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Abstract
This paper presents a framework for integrated plan
recognition, goal reasoning, and planning, to pro-
duce cooperative behaviour for one agent to help
another agent. By observing an “initiator” agent
performing a task, the plan recogniser hypothe-
sises how a “supporter” agent could proactively help
the initiator by proposing a set of subgoals to be
achieved. A lightweight goal reasoning and nego-
tiation process mediates between the two agents to
produce a mutually agreeable set of goals for the
supporter. The goals are passed to a planner which
builds plans to satisfy the goals. The approach is
demonstrated in a series of experimental scenarios.

1 Introduction
The idea of building assistive agents that help humans in a
cooperative fashion has been a goal of artificial intelligence
and robotics since their earliest days. However, the task of
deciding when and how to help another agent can be difficult
and require extensive goal reasoning. In particular, this pro-
cess may involve recognising the goals and plans of an agent,
identifying if there are future subgoals of a plan that a helpful
agent could achieve, generating appropriate plans and actions
to achieve these future subgoals, and even negotiating with
another agent as to which subgoals should be achieved.

In the worst case, identifying an opportunity to help another
agent, and generating an appropriate response, may require
reasoning over the entire joint space of goals and actions for
all the agents. In many real-world situations, the cost of this
kind of unbounded goal reasoning makes such an approach
impractical. However, constrained forms of such reasoning
do exist and can form the basis for helpful behaviour.

For instance, consider the case of two agents setting a table
for dinner, where the first agent sets the plates and glasses,
and the second agent sets the knives, forks, and spoons. The
subgoals pursued by each agent are disjoint but together they
contribute to a shared overall goal. Each action is also per-
formed by a single agent, with no action requiring the coor-
dination of multiple agents (e.g., two agents lifting a table).
Finally, the order of subgoal achievement is independent of
the actions of the other agent (e.g., it makes no difference if
the knives are put on the table before the forks or vice versa).

In this paper, we consider scenarios of the above formwhere
one agent, called the supporter, must decide how to act to
help a second agent, called the initiator, achieve its goals.
While the supporter is considered to be an artificial agent,
no assumption is made about the initiator which may either
be a human or artificial agent. In this work, we consider
goals which can be decomposed as in the above example, and
tasks that can be performed as independent plans for each
agent. While such conditions may appear to be restrictive,
they nevertheless characterise a useful collection of problem
scenarios whose solution is far from trivial: the goals of the
initiator must be identified, and suitable subgoals must be
appropriately selected for the supporter to achieve.

To do so, we our approach combines plan recognition with
automated planning, together with a lightweight negotiation
process that performs a type of goal reasoning to ensure that
a set of supporter goals is acceptable to both agents. As such,
we will focus on the high-level (symbolic) reasoning involved
in this task, rather than the low-level processes (e.g., involving
continuous models or geometric reasoning) that are part of the
design of certain artificial agents like robots.

In this approach, the supporter will infer the high-level
plans of the initiator and identify possible subgoals that con-
tribute to the initiator’s plan. Pairs consisting of the initiator’s
hypothesised high-level goal, and a candidate subgoal, are
then be proposed to the initiator as possible helpful subgoals
that the supporter could accomplish. This involves a directed
search that first attempts to find the hypothesised goal of the
initiator, followed by a search of the remaining subgoals that
could be performed by the supporter. Once negotiation is
complete, the agreed upon goals are passed to an automated
planner which constructs an independent sequence of actions
for the supporter to execute to help the initiator. In particular,
no centralised planning or scheduling component is used to
enforce collaborative behaviour through joint plans.

For example, after observing the initiator place spoons on
the table, the supporter might infer that the initiator is setting
the table, and that the plates still need to be set. After con-
firming with the initiator that this task would help the initiator
achieve its goals, the supporter can build and execute a plan
for this subgoal. However, if the initiator denies either the hy-
pothesised goal (e.g., the initiator is instead placing spoons on
the table to polish them) or the proposed subgoal (e.g., only
bowls need to be set), then an alternative goal/subgoal pair



could be proposed to find another way to help the initiator.
The rest of this paper is organised as follows. First, we

review the relevant related work. Next, we highlight the main
components in our approach, notably the plan recogniser, ne-
gotiation process, and planner, and discuss the integration of
these systems. We then present the results of our approach
tested in three experimental domains. Finally, we discuss the
limitations of our approach and highlight future directions.

2 Related Work

The idea of constructing cooperative agents has been a long-
standing area of research [Nwana, 1996]. Moreover, the task
of building artificial agents (especially robots) that can proac-
tively achieve goals has been an active area of study [Schrempf
et al., 2005; Pandey et al., 2013], as has the idea of human-
robot collaboration, with has produced many different ap-
proaches [Bauer et al., 2008; Chandrasekaran and Conrad,
2015]. As a result, this work follows a long tradition of prior
approaches addressing various aspects of the problem.

The general idea of agents that help other agents (including
humans) has variously been viewed as a primary property
of a plan, or as implicit in multiagent actions. For example,
[Pollack, 1990; Lochbaum et al., 1990] explicitly reason about
coordination and helping in the form of shared plans and
mutual beliefs. However, establishing agreement of such plans
or beliefs has typically relied on shared knowledge which
has long been a stumbling block of such theories. Similarly,
action representations formultiagent joint actions (i.e., actions
that require two or more agents for their execution) [Brafman
and Domshlak, 2008; Boutilier and Brafman, 2001] could be
used to model situations where one agent helps another agent.
However, these representations do not address the case where
helping is not a consequence of such multiagent joint actions.

There has also been significant prior research on a variety of
approaches to multiagent planning (e.g., [Nau, 2007; Brenner,
2003; Brafman and Domshlak, 2008; Crosby et al., 2014]),
along with work on the decentralised solving of constraint
optimisation problems [Modi et al., 2003]. Approaches have
also considered the use of plan recognition [Talamadupula
et al., 2014] and intent recognition [Karpas et al., 2015] as
a means of coordinating human-robot teams. The idea of
ambient intelligence [Augusto, 2007] also has connections to
the problem of designing a system that proactively supports
humans in achieving their goals.

The role of natural language dialogue as an effective
means of coordinating actions between a robot and a hu-
man has also been studied [Fong et al., 2003]. The com-
bination of natural language and goal inference has been
explored for the task of selecting actions to contribute to
an ongoing task, or for correcting the action of a hu-
man already engaged in the task [Foster et al., 2008;
Giuliani et al., 2010]. Finally, hybrid architectures have been
used to integrate diverse components with different represen-
tational requirements, particularly when a robot must cooper-
ate with a human [Hawes et al., 2007; Kennedy et al., 2007;
Zender et al., 2007].
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Figure 1: Components and interactions in the framework.

3 A Framework for Cooperative Behaviour
We now present our approach to cooperative behaviour by
describing the main components in our work: the plan recog-
niser, the goal reasoning and negotiation process, and the au-
tomated planner. The relationship between these components
is shown in Figure 1 and discussed in more detail below.

3.1 Plan Recognition with ELEXIR
We begin by first distinguishing between work in activity
recognition (also called goal recognition [Liao et al., 2005;
Hoogs and Perera, 2008; Blaylock and Allen, 2003]) and plan
recognition in this context. Activity recognition is the creation
of a single unstructured label that represents the overarching
goal of the activity being observed. For example, such an al-
gorithm would recognise a sequence of pick and place actions
of forks, knives, spoons, and plates as an instance of setting
the table. A single label of this kind is insufficient for our
purposes. We need to know where in the plan the agent is and
if there are future subgoals that a supporter could execute to
provide assistance.

In contrast, plan recognition attempts to identify not only
the goal being pursued by the agent but also the subgoals of
the plan that have already been accomplished, and those that
are anticipated to be part of the plan in the future. Thus,
a plan recognition algorithm is able to produce the com-
plete unexecuted frontier of a hierarchical plan [Kautz, 1991;
Blaylock and Allen, 2003; Geib, 2009]. For example, given
observations of picking and placing forks followed by knives,
such a system could identify that the goal was to set the table,
the current subgoal was to set the knives, and that in the future,
the agent would be setting spoons and plates. These predicted
future subgoals are needed to effectively reason about possible
collaborative contexts.

In this work, we use ELEXIR [Geib, 2009; Geib and Gold-
man, 2011; Geib, 2016] to perform the kind of plan recogni-
tion described above. ELEXIR is a probabilistic plan recog-
nition system that views the problem as an instance of parsing
a probabilistic grammar. As such, ELEXIR takes as input a
formal probabilistic grammar that specifies the set of plans
to be recognised and a set of observed actions. ELEXIR
represents its plans using Combinatory Categorial Grammars
(CCGs) [Steedman, 2000]. While a full discussion of CCGs
in ELEXIR is not possible for space reasons, we include an
example to help aid our discussion.

Figure 2 shows a portion of a CCG action grammar that
captures a plan for SetTable and CleanForks. SetTable,
SetKnives, SetSpoons, SetPlates, SetGlasses, CleanForks,



set-forks :=SetTable/{SetKnives, SetSpoons, SetPlates, SetGlasses} |
(CleanForks/{PutAwayForks})/{WashForks}.

set-knives :=SetKnives. set-spoons := SetSpoons.
set-plates :=SetPlates. store-forks := PutAwayForks.

Figure 2: Portion of a CCG action grammar in ELEXIR.

PutAwayForks, and WashForks are all symbols that repre-
sent goals or subgoals within the plan library. As such, this
grammar already encodes some abstraction in the plans. For
example, as we will see, a set-forks action can be realised
by the planner as a sequence of four lower level actions. We
assume activity recognition is able to produce observations
of the defined high-level actions (e.g., set-forks, set-knives,
set-spoons,.... ) from observations of lower level actions. We
could have encoded the grammar at a finer granularity, but
this would have added significant unnecessary complexity to
the example. Further, because the actions are being executed
by the initiator, this would not have eliminated the need for
assuming activity recognition of the observed actions. Thus,
our example grammar is presented at this abstract level.

That said, the grammar doesn’t make commitments about
the level of subgoal abstraction. For example, WashForks is
likely a complex subplan in its own right. Finally, we note that
while ELEXIR does support actions with variable arguments,
all of our examples will use propositional actions, again to
simplify the discussion. We refer the interested reader to
[Geib, 2009] for more details about ELEXIR and its handling
of non-propositional actions.

The grammar in Figure 2 specifies that two possible plans
can account for an observation of the action set-forks: Set-
Table and CleanForks. SetTable requires that SetKnives, Set-
Spoons, SetPlates, and SetGlasses be achieved after the ob-
served occurrence of set-forks, but the subgoals are unordered
with respect to each other. CleanForks can explain the ob-
served set-forks, but only if WashForks is achieved after it,
followed by PutAwayForks.
Given a set of observed actions, and a formal grammar as

above, ELEXIR computes the complete set of hierarchical
plan structures that are consistent with the observations, and
that conform to the grammar, along with a probability for
each. These structures represent the hypothesised plans being
executed by the agent. We can then extract and output from
each such hypothesis an ordered set of subgoals that must still
be executed for the goal to be achieved, and associate it with
the probability of the hypothesis.

It is worth noting that ELEXIR supports the possibility that
a given agent can be pursuing multiple plans at the same time
as well as the possibility of partially ordered plans. Therefore,
for this discussion we will represent a hypothesis produced by
ELEXIR as a tuple of the form:

(P, [{Gi : {sg1, ..., sgn}∗}+]),

where P is the probability of the hypothesis,Gi represents the
goal of a plan being hypothesised, and sgj the remaining sets
of possibly partially ordered subgoals that must be achieved
for Gi to be completed. The sgj within one set of braces are

treated as unordered with respect to each other, but all the sgj
within one set must be achieved before those in the next set.

Thus, the three hypotheses from the table setting example
(after observing the setting of forks) might be captured as:
(.95, [{SetTable : {SetKnives, SetSpoons, SetPlates, SetGlasses}}]),
(.045, [{CleanForks : {WashForks}{PutAwayForks}}]),
(.005, [{CountingForks : {}}]).
The first tuple captures the hypothesis that with 95% prob-
ability the agent is following a plan to set the table, and still
has the subgoals to set the knives, spoons, and plates. These
subgoals are unordered with respect to each other within the
plan. The second tuple captures the hypothesis that with 4.5%
probability the agent is cleaning the forks and still needs to
wash them and put them away, in that order. The third tuple
captures the hypothesis that with only 0.5% probability the
agent is simply counting the forks and is done with its plan.
Thus, each hypothesis provides us with access to the proba-
bility of the plans being executed, the goals they are intended
to achieve, and the subgoals in the plan that have yet to be
achieved. This is precisely the information that we need in
order to identify opportunities where the supporter can help
the initiator. We discuss how this is done in the next section.

3.2 Goal Reasoning and Negotiation
In order to efficiently negotiate collaboration, a supportermust
first confirm that it understands the goals of the initiator’s high-
level plan. Without this confirmation, the supporter might
waste significant amounts of time suggesting subgoals that
it could achieve, but that may not contribute to the initia-
tor’s overall objectives. Using the hypothesis structures from
ELEXIR this can be done in a straightforward way.

In the case where a single plan is being pursued by the
initiator, sorting the hypotheses by their probabilities ranks
the goals of the plan being pursued. This makes it relatively
easy for the supporter to verify the initiator’s actual plan by a
simple query to the initiator.

Having thus identified the goal of the initiator’s plan, the
supporter can then attempt to identify a future subgoal within
those hypotheses that share the identified goal. In terms of the
above example, when considering the hypotheses for setting
forks, the first hypothesis is the most likely:
(.95, [{SetTable : {SetKnives, SetSpoons, SetPlates, SetGlasses}}]).
If the initiator confirms that SetTable is in fact the goal of
its plan, the supporter could then suggest that it take on the
subgoals of SetKnives, SetSpoons, SetPlates, and SetGlasses,
or some subset thereof. As we will see in Section 4, a maxi-
mally helpful agent could volunteer to do all of these subgoals.
Note, however, that the negotiation process could also result
in a number of other outcomes, whereby the supporter agrees
to some subset of the subgoals, or none of them at all.

In effect, the process of negotiating collaboration between
the initiator and the supporter is then a directed search: first
to identify the goal of the initiator’s plan, and then to find
appropriate subgoals from the set of known unaccomplished
subgoals of the plan the supporter has inferred for the goal.

3.3 Automated Planning with PKS
Once negotiation is complete and has produced a set of sub-
goals for helping the initiator, the supporter must generate a



action grasp(?h : hand, ?l : loc, ?o : obj)
preconds: K(graspable(?o, ?h)) &

K(objectAt(?o, ?l)) &
K(holding(?h) = nil)

effects: add(Kf, holding(?h) = ?o),
del(Kf, objectAt(?o, ?l))

action putdown(?h : hand, ?l : loc, ?o : obj)
preconds: K(holding(?h) = ?o)
effects: add(Kf, objectAt(?o, ?l)),

add(Kf, holding(?h) = nil)

Figure 3: PKS actions in the experimental domain.

concrete sequence of actions to execute in the world. To do
so, we use the existing PKS planning system.

PKS (Planning with Knowledge and Sensing) [Petrick and
Bacchus, 2002; 2004] is a contingent planner that builds plans
using incomplete information and sensing. PKS operates at
the knowledge level [Newell, 1982] by reasoning about how
the planner’s knowledge state changes due to action. PKS
is based on a generalisation of STRIPS [Fikes and Nilsson,
1971]. In PKS, the planner’s knowledge state (rather than
the world state) is represented by a set of databases, each
of which models a particular type of knowledge. Actions
can modify the databases, which has the effect of updating
the planner’s knowledge. To ensure efficient inference, PKS
restricts the type of knowledge (especially disjunctions) it can
represent. PKS also supports features like functions and run-
time variables that arise in real-world planning scenarios.

Like other planners, a PKS planning domain consists of an
initial state, a set of actions, and a set of goals. The initial state
is simply the planner’s initial knowledge (databases). Goals
specify the knowledge conditions that the planner is trying to
achieve, formed from the supporter’s agreed upon subgoals
through a syntactic compilation process which transforms the
subgoals into a form understandable by PKS. Actions in PKS
are modelled by their preconditions that query the planner’s
knowledge state, and effects that change the knowledge state
by updating particular databases. Plans are constructed by
a forward-chaining heuristic search, starting from the initial
knowledge state, and continuing until the goal conditions are
satisfied or the search fails.

For instance, Figure 3 shows two PKS actions taken from
our experimental domains (Section 4). A precondition K(φ)
queries PKS’s knowledge to determine if the planner knows
φ, while an effect that references Kf updates PKS’s database
of known world facts. Using these actions, a plan such as:

grasp(left,drawer,fork1),
putdown(left,table_pos1,fork1),
grasp(left,drawer,fork2),
putdown(left,table_pos2,fork2)

might be built in support of a goal to put forks on the table.

3.4 Integration and Operation
From a technical point of view, both ELEXIR and PKS are
implemented as C++ libraries. Both libraries expose a user
interface through ZeroC’s Internet Communication Engine
(ICE), a modern distributed computing platform [Henning,

2004]. This allows both ELEXIR and PKS to be used as
standalone servers by a client application implementing the
framework, in a traditional client-server architecture.

Figure 1 illustrates the flow of control between the plan
recognition, negotiation, and automated planning components
in the framework. At system initialisation time, both the plan
recogniser and planner are provided with domain-dependent
knowledge in the form of their respective domain descriptions.
This information is minimally aligned to ensure interoperation
between these components (see below).

The process then starts with the supporter observing ac-
tions performed by the initiator. These observations are fed
into ELEXIR, which produces a set of hypotheses about the
initiator’s high-level plan, as goal/subgoal pairs, in a hypoth-
esis structure. This structure is then handed over to the goal
reasoning and negotiation process which mediates between
the supporter and initiator. Negotiation proceeds by applying
directed search to the hypothesis structure to produce a set of
goals for the planner. In the final step, PKS uses these goals
to attempt to generate a plan to be executed by the supporter.

4 Experimentation and Validation
We now present three scenarios, based on the table setting
running example, as an experimental demonstration of the
proposed framework depicted in Figure 1. The underlying
domain setting for each scenario is the same: an initiator agent
has begun setting a table for a dinner for two people, where
each place setting should include a knife, fork, spoon, plate,
and glass. The aimof the supporter agent is to help the initiator
complete the goal of setting the table. Knowledge about the
operating environment and the requirements for setting tables
is supplied to both the plan recogniser and the planner using
appropriate domain descriptions, as detailed earlier.

The observations provided to ELEXIR remain the same for
each scenario: one by one the initiator picks up two forks and
two knives and puts them down in their appropriate positions
on the table. The scenarios differ in theway these observations
are interpreted, the way in which subgoals are identified and
negotiated, and the way in which these decisions affect the
resulting plans. The process ends when the planner builds a
plan for the supporter to perform, based on the goals identified
during the negotiation process.

For each scenario the correctness of the approach is val-
idated during experimentation. Validation focuses on two
points in the process: first, whether the plan recogniser in-
terprets the observation correctly and, second, whether the
planner produces the correct plans. Validation of this form is
possible because the example scenarios are designed in such
a way that we know, beforehand, what the negotiation process
should look like and, as a consequence, how the supporter is
supposed to help the initiator set the table.

The computational requirements for all three example sce-
narios areminimal. Both plan recognition and planning in this
domain context takes minimal time, while the computational
cost of the negotiation process, excluding the time required
by the negotiation exchange, is negligible. Total execution
time for these (admittedly small) scenarios, on contemporary
hardware, takes only seconds. For larger scenarios and more



Are you setting the table?

Yes.

Supporter Initiator

Do you want me to set the plates?

Do you want me to set the spoons?

Do you want me to set the glasses?

I will now help you set the table.

Yes.

Yes.

Yes.

Figure 4: Negotiation in Scenario 1.

ambiguous domains, the time required for plan recognition
and planning is expected to increase, although ELEXIR and
PKS, as well as the negotiation process, scale very well. Ex-
perience thus far indicates that both scenarios and domains
can substantially increase in size before computational costs,
and thus execution time, become an issue.

Scenario 1: In the first scenario, the plan recogniser correctly
identifies the initiator’s goal of setting the table, as well as the
subgoals the initiator would like the supporter to fulfil. The
hypothesis the negotiator examines first is given by:

(0.8, [{SetTable : {SetSpoons, SetPlates, SetGlasses}}]).

In this scenario, there is no need for a directed search of the
hypothesis structure supplied by ELEXIR. Using this hypoth-
esis, the negotiation then takes the form in Figure 4.

Once completed, the SetSpoons, SetPlates, and SetGlasses
subgoals are syntactically translated into PKS goals and the
planner attempts to generate a plan. For example, the partial
plan for the SetPlates subgoal may be:

grasp(left,sidetable,plate1),
grasp(right,sidetable,plate2),
putdown(left,table_pos1,plate1),
putdown(right,table_pos2,plate2).

(The plans for the other two subgoals will be similar.) Since
the hypothesis and the resulting plan(s) are both known be-
forehand, they can be used to verify that the experimental
results match the expected outcome in this scenario.

Scenario 2: The second scenario extends the first scenario,
and is designed to test the use of directed search to correctly
identify the initiator’s goal from the hypothesis structure sup-
plied by ELEXIR. In particular, the search focuses on high-
level goal identification during negotiation, with the initiator
rejecting the hypothesis initially presented by the supporter.

In the first iteration of the negotiation process, the supporter
presents the initiator with the following hypothesis:

(0.8, [{CleanForks : {WashForks}{PutAwayForks}}]).

This hypothesis incorrectly identifies the initiator’s goal to be
that of cleaning the forks. The initiator rejects this hypothesis,
with the supporter moving to the next most probable hypoth-
esis, thus iteratively negotiating with the initiator until the
correct goal is found. The number of negotiation iterations

Are you setting the table?

Yes.

Do you want me to set the plates?

Do you want me to set the spoons?

Do you want me to set the glasses?

I will now help you set the table.

Yes.

Yes.

Yes.

No.

Are you cleaning the forks?

Supporter Initiator

Figure 5: Negotiation in Scenario 2.

can be reduced by adding further reasoning logic about the
hypothesis. For simplicity, the next hypothesis correctly iden-
tifies the goal of the initiator, so further directed search and
negotiation iterations are unnecessary. The correct hypothesis
is then the same as the one in Scenario 1:

(0.8, [{SetTable : {SetSpoons, SetPlates, SetGlasses}}]).
Negotiation would then take the form as shown in Figure 5.

The remainder of the process then follows the one given in
the first scenario: the subgoals are translated for use by PKS;
the planner builds plans for setting the plates, spoons, and
glasses; and the supporter performs the plan.

This scenario demonstrates that by considering all hypothe-
ses, the framework can recover from an initially incorrect iden-
tification of the initiator’s goal through the use of a lightweight
negotiation strategy and directed search of the hypothesis
structure provided by ELEXIR.
Scenario 3: The final scenario is designed to test the situation
where the goal of the plan pursued by the initiator is correctly
identified, but one (or more) of the hypothesised subgoals is
not, and is thus rejected by the initiator. If this happens, the
supporter, using a directed search of the hypothesis structure,
will iteratively negotiate with the initiator until it finds an ac-
ceptable subgoal. It is also possible for the supporter to run
out of subgoals if none of the subgoals associated with the
hypothesis are acceptable to the initiator. In this case, the
supporter can then find another hypothesis from the hypothe-
sis structure with the same goal, and continue negotiation to
see if other subgoals are acceptable. This eventuality is not
examined in this scenario due to lack of space. Instead, this
scenario considers the same hypothesis as in the first scenario:

(0.8, [{SetTable : {SetSpoons, SetPlates, SetGlasses}}])
with negotiation taking the form shown in Figure 6.

The remainder of this process differs from the above sce-
narios in that the rejected subgoal is not translated and passed
to the planner. Instead, only a plan for setting the spoons and
glasses is built and performed by the supporter.

This scenario demonstrates that by using ELEXIR’s hy-
pothesis structure, the initiator is not limited to accepting all
subgoals in a hypothesis: the framework provides enough



Are you setting the table?

Yes.

Supporter Initiator

Do you want me to set the plates?

Do you want me to set the spoons?

Do you want me to set the glasses?

I will now help you set the table.

Yes.

Yes.

No.

Figure 6: Negotiation in Scenario 3.

flexibility for the initiator to decide how, and in which way, he
wants to be helped, without the need for elaborate reasoning
or goal decomposition on the part of the supporter.

5 Discussion
The three experimental scenarios demonstrate that our ap-
proach successfully generates cooperative plans: for each
scenario, ELEXIR interprets the observations correctly, sup-
plying the correct hypothesis structure to the negotiation pro-
cess; and the negotiator subsequently presents PKS with the
expected subgoals, with the planner producing the correct
plans. Thus, in each case the framework produces the ex-
pected behaviour, thereby validating the process.

However, in doing so, the framework also relied on certain
assumptions concerning the knowledge of the initiator and
supporter. For instance, the plan inferred by the supporter
is never shared with the initiator in this process, and this
approach does not generate plans with joint actions, where
multiple agentsmust coordinate to perform the same task (e.g.,
lifting a table). Instead, it only generates independent action
sequences for the supporter once there is mutual agreement
as to the supporter’s subgoals. It is also possible that different
agents might use different terms to refer to the same objects.
If there is sufficient disagreement on such terms, negotiation
will simply break down in the face of failed communication.
Likewise, a high degree of overlap between the knowledge of
the agents, and a tighter correspondence in the names used to
identify domain concepts, should give rise to situations where
cooperation is more easily negotiated.

In this work, we have also focused on the importance of
the supporter being proactive in suggesting certain goals it
could help the supporter with, based on an understanding of
the supporter’s plan as identified through plan recognition.
While an alternative strategy on the part of the supporter may
be to simply ask the initiator how it can help, this is not
the focus of our approach. For instance, if the initiator is a
human, and the supporter is an artificial agent, the humanmay
be forced to respond to a large number of requests (including
clarifications) as to what the initiator is doing. Conversely,
the approach in the paper could be adapted to scenarios where
an initiator may tell a supporter to achieve certain subgoals.
In this case, we could simply bypass the plan recognition and
negotiation stages, using the goal translation process to pass

goals directly to the planner. However, both scenarios require
knowledge of the terms used by the initiator, which could be
much more extensive than the restricted domain descriptions
we work with. This is not a problem we address here.

During plan execution, there is no direct reasoning of goal
changes on the part of the initiator, except as detected through
additional plan recognition. Similarly, the adoption by the
initiator of a subgoal assigned to the supporter may result in
the initiator performing tasks that have already been planned
by the supporter. In such a case, we rely on plan execution
monitoring and replanning techniques to generate appropriate
action sequences to avoid a duplication of tasks by the agents.

Another representational problem that must be overcome
involves the correspondence between the domain descriptions
used by the plan recogniser and the planner. In particular, it
is not unusual for a plan recogniser and a planner to have dif-
ferent actions representations for the same domain, resulting
from differences in the underlying representation languages
and problems being solved. However, since the plan recog-
niser and planner must co-exist within the same reasoning
framework, the onus is currently placed on the domain de-
signer to ensure that domains are appropriately engineered to
interoperate correctly. One area of future work is to find a
common representation that can be used for both tasks, or to
automatically induce one representation from the other.

Finally, in this first stage of our work we have placed greater
emphasis on the role of plan recognition, compared with that
of planning. In particular, any standard off-the-shelf PDDL
planner could be used with our current approach. However,
a key direction of future work is to extend our approach to
more complex real-world domains, such as those involving
incomplete information and uncertainty, where we can take
advantage of PKS’s ability to build plans with sensing ac-
tions (including communicative actions [Petrick and Foster,
2013]) to gather information from the world or other agents
at execution time. For instance, if in the example scenario the
supporter agreed to placewine glasses on the table, then it may
first need to query the initiator as to who is drinking wine (and
what type of wine) to ensure the table is properly set. One way
to do this is by building a contingent plan with information-
gathering actions completely at the planning stage. Thus,
plans could be significantly more complex compared to those
in the experimental scenarios.

Another potential use of the planner in the next phase of
the work is to address the problem of subgoal achievability
during the goal reasoning and negotiation stage. Currently,
the supporter proposes subgoals to the initiator without deter-
mining a priori whether those goals are actually achievable
by the supporter. Instead, we are exploring the feasibility
of trying to generate (partial) plans for particular subgoals at
negotiation, in an attempt to limit the supporter’s subgoal pro-
posals to achievable subgoals (or subgoals that at least appear
likely to be achievable). While it is not expected that this can
be done for all subgoals, due to the time that plan generation
could take in complex domains, we are nevertheless exploring
this approach as a possibility in smaller domains. One addi-
tional advantage of such a technique is that in cases where the
supporter knows a subgoal is achievable, the supporter could
also explain how the subgoal could be achieved, by presenting



or summarising the plan. Such an approach may also lead to
further opportunities for collaborative behaviour between the
supporter and initiator as part of such plans.

6 Conclusion
This paper presented a framework that combined plan recogni-
tion, goal reasoning and negotiation, and automated planning
to produce cooperative behaviour between a pair of agents.
Integration of the plan recognition and planning components
centred around appropriate subgoal identification by the plan
recogniser, combined with a lightweight reasoning and nego-
tiation process which generated goals to be used by the plan-
ner for constructing appropriate plans. A set of experiments
demonstrated the potential of our approach, and helped moti-
vate our ongoing and future work to extend these techniques
to more complex real-world situations.
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