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Abstract— Groundwater is like dark matter – we know very little 
apart from the fact that it is hugely important. Given the scarcity 
of data, mathematical modelling can come to the rescue but 
existing groundwater models are mainly restricted to simulate 
the transport and degradation of contaminants on the scale of 
whole contaminated field sites by averaging out the effect of 
spatial heterogeneity on the availability of the pollutant to the 
degrading organisms. These coarse-scale mean-field models 
therefore tend to rely on fitting to data rather than being 
predictive. Also, they are less suited to incorporate spatial 
variability and non-linear kinetics and feedbacks. We propose to 
solve the two mutually exacerbating problems of environmental 
patchiness and data scarcity by developing a flexible and robust 
distributed simulation framework that uses an ensemble of small 
scale simulations running on different processors/computers to 
scale-up, i.e. to feed the effect of small-scale patchiness into a 
concurrent site-scale simulation of the dynamics of groundwater 
pollutant degradation. Our scaling approach solves problem #1 
by simulating dynamics also on the small scale where some of the 
patchiness resides, and problem #2 by enabling rigorous 
validation of our small-scale model and scaling approach with 
laboratory data, which are high quality at low cost. 
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I.  INTRODUCTION  
Clean groundwater resources are essential from 

resource development, human health and ecological 
perspectives, yet groundwater pollution continues to 
be a problem worldwide. Biochemical processes in 
groundwater provide important groundwater pollu-
tion controls. Biochemical attenuation of pollutants 
in groundwater occurs naturally but can also be 
stimulated using remediation technologies.  

Current models describing these processes have 
been developed from laboratory experiments and 
observations at field scales typically without 
adequately incorporating the micro-scale behaviour 
of the microbial communities degrading the 
pollutants, but see [40] for a good exception. Thus, 

existing models have limited predictive capability 
and rely heavily on calibration against field data and 
acceptance of significant uncertainty.  

Existing groundwater models are mainly restric-
ted to simulate the transport and degradation of con-
taminants on the scale of contaminated sites by aver-
aging out the effect of spatial heterogeneity on the 
availability of the pollutant to the degrading organ-
isms. These coarse-scale mean-field models prevent 
meaningful incorporation of spatial variability 
across several scales coupled with non-linear 
kinetics and feedbacks between scales. 

This paper aims to explain our proposal for a 
radical redefinition of the way groundwater 
pollution models are developed/implemented in 
order to overcome these limitations.  

Recent developments in predictive microbial 
population modelling using agent-based simulation 
approaches, e.g. [39], provide the basis for 
incorporation of the relevant microscale behaviours 
in a new generation of models. Advances in 
computational capacity through parallel computing 
architectures allow the direct coupling of agent-
based models to predictive models of macroscale 
behaviour. This strategy avoids the problems 
inherent with the traditional large scale averaging of 
non-linear microscale behaviour and should provide 
far greater predictive capability. In addition, testing 
and verifying predictions of a model on the scale of 
a contaminated site would take decades and cost 
millions. In contrast, small scale models can be 
tested and verified with laboratory experiments that 
allow full control of conditions [32].  

This paper presents a novel approach for 
groundwater management that enables:  

* Corresponding Authors: j.kreft@bham.ac.uk, geortheo@ie.ibm.com 
 



 

• Multiscale modelling to incorporate hetero-
geneity on different temporal and spatial 
scales.  

• Incorporation of non-linear pollutant degrada-
tion dynamics and patchy pollutant and 
degrader distributions in reactive transport 
models of groundwater processes. 

 
The rest of the paper is organised as follows: Sec-

tion II provides an overview of the groundwater sys-
tem. Section III discusses the problem of managing 
groundwater pollution and presents the challenges 
and solutions proposed so far. Section IV presents 
our proposed framework while Section V concludes 
the paper discussing plans for future work.  

II. THE GROUNDWATER SYSTEM 
 

Groundwater is the basis of over 50 % of the 
world-wide drinking water production [13]. 
Groundwater constitutes the largest reservoir of 
freshwater in the world, accounting for over 97% of 
all freshwater available on earth (excluding glaciers 
and ice caps) [5]. Depending on the region, up to 
90% of the drinking water is produced from 
groundwater [5]. At the same time, groundwater is 
increasingly threatened by pollution. Almost all 
pollutants can actually be degraded by some 
microorganisms at least under some conditions, but 
this can be a very slow process, and bioremediation 
seeks to enhance the rate of degradation. 

Most groundwater systems are porous, i.e. water 
flows through the pores among sand, silt and gravel. 
Some of the groundwater also occurs in rock 
fissures and caves, but since hydrological processes 
are very complex in such systems, for the proposed 
framework we focus on porous media groundwater. 
Groundwater flow is dependent on permeability, 
affected by pore sizes and connectivities, and the 
hydraulic gradient.  

Groundwater is habitat to a plethora of 
organisms: bacteria, archaea, fungi, unicellular 
animals (protozoa) and multicellular animals such as 
worms and crustacea (metazoa) [9]. The ecosystem 
is characterized by three major constraints: (i) 
confined spaces, (ii) limited supplies of electron 
acceptors, e.g. oxygen, and (iii) limited supply of 
electron donors (mostly carbon/energy sources). 
These three limitations lead to low densities as well 

as low activities of groundwater organisms unless 
contaminations increase the supply of carbon/energy 
sources. It also means that the transport of electron 
acceptors and carbon/energy sources is crucial (see 
e.g. [8]).  

Knowledge about the groundwater animals and 
microbes is scarce – we hardly know who is where 
let alone what they do and how active they are [35]. 
The microbial community as known so far consists 
mainly of species well-known from other habitats, 
that are characterized by a flexible metabolism (e.g. 
long periods of dormancy). In contrast, the animal 
species are mainly endemic (only occur in 
groundwater of a particular region) and are highly 
adapted to this extreme environment by having a 
slow metabolism, longevity, low reproduction rate, 
as well as low mobility rates [35]. They are therefore 
outcompeted in areas with better resources by their 
more agile and vigorous relatives. 

Where groundwater is in a near-natural state and 
far from the surface, one may assume a (pseudo-) 
steady state without much development in time, but 
spatial gradients are important. The temporal 
dimension becomes critical at the interfaces, which 
are the most reactive zones: e.g. the interface 
between a contaminant plume and the adjacent 
pristine water, on which we focus here.  

III. MANAGING GROUNDWATER CONTAMINATION  
Remediation of groundwater contamination is of 

great importance because many groundwater 
contaminations persist even after decades and they 
still increase in numbers. In 1997, the EC-funded 
Concerted Action CARACAS identified 750,000 
contaminated sites across Europe. Groundwater 
contamination can also result in surface water 
pollution through seepage into surface water bodies 
and thus threaten drinking water production. The 
timeliness and urgency of at least sustaining the 
current status of (ground)water systems, if not 
improve them, is underlined in the recently enacted 
groundwater directive, GWD [11] complementing 
the European Water Framework Directive WFD 
[12]. 

Most contaminations will only be degraded over 
very long time spans. Therefore remediation seeks 
to speed up the rate of degradation. Techniques that 
have been applied with success to remediate 
contaminations include physical/chemical measures 

 



 

 

 
 

Figure 1: Degradation of a simple compound (acetate) in a tubular pore (2D radial symmetry). Acetate 
comes in with the flow from the left. Top panel: 200 cells in a single colony results in limited 
degradation. Bottom panel: 200 cells scattered along the tube surface achieve more extensive 
degradation. Steady state flow and concentration fields were solved with a combination of Matlab and 
COMSOL at 10 µm/s flow velocity. The length scale is in meters, the flow field is given by the arrows, 
the acetate concentration is in mM (coloured contours), and the colony and cells are outlined in black.  
as well as biological measures [7]. Among the 
physical/chemical methods, permeable reactive 
barriers have probably been used most often. They 
reduce the flux of contaminants with the 
groundwater flow through placement of a permeable 
and reactive material, where the reaction leads to 
less harmful substances. In situ thermal remediation 
technologies use heat to mobilize contaminants so 
they can be extracted from the ground. In situ 
chemical oxidation is based on injecting aggressive 
reagents into the contamination to trigger or enhance 
degradation reactions. The biological methods are 
centred around two approaches: (1) stimulating 
native microorganisms by adding nutrients, oxygen, 
or other electron acceptors (a process called 
biostimulation) or (2) providing supplementary pre-
grown microorganisms to the contaminated site to 
augment naturally occurring microorganisms (a 
process called bioaugmentation) [7]. 

Using predictive mathematical models to 
evaluate potential bioremediation strategies in order 
to identify optimal strategies should become the 
basis for future successful groundwater management 
and remediation strategies. 
A. Why Multi-Scale Simulation - The fallacy of 

averaging.  
There are many reasons why macroscale models 

can fail to predict contaminant degradation rates, 
after all, degradation depends on the degrading 

organisms coming into contact with the contaminant 
and an electron acceptor or donor depending on 
whether the contaminant is being oxidized or 
reduced. So the transport of these substrates to the 
biomass, and/or of the biomass to the substrates, is 
vital. Moreover, the biomass is mostly attached to 
surfaces in clusters of cells originating from growth 
and cell division of a single ‘founder’ cell, leading to 
a heterogeneous distribution of cells on the surfaces. 
Cells may become motile and leave the surface or 
become detached by shear. Some of these issues can 
be avoided by considering e.g. mass transfer 
limitations in ‘efficiency factors’ when upscaling 
microscale reaction rates to macroscale rates [22]. 
However, if microscale reaction rates are based on 
the classic one dimensional biofilm models which 
assume uniform biomass and substrate distribution 
along the biofilm, the upscaling would be based on 
unreliable microscale rates [22]. 

Generally, when the response to environmental 
conditions is not linear, and these conditions vary in 
time and space, the average of the response to these 
varying conditions will differ from the response to 
the average condition [21] [16]. For example, locally 
high biomass density leads to high rates of substrate 
consumption resulting in low substrate 
concentrations locally (Figure 1). This is in contrast 
to assuming that biomass and substrate are 
homogenously distributed, which would 



 

overestimate reaction rates which are typically 
proportional to both biomass and substrate 
concentrations at low substrate concentrations. 
Further, typically 1,000 times more groundwater 
microbes are attached to surfaces rather than 
suspended or swimming in the water phase 
(planktonic) [19], and the growth of attached cells 
leads to the formation of clusters of offspring rather 
than a more dispersed uniform random distribution 
of cells. The outcome are hot spots of activity on a 
largely deserted surface resulting in less spatial 
overlap of contaminant and degrader than predicted 
by mean field models. Moreover, cells might 
aggregate at hot spots of contaminant concentration 
due to chemotaxis, a mechanism by which microbes 
detect and follow concentration gradients, increasing 
the heterogeneity of biomass distribution. The 
microbes are grazed on (eaten) by larger organisms, 
e.g. protozoa. There is a large body of work on 
"grazing increases productivity" in protozoan 
ecology that suggests that grazing could enhance 
degradation rates and should therefore be considered 
in predictive models and we propose to do so. In 
fact, laboratory scale experiments have shown that 
grazing can influence contaminant degradation [4]. 

To address these issues, this paper's central 
hypothesis is that allowing for patchiness on the 
microscale is crucial for robust prediction of 
contaminant degradation rates under various 
management scenarios. This pore-scale 
heterogeneity can be captured through the utilisation 
of agent-based modelling. 

IV. THE PROPOSED FRAMEWORK  
 

As described in the previous section, there are 
many different length and time scales in a ground-
water ecosystem. Upon introducing a new 
contamination, the abundance of microbes responds 
to this change within a few months. Since we are 
interested in the degradation of contaminants, which 
takes many years, we can neglect the non-steady 
state transient phase of the response.  

Regarding length scales, we have to consider the 
patchiness on the microscale, e.g. the distribution 
and transport of contaminants, substrates, and organ-

isms in the pores of the aquifer, and also larger scale 
heterogeneity, e.g. different geological strata with 
different pore sizes, different flow rates, and 
carbon/energy source and electron acceptor 
concentrations. 

We propose to solve the two mutually 
exacerbating problems of (a) environmental 
patchiness and (b) data scarcity by means of a 
flexible and robust distributed simulation framework 
that uses an ensemble of microscale distributed 
simulations to “scale-up”, i.e. to feed the effect of 
small-scale patchiness into a site-scale simulation of 
the dynamics of groundwater pollutant degradation.  

Our up-scaling approach solves problem (a) by 
simulating dynamics also on the small scale where 
some of the patchiness resides, and problem (b) by 
enabling validation of the model with experiments. 
Such experiments have to be done in the laboratory 
to be well-controlled and feasible, hence they will be 
short (months rather than decades) and on the small 
scale (cm rather than km). Yet they will enable us to 
validate our small scale model rigorously, which is a 
big step forward towards predictive models 
compared with the fitting of large-scale models to 
field data. We propose experiments to validate both 
the small-scale model and the scaling approach in 
the laboratory (combining two types of mini-aquifer 
with different porosity etc.), thereby making sure 
that our large scale simulations are as reliable as 
possible – and far more reliable than in the past.  

Our proposed solution is illustrated in Figure 2. 
The framework integrates macroscale (mean field 
PDE model for contaminated site, scale 100 m up to 
several km) reactive transport simulation of an 
aquifer (groundwater body) with an ensemble of 
small scale agent-based models. It also involves the 
dynamic partitioning of the site-scale domain into 
subregions. The novelty here is that instead of 
evaluating differential equations to obtain the 
derivatives to step the PDE solver forward, we 
propose to launch small scale agent-based simula-
tions (corresponding to subregions), initialized to 
correspond to the current local state of the PDE 
model, that will return the ‘derivatives’ to the PDE 
solver.  

 



 

 

This upscaling approach follows the ideas 
developed by Ioannis Kevrekidis [20]. The ensemble 
of microscale simulations (one per subregion, see 
below) supplies the derivatives (reaction rates, 
velocities, etc.) to the macroscale model which 
essentially - like any numerical solver of PDEs - 
calculates the next time point based on these 
derivatives. A key feature of this automatic 
upscaling is that it does not impose any assumptions 
on ‘efficiency factors’ or constraints in the upscaling 
as the microscale simulations simply directly supply 

derivatives to the macroscale PDE solver. A 
database of microscale simulation inputs and outputs 
is meant to prevent unnecessary duplication and can 
also be used for interpolation, thus improving 
efficiency.  

 

Figure 2: The Proposed Approach 
 

It should be noted that scaling goes both ways, 
not just upscaling from small to large scale, but also 
down from large to small scale as feedbacks go both 
ways. As the reactive transport macroscale model 
simulates the flow and degradation of a contaminant 
plume through various types of porous media, the 



 

contaminant and electron acceptor and degrader 
distributions can converge/diverge and/or move into 
different porous medium conditions, which is 
feeding back into the small scale dynamics. 

In the next sections we provide more details of 
the basic components of the framework.  

A. Partitioning 
The larger scale heterogeneity necessitates a 

partitioning of the contaminated site domain into 
subregions with similar geology, flow regime, 
carbon/energy and electron donor concentrations. In 
the model, this involves partitioning the large-scale 
domain (Figure 2) with the contaminant plume (area 
of polluted groundwater, which is found down-
stream from a point source of pollution) into self-
similar zones. Each such subregion, being 
sufficiently uniform in conditions, can then be 
treated by upscaling from a single representative 
microscale simulation. In this way, simulations on 
two spatial scales can capture a lot of the relevant 
heterogeneity while achieving efficiency by 
simulating only one microscale model for each 
subregion.  

There are about 5 “dimensions” to consider in 
partitioning the domain into zones according to self-
similarity in the following conditions: available 
electron acceptor (5 different types), electron 
acceptor concentration (5 levels), carbon/energy 
source concentration (5 levels), grain size (5 levels), 
groundwater flow rate (5 levels). Performing the 
partitioning presents an interesting research 
question. Efficient algorithms for unsupervised 
partitioning of the site-scale domain into subregions 
are required.  

B. Large Scale Model 
The macroscale model predicts flow and concen-

tration fields which upon changes trigger 
repartitioning of the domain though spawning of 
new small scale simulations only if new subregions 
have arisen (see next section). The model is based 
on a standard PDE solver, which encompasses 
groundwater flow field, solute diffusion and 
reaction, and porosity as given by grain sizes and 
biomass accumulation. The PDE model is not 
computationally demanding and therefore it is 
anticipated that a sequential simulator should be 
enough, although standard parallel options do exist.  

C. Small Scale Model 
The dynamics of all subregions identified by the 

partitioning component described above will be 
simulated by an ensemble of microscale agent-based 
simulations – one per subregion. A zoo of agents 
will model the various microorganisms inhabiting a 
network of pore spaces on a cm scale. In contrast, 
the world these agents inhabit will be treated as a 
continuum and modelled by a system of PDEs. They 
will be used to model the transport of groundwater 
and solutes, which will affect the agents and will in 
turn be affected by the agents. There are two options 
to simulate the micro-world these microbial agents 
inhabit and change.  

One could model the geometry of the porous 
medium as it is, by representing in the simulation the 
various complex shapes of grains of various types 
and sizes read in from a computer tomography 
reconstruction of a core [29] taken from an aquifer. 
This would obviously lead to a very complex mesh 
for solving the convection-diffusion-reaction 
equation, which has of course to be solved also in 
the microscale model. The complexity of the mesh 
would limit the spatial scale that could be simulated 
quite severely, probably to < 1 mm, thereby 
defeating the objective of representing the 
heterogeneity of pore spaces and connectivities [29] 
in the microscale model. After all, the microscale 
model must be able to simulate a domain 
sufficiently large to be statistically representative, 
i.e. a cm scale.  

Therefore we favour the second option; using a 
network of tubes of various lengths and diameters, 
as illustrated in Figure 2, that captures the pore size 
distribution without mirroring the actual geometry. 
As the tubes’ inlets and outlets can be connected to a 
variable number of other tubes (by itself not a trivial 
problem), we can also capture the distribution of 
connectivities of the real system. This coarser 
approach has been successfully used e.g. by 
Thullner and Baveye [24]. 

The agents, when not attached to a surface, are 
transported with the groundwater flow, or if 
attached, can be detached by shear forces arising 
from the flow. The foodstuffs for the agents, i.e. 
contaminants, other carbon/energy sources, and 
electron acceptors, are also advected with the flow 
and diffuse through any boundary layers into the 
microcolonies or biofilms attached to the surfaces. 

 



 

Growth of the agents will increase the rates of solute 
consumption and may lead to changes in water flow 
and even clogging. These incomplete examples 
already illustrate the tight coupling between agents 
and the physical world, which makes it necessary to 
simulate transport processes both in the microscale 
and macroscale models. 

For our microscale model, the medium in each 
tube of the network can be modelled as a continuum, 
rather than simulating all molecules of the liquid as 
individual agents, because molecules are many 
orders of magnitude smaller and more numerous 
than the microbial agents. We anticipate to use the 
open source software GeoSys/RockFlow [15] or an 
off-the-shelf PDE solver (such as COMSOL) to 
solve the convection-diffusion-reaction equations in 
tubular geometries.  

Coming back to the agents, we propose to model 
each individual microorganism as an agent, 
represented as an object in the software, as in 
previous models from which we can learn [37][38]. 
The agents can attach to surfaces and then become 
immobilized or detach from the surface and then 
become suspended in the liquid where they are 
transported passively but they may be motile (self-
propelled) in addition. A single cell attached to a 
surface will produce offspring that remains attached 
to the surface next to the mother cell, in this way 
forming a cluster of cells called a microcolony. All 
individuals of one species form a population, and 
populations of several species form a community.  

For the degradation of ‘background’ substrates 
and the contaminant, we need to include in the 
model the various metabolic types of species 
relevant for the degradation of the contaminant of 
interest. These physiological or functional types are 
called guilds in ecology and we expect that about 5 
different contaminant degrading guilds using 
different electron acceptors and two predatory guilds 
(one hunting swimming bacteria and the other one 
grazing the surface attached bacteria) will usually 
suffice.  

The question is which of the plethora of microbes 
within each guild should be chosen for the model? 
One aspect of this question is which microbes are 
actually present in a given aquifer of interest? The 
other aspect is which of those present would become 
dominant upon introduction of a contaminant?  

For the former aspect, we assume that all types of 
microbes are present at least somewhere within the 
aquifer, or migrate into the aquifer frequently 
enough so we can consider them ‘present’ during the 
timescale of interest. This idea was first expressed 
by Bass-Becking in 1934 as “Everything is 
everywhere – but the environment selects” [14]. The 
reason for this hypothesis is the fact that microbes 
are very small and numerous and have short 
generation times, thus they disperse at a very high 
rate and therefore get everywhere [17]. Whether this 
‘dogma’ is actually true has been hotly debated [23], 
but the consensus now seems that in most 
environments, dispersal rates are so high that indeed 
everything gets everywhere [25][18]. However, 
some exceptions have been reported, most notably 
for hot spring organisms [26], probably because 
there are only a few hot springs on Earth, and 
thousands of kilometres separate these small islands 
of habitat, so dispersal rates are actually not 
sufficient to support a sufficiently frequent exchange 
between communities which would prevent the 
evolution of endemic species. Such endemism is 
typical for groundwater animals. It is not entirely 
clear whether dispersal rates from surface waters to 
a groundwater body would be high enough to bring 
everything everywhere, but it seems a reasonable 
assumption for all aquifers that are in contact with 
surface waters over larger areas. Some evidence 
indeed supports sufficient dispersal rates, e.g. [31], 
but finding only one bacterium, Candidatus 
Desulforudis audaxviator, in the extreme conditions 
of fracture water 2.8 km deep down a South African 
gold mine [33], raises doubts. However, 16S gene 
sequences similar to “D. audaxviator” have just been 
found in Finland [36]. Also the gold mines in SA 
have meanwhile yielded further bacteria [34]. If 
everything gets everywhere, organisms able to 
degrade a newly introduced contamination should 
already be present in the above sense of getting there 
often enough. Several groundwater studies have 
indeed found that bioaugmentation, i.e. introducing 
pre-grown organisms, did not enhance degradation 
rates [42][41], presumably because organisms 
capable of degrading the contaminant where already 
there anyway or because degradation was not 
limited by the absence of degraders.  

The question which of the microbes present 
would become the dominant degrader that should be 
included in the model is difficult to answer a priori, 

 



 

but our idea of simulating a zoo of microbes should 
solve this problem. Seeding the model simulation 
with a zoo, that is, a range of different species for 
each guild (metabolic type), means that the most 
competitive species under given conditions will 
grow fastest in the simulations and outcompete the 
other seeded microbes which will no longer be 
present in the ‘steady state’, so the answer to the 
question of who dominates emerges from the 
simulation, which we intend to run into steady state.  

The organisms able to degrade the contaminant 
will respond to a contamination by growing and 
multiplying so that soon the pollutant degraders are 
abundant, led by the degraders which utilize the 
energetically best electron acceptor because the 
energetically favourable electron acceptor supports 
the fastest growth. Ten generations might be enough 
for a substantial degrader community (1024 cells) to 
develop from a single, possibly dormant cell. 
Generation times in groundwater are not very well 
known, but are thought to range from 10 days to 
several years [30]. It is therefore to be expected that 
a microbial degrader community will establish 
within a few months, led by the more competitive, 
faster growing species. For the protozoa preying on 
the degraders, one might expect a longer transient 
towards the climax community. However, changes 
in electron acceptor use that will drive changes in 
consumer community composition do not have to 
lead to substantial changes in predator community 
composition and predator numbers. Steady state 
should be reached after a few months of simulated 
time for the microbes [30] and probably longer for 
the protozoa (e.g. [10]). All the available evidence 
shows that the community composition found in a 
given place can be predicted from the availability of 
carbon sources and electron acceptors and that the 
change upon depletion of the best electron acceptor, 
oxygen, is in the sequence expected from 
thermodynamic grounds (in order of decreasing 
redox potential), further supporting the hypothesis of 
Baas-Becking [14].  

Since the populations respond to contaminations 
within months, while it takes many years to degrade 
the contamination, the agent-based simulators 
should be executed until a quasi steady state of the 
microscale system is obtained at certain rates of 
nutrient input given by the macroscale model. This 
is computationally very intense and therefore calls 

for distributed simulation approaches for the hybrid 
of an agent-based and a continuum model [28]. At 
the macroscale, simulation of transients is required 
as at this scale the time course is of interest and a 
quasi steady state would not usually be reached 
within decades. 

V. CONCLUSIONS 
Groundwater is vital as our societies increasingly 

rely on it as a source of drinking water. At the same 
time the rate of new groundwater contaminations 
outpaces the rate of remediation. There is therefore a 
strong need for efficient and effective approaches to 
manage groundwater and make accurate and fast 
predictions about pollution-related problems.  

Experimentally, sampling of groundwater is 
particularly challenging and the typically slow 
changes require monitoring for quite long periods; 
as a result data are and will remain very scarce. 
Scarcity of data and costs of obtaining more make 
groundwater management one of the particularly 
challenging frontiers that still remain on Earth. 
Simulation has therefore a crucial role to play in this 
realm. At the same time, laboratory experiments and 
our own preliminary simulation results suggest that 
the patchiness of pollutant distribution and 
localization of pollutant degrading microbes 
crucially impact on the potential for biodegradation 
(pollutant must meet degrader).  

Recent technological advances and research in 
agent-based systems, multi-scale modelling, 
distributed simulation and parallel computing 
provide a unique opportunity to develop 
groundwater management systems that can predict 
optimal groundwater remediation strategies. In this 
paper we take an important step in this direction. We 
proposed an integrated framework based on a 
laboratory-validated multiscale model that consists 
of a reactive transport model for the macroscale, a 
domain partitioning component, and a microscale 
model that is a hybrid of an agent-based and a 
continuum model.  

The application scenario we present here is the 
very first to approach the issue of splitting a large 
scale simulation in order to support multi-scale 
modelling. It is a novel way of describing 
phenomena in groundwater that vary in time and 
space and over multiple scales. It is our vision that 
our approach will prove a viable alternative to 

 



 

existing and established models, and - despite 
limitations that come with a high demand for 
parameters that are largely not known yet - might 
even go beyond existing models. In our approach 
micro-organisms are used as agents in the model 
which act and react on each other and their 
continuously simulated environment within defined 
reaches of influence. Thus, each simulation step 
consists of the agents' actions followed by solving 
the environmental field with finite elements. In each 
instance of the Agent-based model up to 1M agents 
will be modelled. The computational complexity of 
these models requires a parallel approach to 
simulation to span wider ranges of the ecosystem at 
the same time. This approach presents the 
distributed simulation community with some very 
challenging problems related to the integration of 
continuous and discrete event models at different 
temporal and spatial scales and the distribution of 
agent-based models [27][28]. In the future, we plan 
to implement the proposed framework, addressing 
these challenges, and evaluate the framework in 
realistic scenarios.  
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