
lems might provide insight in how the algorithm can handle these kinds of problems.

169

170

Bibliography

[1] E. Aarts and J. Korst.Simulated Annealing and Boltzmann Machines: A Stochas-
tic Approach to Combinatorial Optimization and Neural Computing. Wiley, July
1990.

[2] D. Achlioptas, L.M. Kirousis, E. Kranakis, D. Krizanc, M.S. Molloy, and Y.C.
Stamatiou. Random constraint satisfaction a more accuratepicture. In G. Smolka,
editor,Principles and Practice of Constraint Programming – CP97, pages 107–
120. Springer Verlag, 1997.

[3] D. Applegate, W. Cook, and A. Rohe. Chained lin-kernigham for large traveling
salesman problems. Technical Report 99887, Forschungsinstitute für Diskrete
Mathematik, University of Bonn, Germany, 1999.

[4] W. Atmar. The inevitability of evolutionary invention.Unpublished Manuscript,
1979.

[5] W. Atmar. Notes on the simulation of evolution.IEEE Transactions on Neural
Networks, 5(1):130–147, 1994.

[6] F. Bacchus and P. van Beek. On the conversion between non-binary and binary
constraint satisfaction problems. InProceedings of the 15th International Con-
ference on Artificial Intelligence – ICAI98, pages 311–318, Madison, Wisconsin,
July 1998. Morgan Kaufmann.

[7] T. Bäck. Evolutionary Algorithms in Theory and Practice. Oxford University
Press, New York, NY, 1996.

[8] T. Bäck, D. Fogel, and Z. Michalewicz, editors.Handbook of Evolutionary Com-
putation, New York, 1997. Institute of Physics Publishing Ltd, Bristol and Oxford
University Press.

[9] Th. Bäck, editor. Proceedings of the 7th International Conference on Genetic
Algorithms, San Francisco, CA, 1997. Morgan Kaufmann Publishers, Inc.

[10] E.B. Baum. Iterated descent: A better algorithm for local search in combinatorial
optimisation problems. Manuscript, Caltech, Pasadena, CA, 1986.

171

[11] E.B. Baum. Toward practical “neural” computation for combinatorial optimisa-
tion problems. In J. Denker, editor,Neural Networks for Computing, AIP Con-
ference Proceedings, pages 53–64, 1986.

[12] J. Baxter. Local optima avoidance in depot location.Journal of the Operation
Research Society, 32:815–819, 1981.

[13] L. Booker. Improving search in genetic algorithms. InGenetic Algorithms and
Simulated Annealing, pages 61–73. Morgan Kaufmann Publisher, Inc., 1987.

[14] J. Bowen and G. Dozier. Solving constraint satisfaction problems using a ge-
netic/systematic search hybrid that realizes when to quit.In L.J. Eshelman, ed-
itor, Proceedings of the 6th International Conference on GeneticAlgorithms –
ICGA95, pages 122–129. Morgan Kaufmann Publishers, Inc., 1995.

[15] P. Cheeseman, B. Kenefsky, and W.M. Taylor. Where the really hard problems
are. InProceedings on the International Joint Conference on Artificial Intelli-
gence – IJCAI91, pages 331–337, 1991.

[16] S.A. Cook. The complexity of theorem-proving procedures. InThe complexity of
theorem-proving procedures, pages 151–158, Shaker Heights, Ohio, 1971.

[17] B.G.W. Craenen and A.E. Eiben. Stepwise adaptation of weights with refinement
and decay on constraint satisfaction problems. In L. Spector, E. Goodman, A. Wu,
W.B. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. Garzon,
and E. Burke, editors,Proceedings of the Genetic and Evolutionary Computation
Conference – GECCO2001, pages 291–298, San Francisco, CA, 2001. Morgan
Kaufmann, Inc.

[18] B.G.W. Craenen, A.E. Eiben, and E. Marchiori. Solving constraint satisfac-
tion problems with heuristic-based evolutionary algorithms. In Proceedings of
the Congress on Evolutionary Computation 2000 – CEC2000, pages 1571–1577.
IEEE Computer Society Press, July 2000.

[19] B.G.W. Craenen, A.E. Eiben, E. Marchiori, and A. Steenbeek. Combining lo-
cal search and fitness function adaptation in a genetic algorithm for solving bi-
nary constraint satisfaction problems. In D. Whitley, D. Goldberg, E. Cant́u-Paz,
L. Spector, I. Parmee, and H.-G. Beyer, editors,Proceedings of the Genetic and
Evolutionary Computation Conference – GECCO2000, page 381. Morgan Kauf-
mann Publishers, Inc., 2000.

[20] J.M. Crawford and L.D. Anton. Experimental results on the crossover point in
satisfiability problems. In R. Fikes and W. Lehnert, editors, Proceedings of the
11th National Conference on Artificial Intelligence, pages 21–27, Menlo Park,
California, 1993. AAAI Press.

[21] C. Darwin. The Origin of Species by Means of Natural Selection or the Preser-
vation of Favoured Races in the Struggle for Life. John Murray, London, 1859.

172

[22] R. Dechter. On the expressiveness of networks with hidden variables. In T. Di-
etterich and W. Swartout, editors,Proceedings of the 8th National Conference
on Artificial Intelligence, pages 556–562, Hynes Convention Centre, 1990. MIT
Press.

[23] R. Dechter and J. Pearl. Tree clustering for constraintnetworks.Artificial Intelli-
gence, 38(3):353–366, 1989.

[24] G. Dozier, J. Bowen, and D. Bahler. Solving small and large constraint satisfac-
tion problems using a heuristic-based micro-genetic algorithm. In ICEC94 [50],
pages 306–311.

[25] G. Dozier, J. Bowen, and D. Bahler. Solving randomly generated constraint sat-
isfaction problems using a micro-evolutionary hybrid thatevolves a population
of hill-climbers. In Proceedings of the 2nd IEEE Conference on Evolutionary
Computation – ICEC95, pages 614–619. IEEE Computer Society Press, 1995.

[26] G. Dozier, J. Bowen, and A. Homaifar. Solving constraint satisfaction problems
using hybrid evolutionary search.Transactions on Evolutionary Computation,
2(1):23–33, 1998.

[27] A.E. Eiben. Evolutionary algorithms and constraint satisfaction: Definition, sur-
vey, methodology, and research directions. In L. Kallel, B.Naudts, and A. Rogers,
editors,Theoretical Aspects of Evolutionary Computing, Natural Computing Se-
ries, pages 13–58. Springer, 2001.

[28] A.E. Eiben, P-E. Raúe, and Zs. Ruttkay. Heuristic genetic algorithms for con-
strained problems, part i: Principles. Technical Report IR-337, Vrije Universiteit
Amsterdam, 1993.

[29] A.E. Eiben, P-E. Raúe, and Zs. Ruttkay. Solving constraint satisfaction problems
using genetic algorithms. In ICEC94 [50], pages 542–547.

[30] A.E. Eiben, P.-E. Raúe, and Zs. Ruttkay. Constrained problems. In L. Chambers,
editor, Practical Handbook of Genetic Algorithms, pages 307–365. CRC Press,
1995.

[31] A.E. Eiben and Zs. Ruttkay. Self-adaptivity for constraint satisfaction: Learning
penalty functions. In ICEC96 [51], pages 258–261.

[32] A.E. Eiben and J.E. Smith.Introduction to Evolutionary Computing. Springer,
2003. ISBN 3-540-40184-9.

[33] A.E. Eiben and J.K. van der Hauw. Adaptive penalities for evolutionary graph-
coloring. In J.-K. Hao, E. Lutton, E. Ronald, M. Schoenauer,and D. Snyers,
editors,Artificial Evolution ’97 – AE97, volume 1363 ofLecture Notes on Com-
puter Science, pages 95–106. Springer-Verlag, Berlin, 1998.

[34] A.E. Eiben, J.K. van der Hauw, and J.I. van Hemert. Graphcoloring with adaptive
evolutionary algorithms.Journal of Heuristics, 4(1):25–46, 1998.

173

[35] A.E. Eiben and J.I. van Hemert. SAW-ing EAs: Adapting thefitness function for
solving constrained problems. In D. Corne, M. Dorigo, and F.Glover, editors,
New Ideas in Optimization, pages 389–402. McGraw-Hill, 1999.

[36] T.C. Fogarty. Varying the probability of mutation in the genetic algorithm. In
Schaffer [78], pages 104–109.

[37] D.B. Fogel.Evolutionary Computation. IEEE Computer Society Press, 1995.

[38] D.B. Fogel. Evolutionary Computation: The Fossil Record. Wiley-IEEE Press,
1st edition, 1998.

[39] L.J. Fogel, A.J. Owens, and M.J. Walsh.Artificial Intelligence through Simulated
Evolution. John Wiley & Sons, 1966.

[40] A. Fukunaga. Restart scheduling for genetic algorithms. In A.E. Eiben, Th. B̈ack,
M. Schoenauer, and H.-P. Schwefel, editors,Proceedings of the 5th Conference
on Parallel Problem Solving from Nature – PPSN98, volume 1498 ofLecture
Notes in Computer Science, pages 357–366. Springer-Verlag, Berlin, 1998.

[41] S. Golomb and L. Baumert. Backtrack programming.A.C.M., 12(4):516–524,
1965.

[42] J. Gottlieb, E. Marchiori, and C. Rossi. Evolutionary algorithms for the satisfia-
bility problem. Journal of Evolutionary Computation, 10(1):35–50, 2002.

[43] J.J. Grefenstette. Optimisation of control parameters for genetic algorithms.IEEE
Transactions on Systems, Man and Cybernetics, 16(1):122–128, 1986.

[44] H. Handa, N. Baba, O. Katai, T. Sawaragi, and T. Horiuchi. Genetic algorithm
involving coevolution mechanism to search for effective genetic information. In
ICEC97 [52], pages 709–714.

[45] H. Handa, C.O. Katai, N. Baba, and T. Sawaragi. Solving constraint satisfaction
problems by using coevolutionary genetic algorithms. InProceedings of the 5th
IEEE Conference on Evolutionary Computation – ICEC98, pages 21–26. IEEE
Computer Society Press, 1998.

[46] R. Haralick and G. Elliot. Increasing tree search efficiency for constraint-
satisfaction problems.Artificial Intelligence, 14(3):263–313, 1980.

[47] A. Hoffman. Arguments on Evolution: A Paleontologist’s Perspective. Oxford
University Press, New York, 1988.

[48] J.H. Holland.Adaptation in Natural and Artificial Systems. University of Michi-
gan Press, Ann Harbor, 1975.

[49] J. Huxley. The evolutionary process. In J. Huxley, A.C.Hardey, and E.B. Ford,
editors,Evolution as a Process, pages 9–33. Collier Books, New York, 1963.

174

[50] Proceedings of the 1st IEEE Conference on Evolutionary Computation. IEEE
Computer Society Press, 1994.

[51] Proceedings of the 3rd IEEE Conference on Evolutionary Computation –
ICEC96. IEEE Computer Society Press, 1996.

[52] Proceedings of the 4th Conference on Evolutionary Computation – ICEC97.
IEEE Society Press, 1997.

[53] D.S. Johnson. Local optimisation and the traveling salesman problem. InPro-
ceedings of the 17th Colloquium on Automata, Languages, andProgramming,
volume 443 ofLNCS, pages 446–461, Berlin, 1990. Springer Verlag.

[54] D.S. Johnson and L.A. McGeoch. The travelling salesmanproblem: A case study
in local optimization. In E.H.L. Aarst and J.K. Lenstra, editors,Local Search in
Combinatorial Optimization, pages 215–310. John Wiley & Sons, Chichester,
England, 1997.

[55] G. Kondrak and P. van Beek. A theoretical evaluation of selected backtracking
algorithms.Artificial Intelligence, 89(1–2):365–387, 1989.

[56] E. MacIntyre, P. Prosser, B.M. Smith, and T. Walsh. Random constraint satisfac-
tion: theory meets practice. In M. Maher and J.-F. Puget, editors,Principles and
Practice of Constraint Programming – CP98, pages 325–339. Springer Verlag,
1998.

[57] E. Marchiori. Combining constraint processing and genetic algorithms for con-
straint satisfaction problems. In Bäck [9], pages 330–337.

[58] E. Marchiori. Genetic, iterated and multistart local search for the maximum clique
problem. InApplications of Evolutionary Computing, volume 2279 ofLNCS,
pages 112–121. Springer, 2002.

[59] E. Marchiori and A. Steenbeek. A genetic local search algorithm for random
binary constraint satisfaction problem. InProceedings of the 14th Annual Sym-
posium on Applied Computing, pages 463–469, 2000.

[60] O. Martin and S.W. Otto. Combining simulated annealingwith local search
heuristics.Annals of Operations Research, 63:57–75, 1996.

[61] O. Martin, S.W. Otto, and E.W. Felten. Large-step markov chains for the traveling
salesman problem.Complex Systems, 5(3):299–251, 1991.

[62] E. Mayr. Toward a New Philosophy of Biology: Observation of an Evolutionist.
Belknap Press, Cambridge, 1988.

[63] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. Equation
of state calculations by fast computing machines.Journal of Chemical Physics,
21(6):1087–1092, 1953.

175

[64] Z. Michalewicz and M. Schoenauer. Evolutionary algorithms for constrained
parameter optimization problems.Journal of Evolutionary Computation, 4(1):1–
32, 1996.

[65] D. Mitchell, B. Selman, and H. Levesque. Hard and easy districutions of SAT
problems. InProceedings of the 10th International Conference on Artificial In-
telligence – ICAI-92, pages 459–465, San Jose, CA, 1992.

[66] P. Morris. The breakout method for escaping from local minima. InProceedings
of the 11th International Conference on Artificial Intelligence – ICAI-93, pages
40–45. AAAI Press/MIT Press, 1993.

[67] H. Mühlenbein. How genetic algorithms really work: I. mutationand hillclimb-
ing. In R. Männer and B. Manderick, editors,Proceedings of the 2nd Conference
on Parallel Problem Solving from Nature — PPSN92, pages 15–25. Elsevier Sci-
ence Press, 1992.

[68] B. Paechter, T. Fogarty, E. Burke, A. Cumming, and B. Ranking. Stone soup. In
Edmund K. Burke and Wilhelm Erben, editors,Practice and Theory of Automated
Timetabling III — Third International Conference, PATAT 2000, volume 2079 of
Lecture Notes in Computer Science, pages 103–106, Konstanz, Germany, 2001.
Springer-Verlag.

[69] E.M. Palmer. Graphical Evolution. An introduction to the theory of random
graphs.Wiley-Interscience Series in Discrete Mathematics. John Wiley & Sons,
Ltd., Chichester, 1985.

[70] J. Paredis. Coevolutionary constraint satisfaction.In Y. Davidor, H.-P. Schwefel,
and R. M̈anner, editors,Proceedings of the 3rd Conference on Parallel Problem
Solving from Nature – PPSN94, volume 886 ofLecture Notes in Computer Sci-
ence, pages 46–55. Springer Verlag, 1994.

[71] J. Paredis. Co-evolutionary computation.Artificial Life, 2(4):355–375, 1995.

[72] J. Paredis. Coevolving cellular automata: Be aware of the red queen. In B̈ack [9],
pages 393–400.

[73] P. Prosser. Hybrid algorithms for the constraint satisfaction problem.Computa-
tional Intelligence, 9(3):268–299, 1993.

[74] M.-C. Riff Rojas. Using the knowledge of the constraintnetwork to design an
evolutionary algorithm that solves csp. In ICEC96 [51], pages 279–284.

[75] M.-C. Riff Rojas. Evolutionary search guided by the constraint network to solve
csp. In ICEC97 [52], pages 337–348.

[76] M.-C. Riff Rojas. A network-based adaptive evolutionary algorithm for constraint
satisfaction problems.Meta-heuristics: Advances and Trends in Local Search
Paradigms for Optimization, pages 325–339, 1998.

176

[77] F. Rossi, C. Petrie, and V. Dhar. On the equivalence of constrain satisfaction
problems. In L.C. Aiello, editor,Proceedings of the 9th European Conference on
Artificial Intelligence (ECAI’90), pages 550–556, Stockholm, 1990. Pitman.

[78] J.D. Schaffer, editor.Proceedings of the 3rd International Conference on Genetic
Algorithms, San Mateo, California, 1989. Morgan Kaufmann Publisher, Inc.

[79] J.D. Schaffer, R.A. Caruana, L.J. Eshelman, and R. Das.A study of control
parameters affecting online performance of genetic algorithms for function opti-
mization. In Schaffer [78], pages 51–61.

[80] H.-P. Schwefel.Evolution and Optimum Seeking. John Wiley & Sons, New York,
NY, 1995.

[81] B.M. Smith. Phase transition and the mushy region in constraint satisfaction
problems. In A.G. Cohn, editor,Proceedings of the 11th European Conference
on Artificial Intelligence, pages 100–104. Wiley, 1994.

[82] B.M. Smith and M.E. Dyer. Locating the phase transitionin binary constraint
satisfaction problems.Artificial Intelligence, 81(12):155–181, 1996.

[83] E. Tsang.Foundations of Constraint Satisfaction. Academic Press, 1993.

[84] J.K. van der Hauw. Evaluating and improving steady state evolutionary algo-
rithms on constraint satisfaction problems. Master’s thesis, Leiden University,
1996.

[85] P. van Hentenryck, V. Saraswat, and Y. Deville. Constraint processing in cc(fd).
In A. Podelski, editor,Constraint Programming: Basics and Trends. Springer
Verlag, Berlin, 1995.

[86] L. van Valen. A new evolutionary law.Evolutionary Theory, (1):1–30, 1973.

[87] D. Whitley. The genitor algorithm and selection pressure: Why rank-based allo-
cation of reproductive trials is best. In Schaffer [78], pages 116–123.

[88] D.E. Wooldridge.The Mechanical Man: The Physical Basis of Intelligent Life.
McGraw-Hill, New York, 1968.

177

Index

N -queens problem, 2
constraints, 2
construction of constraint, 13
formal definition, 12
objective, 2
solution, 2

α-β Parent Selection Operator, 87
k-compound label, 10
o-values, 139
p-value, 71
t-test, 71
AES, 58
ArcEA, 86
Arc Evolutionary Algorithm, 86

characteristics, 89
experimental results, 90
parameters, 89

CBA, 26
MCE, 60
CoeEA, 98
Co-evolutionary Algorithm, 98

characteristics, 98
experimental results, 100
parameters, 99

ESPEA, 103
Eliminate-Split-Propagate Evolutionary Al-

gorithm, 103
characteristics, 104
experimental results, 105
parameters, 104
repair operator, 104
repair rule, 104

FCCDBA, 27
HCAWR, 48
Hill Climber with Restart Algorithm, 48
HeuristicEA, 75
Heuristic Evolutionary Algorithm, 75

characteristics, 77
experimental results, 77
parameters, 77

HPEA, 109
Host-Parasite Evolutionary Algorithm, 109

characteristics, 110
experimental results, 112
parameters, 112

IEA, 52
Intuitive Evolutionary Algorithm, 52
LSEA, 115
Local Search Evolutionary Algorithm, 115

characteristics, 117
experimental results, 118
parameters, 117

MBF, 59
MIDEA, 121
Micro-genetic Iterative Descent Evolution-

ary Algorithm, 121
characteristics, 123
experimental results, 124
parameters, 123

RSA, 47
Random Search Algorithm, 47
SAWEA, 127
Stepwise Adaptation of Weights Evolution-

ary Algorithm, 127
characteristics, 128
experimental results, 130
parameters, 128

SR, 58
UIC, 59

accumulated awards, 121
adjusted average tightness, 39
adjusted density, 39
adjusted number of solutions, 38

178

algorithm
brute-force, 47
classical, 25
complete, 25, 32, 48
iterated local-search, 45
neighbourhood search, 49
non-deterministic, 31
sound, 25, 32

allele, 52
Arc Crossover Operator, 86
Arc Mutation Operator, 87
Arc Objective Function, 86
arity, 12
Asexual Heuristic Operator, 76
average number of evaluations to solution,

58
average tightness, 32

backjumping, 28
conflict-directed, 28

backtracking, 26
depth-first, 26

BCSP, 14
behaviour, 58
bias-parameter, 55
biased ranking selection, 55
binary constraint, 13
binary constraint satisfaction problem, 2,

14
binary representation, 53
binary vector, 53

candidate solution, 45, 51, 52
cbafull, 26
central limit theorem, 38
chained local optimisation, 45
children, 51
chromosome, 52
classical algorithm

efficiency, 30
co-evolutionary approach, 146
comparison, 57, 133

performance, 133
competition, 50
complexity, 17

algorithm, 17

computational, 17
computational effort, 17
NP-complete, 19
polynomial, 17
polynomial time, 17
quickly reducible, 19
space, 17

complexity measures, 9
complexity parameters, 31
compound label, 10, 31

arity of, 10
projection of, 10
variable set of, 10

confidence interval, 38
conflict, 11
conflict check, 30

computational effort, 30
conflict checks, 57
conflict checks to solution, 59
consistency, 28
consistency checks, 26
constrained optimisation problem

optimisation function, 1
constrained optimising problem, 1
constrained problem

general, 1
two classes, 1

constraint, 10
arity of, 10
non-restrictive, 11
restrictive, 11
satisfied, 11
variable relevant to, 11
violated, 11

Constraint Dynamic Adaptive Crossover
Operator, 87

constraint processing, 103
eliminate, 103
elimination phase, 103
split, 103
split phase, 103

constraint satisfaction problem, 1
k-compound label, 10
arity, 12
arity of a compound label, 10
arity of a constraint, 10

179

average tightness, 19
binary, 2, 14
binary constraint, 13
complexity measures, 9, 20
compound label, 10, 31
conflict, 11
constraint, 10
density, 19
discrete, 3
domain of a variable, 9
example, 12
formal definition, 9, 11
generator, 3
generators, 9, 20, 31

complexity parameters, 31
modelE, 22
modelF , 22, 32
models, 22
non-deterministic, 31
parameter vector, 32

hardness, 32
instance, 31
label, 9
methods for solving, 25
mushy region, 33
non-restrictive constraint, 11
NP-complete, 19, 25
parameter space, 33

considerations, 34
regions, 33

parameter vector, 20
phase-transition, 33
projection of a compound label, 10
randomly generated, 3
representation, 9, 15

conflict graph, 17
conflict matrix, 15
constraint graph, 16
constraint matrix, 15
graph, 16
matrix, 15

restrictive constraint, 11
satisfied constraint, 11
solution, 12
solvers, 25
test-set, 5, 21, 31, 35

formula correction, 37
hardness, 36
instance selection, 37
mushy region, 36
parameter adjustment, 37
parameter setup, 35
parameters, 32
representative, 32
sample sizing, 37

tightness, 19
transition line, 33
transition point, 33
translation, 14

dual graph, 14
hidden variable, 14

uniform domain size, 3
variable relevant to constraint, 11
variable set of a compound label, 10
violated constraint, 11

convergence, 49
COP, 1
corrected number of solutions, 38
correlation coefficient, 42
CSP, 1, 12

Darwinian evolution, 4
de-evolutionarising, 149
decision problem, 17
dependency propagation, 103
discrete constraint satisfaction problem, 3
domain of a variable, 9
domain set, 27, 115

effectiveness, 58
effectivity, 135
effectivity-efficiency plane, 135
efficiency, 58, 135
elitist, 56
encounter, 98
environmental pressure, 51
error evaluation, 86
evolution, 50
evolution paradigm, 50
evolutionary algorithm, 4, 45, 51, 52

canonical, 52
fitness, 4

180

individual, 4
objective function, 4
population, 4
selection, 4
variation operators, 4

evolutionary algorithms
applicability, 167
Darwinian evolution, 4
ease of design, 167

evolutionary computation, 2, 4, 51
dialects, 51
robust optimiser, 2

evolutionary process, 51
evolutionary programming, 4, 51
evolutionary strategies, 4, 51

families, 122
fccdbafull, 27
fitness, 4, 51, 53
fitness value, 51–53
five houses puzzle, 103
flawed variable, 21
FOP, 1
formula correction, 37
forward checking, 27
function optimisation problem, 1

gene, 52
generation, 51, 52
generators, 31

complexity parameters, 31
modelE, 22
modelF , 22
modelF , 32
models, 22
parameter vector, 32

genetic algorithm, 53
genetic algorithms, 4, 51
genetic operators, 52, 56
genetic programming, 4, 51

hardness, 32, 36
heuristic, 45, 46, 75

embedded, 45
value, 75
variable, 75

hidden work, 59

individual, 4, 51, 52
instance, 31
instance selection, 37
iterated descent, 45
iterated Lin-Kernighan, 45
iterated local-search, 45
Iterated Local-Search Algorithm, 45

label, 9
large-step Markov chains, 45
linear congruential generators, 31
linear ranking selection, 54
local minimum, 47
local optimum, 49, 65
LS crossover operator, 115
LS mutation operator, 115
LS objective function, 115
LS repair operator, 115

arc-consistency, 116
delete, 116
extend, 116
extract, 116
improve, 116
initialisation, 115
repair, 116

mean best fitness, 59
mean champion error, 60
memetic overkill, 154, 165
meta-heuristic, 45
Monte Carlo method, 47
move operator, 45
Multi-Parent Heuristic Operator, 76
multiple-point heuristic operator, 121
mushy region, 33, 36
mutation, 50, 51

natural selection, 51
neighbourhood search, 46
neo-Darwinian paradigm, 50
non-deterministic, 31

generators, 31
non-deterministic generators, 31
NP-complete, 25

181

objective function, 4, 46, 51, 53
objective value, 53
offspring, 51
optimisation function, 1
optimisation problem, 17
ordered set of values, 53

parameter adjustment, 37
parents, 51
performance measures, 57
performance properties, 58
phase-transition, 33
population, 4, 51, 53

offspring, 51
parent, 51

premature convergence, 65
probability method, 21
pseudo-random number generator, 31
pseudo-random number sequence, 31

random numbers, 31
pseudo, 31
sequence, 31
truly, 31

random-seed, 31
ranking mechanism, 139
ranking multiplier, 55
ratio method, 21
recombination, 51
recurrence formula, 31
regions, 33
relevant, 11
representation, 9, 15, 51, 53
reproduction, 50
restart interval, 65
restart strategy, 49

naive, 49

sample sizing, 37
satisfied, 11
SAW objective function, 127
SAW weights, 128
scanning mechanism, 76
search space, 45
selection, 4, 50, 51
selection operator, 45, 53

selection pressure, 46
shrinking domains, 27
simulated annealing, 46
single-point heuristic operator, 121
solution, 12
statistical analysis, 139
steady state, 56
stone soup, 156
stop-condition, 52
success rate, 58

accuracy, 58
super-position, 109, 110
survival of the fittest, 51
survivor selection

replace worst
elitist, 56

survivor selection operator, 56
swap mutation operator, 128

test-set, 5, 21, 31, 35, 165
parameter setup, 35
parameters, 32
representative, 32

transcription, 110
transition line, 33
Turing Machine, 19

non-deterministic, 19

uniform domain size, 3
uniform method, 21
uniform random crossover, 56
uniform random mutation, 56
unique individuals checked, 59
update interval, 127

value, 52
variable, 52

conflict set of, 28
domain of, 9

variation operators, 4, 51, 52
violated, 11

182

