
Randy Marques Consultancy
Embedded Software Development

www.randymarques.com

randy@randymarques.com

Randy Marques Consultancy
Embedded Software Development

www.randymarques.com

randy@randymarques.com

GBS Developer

Generic Build Support

for Developers

6.00

Copyright © Randy Marques Consultancy

• Randy Marques - CASE Consultant
‒ CEO / Owner Randy Marques Consultancy

‒ Nederlands Normalisatie Instituut (NEN)
• Nederlandse Programmeertalen Commissie (NC 381 22)

– WG14 (International ANSI-C Committee)

‒ Teach at various Universities and Colleges

• “Consultancy by Walking Around”
‒ Software Engineering since 1971

‒ Coding Standards since 1978

‒ Build Automation since 1980

‒ C Programming since 1983

‒ Static Analysis since 1993

‒ Les Hatton’s Safer CTM trainer since 2001

Introduction - Who am I

Generic Build Support - Developers 2

Copyright © Randy Marques Consultancy

• Introduction

• Build Automation Basics

• The Directory Structure

• Diversity

• Scoping & Building

• Beginning with GBS

• The GBS commands

• The GBS environment

• GBS Internals

• Final Remarks & Questions

 Generic Build Support - Developers 3

Program

Copyright © Randy Marques Consultancy

• GBS is a concept
‒ Understand the concept and GBS will help you

‒ Refuse to understand GBS: it will work against you

‒ Main purpose is to support the project
• Individual needs are second to the project needs

• Basics:
‒ Simplicity

‒ Straightforward

‒ Consistency

‒ No Tricks

‒ No Exceptions

‒ No 'clever' solutions

‒ No ‘private’ scripts

Generic Build Support - Developers 4

Concept

Copyright © Randy Marques Consultancy

Features

• Fully portable and relocatable directory
structure

• Multiple platform support
(Win10/WSL/Linux)

• Same physical directory structure used for all
platforms (on shared network-drives)

• Generated, full compliant 'make' files
‒ 100% reliable builds
‒ Cross reference

• Allows subdivision into SubSystems and
Components

• Any number of SubSystems and/or
Components

• Any number of libraries and/or executables
per Component

• Strict applicable scoping rules
• Support for generation of 3rd party software
• Integrated support for any compiler
• Integrated support for Auditing tools like

QAC, QAC++, PCLint and ++Test
• Integrated support for Documentation tools

like Doxygen
• No user-written scripts

• Support for multi-site environments
• Command-line oriented

‒ GUI available

• Support for GUI integration (e.g. Visual
Studio, SlickEdit, Eclipse)

• Automated directory creation and structure
setup

• Independent from Configuration
Management System (CMS)
‒ CMSs supported (for automated structure

creation): Git and SubVersioN

• Parallel generation (also in ‘grid’)
• Background generation ('at' jobs) with

extensive logfile
• Prepared for tools like 'Softfab', ‘BuildForge’,

'Hudson' and 'CruiseControl'
• Uniform way of working
• Simple in use. Easy to learn. Powerful due to

simplicity and consistency
• Suitable for small, medium and large systems
• Only dependent on Perl (Version 5.10 or

later)

Generic Build Support - Developers 5

Copyright © Randy Marques Consultancy

• Introduction

• Build Automation Basics

• The Directory Structure

• Diversity

• Scoping & Building

• Beginning with GBS

• The GBS commands

• The GBS environment

• GBS Internals

• Final Remarks & Questions

 Generic Build Support - Developers 6

Program

Copyright © Randy Marques Consultancy

• Building of Software:

‒ Sequence of build-steps

‒ Some steps use results of previous steps
• Pre-compile, Compile, Archive (lib), Link, Locate

Generic Build Support - Developers 7

Build Automation Basics

Copyright © Randy Marques Consultancy

Build Automation Basics

Generic Build Support - Developers 8

• Anatomy of a Build Step

original files

generated files

control

name.zzz

Build Step
name.xxx name.yyy

Copyright © Randy Marques Consultancy

• name.xxx: Main input

‒ Source

• Generate concurrent for more than 1 platform:
generated files must be placed in different
directories for various platforms

• Most Archivers and/or Linkers do not have a
´main-input´ file. So we need to do something special
here.

Generic Build Support - Developers 9

Build Automation Basics

Copyright © Randy Marques Consultancy

Build Automation Basics

• Generating an
executable (linking)
‒ Traditionally done in ‘make’

file

‒ Link-file

• Works the same way as
'compile file'

• name.glk => name.exe

• Contains:
– <component>:<objectfile-name>

• Also:

– .include …

• Name.glk => Name.exe

• Contents:

 A:a.o

A:a1.o

B:b.o

B:b1.o

C:c.lib

Generic Build Support - Developers 10

Copyright © Randy Marques Consultancy

Build Automation Basics

• Generating a library
(archiving)
‒ Also traditionally done in

‘make’ file

‒ Library-file

• Works the same way as
'compile file'

• name.glb => name.lib

• Contains:
– <component>:<objectfile-name>

• Also:

– .include …

• Name.glb => Name.lib

• Contents:

‒ A:a.o

‒ A:a1.o

‒ B:b.o

‒ B:b1.o

Generic Build Support - Developers 11

Copyright © Randy Marques Consultancy

• Introduction

• Build Automation Basics

• The Directory Structure

• Diversity

• Scoping & Building

• Beginning with GBS

• The GBS commands

• The GBS environment

• GBS Internals

• Final Remarks & Questions

 Generic Build Support - Developers 12

Program

Copyright © Randy Marques Consultancy

• Purpose: to support the Build Process

• Fully relocatable
‒ No Absolute Directory Paths

• Environment Variables
‒ Set inside (part-of) the directory structure

• Levels:
‒ System

‒ SubSystem

‒ Component

‒ Sub_directory

• Directory Scoping is used to support the Build
Process, not the software architecture

Generic Build Support - Developers 13

Directory Structure

Copyright © Randy Marques Consultancy

• SubSystem
An independent generation-unit within GBS

‒ A directory-structure with files that, during generation,
produce software that can be delivered (released) to other
SubSystems and/or end-customers.

‒ Not per se an architectural SubSystem

‒ Contains one or more Components

‒ The number of SubSystems should be limited
• Most Systems will have only one SubSystem!

Generic Build Support - Developers 14

Directory Structure

Copyright © Randy Marques Consultancy

• Component
A files-container within a GBS SubSystem

‒ Lowest level directory-tree in GBS
Here the source and object files reside.

‒ Not per se an architectural component

‒ May very well contain more than one architectural
component and/or parts of architectural components.

‒ Files in Components cannot refer to files located inside
Components of other SubSystems

Generic Build Support - Developers 15

Directory Structure

Copyright © Randy Marques Consultancy

• Deliverable
‒ Set of files produced by a SubSystem for use

• in another SubSystem and/or

• as final product(s).

‒ One or more libraries with one or more header-files.

‒ A whole directory structure with executables, start-up
scripts, icons, data, etc.

• Build
‒ Sequence of generation steps for a specific build, with a

specific compiler using the same set of compile-options,
possibly followed by archiving, linking, etc., resulting in a
deliverable.

Generic Build Support - Developers 16

Directory Structure

Copyright © Randy Marques Consultancy

• System:
‒ EXT (externals) Directory

• 3rd party SW Directories

‒ DEV (Development) Directory
• SubSystem Directories

‒ RES (Results) Directory
• SubSystems Transfer Directories

‒ SYS
‒ SYSBUILD

• Generation scripts per Build

‒ SYSAUDIT
‒ SYSTOOL
‒ SYS
‒ SILO
‒ TMP

Generic Build Support - Developers 17

Directory Structure

Copyright © Randy Marques Consultancy

• SubSystem Directory: All
‒ BUILD-directory

‒ AUDIT-directory

‒ TOOL-directory

‒ EXPORT-directory (optional)

‒ IMPORT-directory (optional)

• SubSystem Directory: Full GBS
‒ COMP-Directory

• Component Directories

• SubSystem Directory: Non GBS
‒ For ‘make’, Visual Studio and Other types of SubSystems

‒ APP-directory

‒ generation scripts

Generic Build Support - Developers 18

Directory Structure

Copyright © Randy Marques Consultancy

Directory Structure: Full GBS

SubSystems

Components

COMP

Sub-Directories

System

Sub_2

comp

A B C D E

src inc bld dat

dev ext res

System

Sub_1 Sub_3

Generic Build Support - Developers 19

Copyright © Randy Marques Consultancy

Directory Structure: Non Full GBS

Generic Build Support - Developers 20

SubSystems

Any Structure

APP

System

dev ext res

Sub_1 Sub_3

System

Sub_2

app

generate

data

Copyright © Randy Marques Consultancy

• Component Sub-directories
‒ SRC

• Sources

‒ INC
• Global (exported) Header-files

‒ LOC
• Local Header-files

‒ BLD
• Contains <build>-Directories

– Results of building (compilations, archiving, linking)

‒ DAT

‒ SAV

‒ OPT

Generic Build Support - Developers 21

Directory Structure

Copyright © Randy Marques Consultancy

• Introduction

• Build Automation Basics

• The Directory Structure

• Diversity

• Scoping & Building

• Beginning with GBS

• The GBS commands

• The GBS environment

• GBS Internals

• Final Remarks & Questions

 Generic Build Support - Developers 22

Program

Copyright © Randy Marques Consultancy

• Creating programs with varying functionality:

‒ Platform Diversity

‒ Hardware Diversity

‒ Functionality Diversity

• Types:

‒ Archive Diversity (SCMS diversity)

‒ Compile time Diversity

‒ Link time Diversity

‒ Run time Diversity

Generic Build Support - Developers 23

Diversity

Copyright © Randy Marques Consultancy

• Compile-time Diversity

MAKE-FILE:

 -D RECORDER

FILE.C:

 #ifdef RECORDER

 …
 …
#else

 …
 …
#endif

Generic Build Support - Developers 24

Diversity

Copyright © Randy Marques Consultancy

Diversity

• CFG1.C:
 bool recorder(void)

 { return TRUE; }

• CFG2.C:
 bool recorder(void)

 { return FALSE; }

• FILE.C:

 if (recorder())

 {

 ...

 do_recorder();

} else

{

 ...

 ...

}

Generic Build Support - Developers 25

Copyright © Randy Marques Consultancy

• Link-time and Run-time diversity combined

‒ Link FILE.O either with CFG1.O or CFG2.O

‒ Need not be static
• Read a file (.ini)

• Read Hardware Memory (jumpers)

• Ask user

Generic Build Support - Developers 26

Diversity

Copyright © Randy Marques Consultancy

• Introduction

• Build Automation Basics

• The Directory Structure

• Diversity

• Scoping & Building

• Beginning with GBS

• The GBS commands

• The GBS environment

• GBS Internals

• Final Remarks & Questions

 Generic Build Support - Developers 27

Program

Copyright © Randy Marques Consultancy

• Focusing on Essentials & Structuring
‒ Organising things

‒ Keeping the same things together

‒ Postponing decisions / Stepwise refinement

• Daily examples
‒ Library

‒ Warehouse

‒ Dictionary

‒ Nails, Screws and Bolts

‒ Our Eyes

• Military
‒ Defense against frontal assault

‒ Target distribution

Generic Build Support - Developers 28

Scope Control I

Copyright © Randy Marques Consultancy

• Electronic Hardware
‒ Chip on Board (Yellow wire?)
‒ Board on Backplane (Yellow wire?)
‒ Backplane in Cabinet (Yellow wire?)
‒ Group of Cabinets (Yellow wire?)

• Software
‒ Block - Inside a block
‒ Block - Inside a function
‒ Function – Inside a function / block
‒ Function – Inside a file
‒ File – In a Component
‒ Component – In a SubSystem
‒ SubSystem – In a System

• GBS supports strict scope control

Generic Build Support - Developers 29

Scope Control II

Copyright © Randy Marques Consultancy

• Scope-files contain component-names, no directory
specs.

• SCOPE.GBS in Component Directory

‒ Specifies the ‘VIEW’

• ‘Uses’ and ‘Is Used’

Generic Build Support - Developers 30

Scoping

Sub_1

comp

A B C D E

src inc bld . . .

A

B

C

D

E E
B

E

C

B

E

component directories

D

E

EXT/RES directories-ref

Copyright © Randy Marques Consultancy

• Options are placed separately in option-files

‒ Options for all C-files in project:

• FLAGS_C.GBS In COMP directory

‒ Options for all C-files in component:

• In FLAGS_C.GBS in Component directory

• For compilation, options are placed in de order

specified above.

‒ Last option wins...

Generic Build Support - Developers 31

Compile-time Options - 1

Copyright © Randy Marques Consultancy

Compile-Time Options - 2

Sub_1

 comp

A B C D E

src inc bld

-Dxxx

-Dyyy

-Dzzz

FLAGS_C.GBS

-Daaa

-Dbbb

FLAGS_C.GBS

Generic Build Support - Developers 32

Copyright © Randy Marques Consultancy

• Given a source file of the current Component of the
current SubSystem of the current System with a
current Build, we have:
‒ Source File name (file.c)

‒ Compiler to be used

‒ Extension of object-file name (.o)

‒ Object-file name (file.o)

‒ Header-File Directory information

‒ Compile Options Information

‒ Input & Output Directory

• So we can have a generic script that generates a
dedicated compile command.

Generic Build Support - Developers 33

Generating a Compilation

Copyright © Randy Marques Consultancy

• Introduction

• Build Automation Basics

• The Directory Structure

• Diversity

• Scoping & Building

• Beginning with GBS

• The GBS commands

• The GBS environment

• GBS Internals

• Final Remarks & Questions

 Generic Build Support - Developers 34

Program

Copyright © Randy Marques Consultancy

• Perl

• Install GBS

• Setup GBS

• Startup GBS

• Preset Environment Variables

• Global Personal Environment Variables

• Global GBS Environment Variables

• Global Project/System Environment Variables

Generic Build Support - Developers 35

Beginning with GBS

Copyright © Randy Marques Consultancy

• Perl

‒ GBS uses Perl-scripts

‒ Perl must be installed and the perl command must be
executable either via
• The PATH

or

• Addressed by Environment Variable GBS_PERL_PATH

‒ Do not install Perl in a directory that starts with ‘5’
• Use v5

‒ You need at least Perl 5.16.3 preferably with PerlTkx
• On Linux PerlTkx must be installed separately with ppm (Perl Package

Manager)

Generic Build Support - Developers 36

Beginning with GBS - Perl

Copyright © Randy Marques Consultancy

• Multiple versions of GBS can be installed:
‒ <anyroot>/GBS/<GBS_SCRIPTS_REL>/

‒ <anyroot>/GBS
• <anyroot> : GBS_SCRIPTS_ROOT

• May not contain whitespace

• Location
– Central Network Drive (slower – always up-to-date)

– On each machine

‒ GBS_SCRIPTS_REL
• <version>

– Latest version - overwritten

• <version>_<build>
– Specific version

‒ GBS_SCRIPTS_PATH
• <GBS_SCRIPTS_ROOT>/<GBS_SCRIPTS_REL>

Generic Build Support - Developers 37

Beginning with GBS – Install GBS

Copyright © Randy Marques Consultancy

• Unzip to a new temp directory

• ‘cd’ to that directory

• Win32:

‒ Run Install.bat

• Linux

‒ chmod ugo+x Install.sh

‒ ./Install.sh

• Answer questions

• Delete the unzip directory

Generic Build Support - Developers 38

Beginning with GBS – Install GBS

Copyright © Randy Marques Consultancy

• This part may be skipped if it was already done
during Install

• Initial setup of GBS (once only)
‒ ‘cd’ to your GBS_SCRIPTS_PATH

‒ Run:
• _setup.bat (Win32)

• . _setup.sh (Unix/Linux) (Mind the dot!)

• .gbs directory
‒ ‘Starting-point’ for GBS

‒ Created in:
• %APPDATA% (Win32)

• ~/ (Linux)

Generic Build Support - Developers 39

Beginning with GBS – Setup GBS

Copyright © Randy Marques Consultancy

• During setup:

‒ Windows
• A GBS startup-shortcut is created on your desktop

‒ Linux:
• Your ~/.bashrc file(s) are updated to contain a gbs command

• If you have a GUI:

– A GBS startup-shortcut is created on your desktop

Generic Build Support - Developers 40

Beginning with GBS – Setup GBS

Copyright © Randy Marques Consultancy

• Answering questions:

‒ Possible values are between ()

‒ Default value is between []
• Enter a single space if empty value (not the default) is wanted

‒ Enter ! to quit processing safely

‒ Enter ? to get help (usually not available )

Generic Build Support - Developers 41

Beginning with GBS – The Command Line

Copyright © Randy Marques Consultancy

• Windows
‒ Double-click on the GBS Startup shortcut
‒ Enter:

gbs

‒ Note:
• GBS runs on Win10 (and probably WinXP, Vista, Win7 & Win 8)

• Linux
‒ With GUI

• Double-click on the GBS Startup shortcut

‒ No GUI
• Open an X-term window

‒ Enter:
gbs

‒ Note:
• GBS runs ONLY on the Bourne-Again-shell (bash)

• Answer the questions

Generic Build Support - Developers 42

Beginning with GBS – Startup GBS

Copyright © Randy Marques Consultancy

• GBS maintains a list of Systems (work-areas) per user

‒ Yes! In the .gbs directory!
• No! Do no try to be clever!

• To add an existing System (checked out work-area):
‒ cd to the GBS_SYSTEM_PATH directory (containing dev,

etc)

‒ swr –-add

• List added Systems:
‒ swr

• Help: gbsman and/or gbshelp

Generic Build Support - Developers 43

Beginning with GBS – First use

Copyright © Randy Marques Consultancy

• Manual

• Define in:

‒ Windows: Registry (Advanced System Settings: Environment
Variables)

‒ Linux: ~/.profile (~/.bash_profile, ~/.bash_login)

• Names:

‒ GBS_PERL_PATH

Generic Build Support - Developers 44

Preset Environment Variables

Copyright © Randy Marques Consultancy

• Defined and changed by:
‒ gbssetup

• Items:
‒ GBS_SCRIPTS_ROOT, GBS_SCRIPTS_REL

• GBS_SCRIPTS_PATH

‒ GBS_SITE

‒ GBS_LOG_PATH

‒ GBS_BEEPS

‒ GBS_EDITOR

‒ GBS_BROWSER

‒ GBS_VIEWER

‒ GBS_ADMINISTRATOR, GBS_INTEGRATOR

‒ More…

Generic Build Support - Developers 45

Global Personal Environment Variables

Copyright © Randy Marques Consultancy

• Only for Central GBS Installation
‒ GBS on Network Drive

• Batchfile executed every time GBS is started
‒ Located: GBS_SCRIPTS_ROOT and/or GBS_BASE_PATH (user)
‒ Name:

• Win32: gbsall.bat
• Linux: gbsall.sh

‒ All EnvVars must be prefixed GBSALL_ instead of GBS_

• Use:
‒ Broadcast (GBS-related) messages
‒ Setup Site-global Environment Variables
‒ Note:

• Do not try to be 'clever' with this file
• Placing any 'clever' stuff in this file may cause GBS to malfunction.

If not today: definitely in the future.

Generic Build Support - Developers 46

Global GBS Environment Variables

Copyright © Randy Marques Consultancy

• Where:

‒ GBS_SYSTEM_PATH/switch.gbs (.bat/.sh)

• Items:

‒ GBS_TEMPLATE_PATH (prefer gbsall?)

‒ GBSEXT_scm_PATH

‒ GBSEXT_compiler_etc_locations

‒ More later…

Generic Build Support - Developers 47

Global Project/System Environment Variables

Copyright © Randy Marques Consultancy

• Introduction

• Build Automation Basics

• The Directory Structure

• Diversity

• Scoping & Building

• Beginning with GBS

• The GBS commands

• The GBS environment

• GBS Internals

• Final Remarks & Questions

 Generic Build Support - Developers 48

Program

Copyright © Randy Marques Consultancy

• All commands have the format:
‒ command [args | gbs-options]... | [gbs-environment]...

• gbs-options always start with -- (minus minus)

• General options (always available):
‒ command --h will give you short help

‒ command --h option... will give you short help on
 the specified option(s)

‒ command --help will give you more extensive
 help

‒ command --help option... will give you long help on the
 specified option(s)

• gbs-environment:
‒ <name>=<value> (GBS_ may be omitted)

Generic Build Support - Developers 49

The GBS Commands In General

Copyright © Randy Marques Consultancy

• Messages are always preceded by the name of the
command in uppercase

• All commands return a status
‒ 0 == OK (Linux, Windows)

• Prompts:
‒ Possible values are between ()
‒ Default value is between []
‒ To abort

• ^C (bad way!)
• !<enter> (good way!)

‒ Example
 Choice (1-3)[3]:

‒ ‘?’ Gives help - if available
‒ Sorry, no command-history in Unix Perl

(maybe in a later release)

Generic Build Support - Developers 50

The GBS Commands in general

Copyright © Randy Marques Consultancy

• GBS works with currencies:
‒ Current System

• GBS_SYSTEM_PATH

‒ Current SubSystem (remembered per System)
• GBS_SUBSYS

‒ Current Component (remembered per SubSystem)
• GBS_COMPONENT

‒ Current Build(remembered per System)
• GBS_BUILD

• Setting GBS currencies
‒ Set Current System: swr
‒ Set Current SubSystem: sws
‒ Set Current Component: swc
‒ Set Current Build: swb
‒ Show currencies: gbs

Generic Build Support - Developers 51

GBS Navigation Commands

Copyright © Randy Marques Consultancy

• Navigating GBS Directories:
‒ cdsystem

‒ cddev, cdres, cdext, cdsysbuild

‒ cdsub

‒ cdcomp, cdbuild, cdaudit

‒ cdcomponent

‒ cdsrc, cdinc, cdloc, cdbld, cdsav, cddat

‒ cdbuild

• Caution: Never change a GBS Environment Variable!
Use the GBS commands to do that

• Caution: Never create GBS files and/or directories!
Let GBS commands do that (swc, swb, sws, swr)

Generic Build Support - Developers 52

GBS Navigation Commands

Copyright © Randy Marques Consultancy

• Generate one or more items from a file in the 'src' directory to
one or more files in the 'bld/<build>' directories.
‒ E.g: compilation, creating a library, linking

‒ File-extension specifies the type of build that is required
(e.g.: *.c →C-compile)

• Specific, generic rules:
‒ The source file is an argument in the command-line and is taken from

the current 'src' directory
• More than one file from the 'src' directory may be specified

• Wildcards are honored.

‒ The object-files will be written to the current 'bld/<build>' directories.
• The name of the object-file will be equal to the name of the source-file.

• Filename extensions may differ and will be specific for various platforms. i.e.:
name.c → name.obj or name.o

• If the build fails, name.* will be deleted from the 'bld' sub-directories

Generic Build Support - Developers 53

Building

Copyright © Randy Marques Consultancy

• Include path (-I/-L) will be assembled in the following
order:

‒ The current 'loc' directory

‒ The current 'inc' directory.

‒ The 'inc' directories of the other components within the
same SubSystem:
• In the order and as specified in the 'scope.gbs' file

‒ As specified in the external reference file in the
'build/<build>' directory to be able to include stuff from the
'import', 'res' and 'ext' areas.

• Use GBS command 'gbswhich' to show the path

Generic Build Support - Developers 54

Building: Include Paths

Copyright © Randy Marques Consultancy

• The build-time options (-D) will be assembled in the
following order:

‒ Fixed Build settings for the whole project as defined in the
option-file in the 'sysbuild/<build>' directory.

‒ If present: Build-time options explicit for a specific SubSystem in
the option-file in the current 'build/<build>' directory.

‒ If present: Build-time options explicit for a specific component in
the option-file in the current 'opt' directory per Build.

‒ If present: Build-time options as specified in the command-line
This means that options specified on the command-line will win.

• Use GBS command 'gbswhich' to show all –D options

Generic Build Support - Developers 55

Building : -D options

Copyright © Randy Marques Consultancy

• gbsbuild, gbsmake (and gbsaudit) have the same
type of syntax: the comp-file-spec

• <comp_file-spec>:
‒ [<component>:]<file-comma-list>

‒ wild-cards allowed

‒ e.g:
• file1.c file1.c in current Component

• A:*.c All *.c files in Component A

• *:*.* All files in all Components of current SubSystem

‒ If <component> is omitted then current component is taken

‒ If <component> is specified, this component becomes the
current component for the duration of the execution.

‒ More than one <comp-file-spec> can be specified

‒ -D options are passed to preceding files in list

Generic Build Support - Developers 56

Building: The comp-file-spec

Copyright © Randy Marques Consultancy

• Makefiles:
‒ Generated

• Implicitly with gbssysbuild

• Explicitly with gbsmakemake

‒ Flavours:
• gbsmake ALL

• gbsmake <component-list>

• gbsmake <comp-file-list>

‒ make-files are generated per Build and per SubSystem

‒ Never check-in a make-file!

‒ gbsxref uses gbsmakemake information to generate a
GUI-controlled cross-reference

Generic Build Support - Developers 57

Building: Make

Copyright © Randy Marques Consultancy

• Specifying options

‒ gbsbuild and gbsaudit also accept –D options

‒ Environment variables in the format

GBS_FLAGS_<type> define options to be used for a

specific compiler/linker/etc

‒ Specifying GBS_FLAGS_<type>="-D…." defines the

environment variable for the duration of the execution

Generic Build Support - Developers 58

Building

Copyright © Randy Marques Consultancy

• GBS recognizes a few built-in options:
‒ Compilation:

• DEBUGGER

– YES, NO

• MODE

– DEBUG, ASSERT, FINAL, PROFILING

• OPT

– YES, NO, SIZE, SPEED, DEBUG

‒ Linking
• DEBUGGER

– YES, NO

• MAP

– YES, NO

• How to specify:
‒ gbsbuild *.c MODE=DEBUG

‒ Or via SetEnv: GBS_MODE=DEBUG

Generic Build Support - Developers 59

Building

Copyright © Randy Marques Consultancy

• The difference between ‘build’ and ‘make’

‒ build '

• you specify the source (e.g. file.c)

• only the specified file(s) will be built

• all the specified files will be built

‒ 'make'

• you specify the resulting file (e.g. file.o)

• other files (even in other components) may be built

• specified files may or may not be (re-)built

Generic Build Support - Developers 60

Building

Copyright © Randy Marques Consultancy

• Creates the 'deliverables' of a SubSystem
• Copies the various elements from within the SubSystem

to the export and/or res/<subsys> directory
• Existence of export and/or res/<subsys> directory

specify actions to be taken.
• Build-sensitive
• A whole directory-tree can be created in export
• Every Component can have an 'export.gbs' file

‒ Specifies which files of that component are to be exported to a
specific sub-directory in export

• 'smart'-copy: file-attributes (date-time) remain
unchanged

• Syntax later...

Generic Build Support - Developers 61

Exporting: gbsexport

Copyright © Randy Marques Consultancy

Exporting

System

dev ext res

Sub_3 Sub_2 Sub_1

Sub_1

export comp

Sub_2

export anydir2

generate

anydir1

Sub_3

export comp

Generic Build Support - Developers 62

Copyright © Randy Marques Consultancy

• gbssysbuild, gbssysmake, gbssysaudit

‒ Concept op ‘steps’:
• Subsystem

• Script

‒ Specify step or range of steps

‒ gbsexport included

‒ Runs in batch-mode
• Results to log-file

• Can be started with a delay

• On Unix you can shutdown your terminal ('at')

Generic Build Support - Developers 63

Generating on a higher level

Copyright © Randy Marques Consultancy

• gbs
‒ You can always enter the gbs command
‒ It will display your currencies

• gbsman
‒ The GBS manual pages

• gbsmaint
‒ An assortment of maintenance and cleanup functions

• gbswhich
‒ Show compile-options, include-paths, location of header-files etc

• gbsedit
‒ Allows you to Create/Edit GBS specific files

• gbsstats
‒ Gives statistics on nr. of files, components, etc

• gbssilo
‒ Generate the silo HTML pages and start the browser

• gbssetup
‒ (Re-)define GBS EnvVars in an controlled way

Generic Build Support - Developers 64

General Commands

Copyright © Randy Marques Consultancy

• gbsbuild, gbsmake, gbsaudit

‒ For Files and Components

• gbsmakemake

‒ Creates a make-file

• gbssysbuild, gbssysmake, gbssysaudit

‒ For SubSystems /scripts and total System

Generic Build Support - Developers 65

Building Commands

Copyright © Randy Marques Consultancy

• wordrep
‒ Batch Replace words in file(s)

• filerep
‒ Batch Rename files

• proto
‒ Create C, C++ & Perl function-prototypes

• bgpids
‒ Shows PIDs of Background jobs (Linux only)

• pgrep
‒ ‘grep’ based on Perl regular expressions

• On Windows:
‒ grep, tail, which

Generic Build Support - Developers 66

General Commands – Non GBS Specific

Copyright © Randy Marques Consultancy

• Introduction

• Build Automation Basics

• The Directory Structure

• Diversity

• Scoping & Building

• Beginning with GBS

• The GBS commands

• The GBS environment

• GBS Internals

• Final Remarks & Questions

 Generic Build Support - Developers 67

Program

Copyright © Randy Marques Consultancy

• Never specify an Absolute Path

• Use GBS environment variables
‒ GBS_SYSTEM_PATH

‒ GBS_EXT_PATH

‒ GBS_RES_PATH

‒ etc…

• And/or environment variables defined in the switch.gbs
file
‒ All must be prefixed GBSEXT_

‒ use 'entry' part to set the variables

‒ use 'exit' part to unset
• GBSEXT_ EnvVars will be unset automatically

‒ use Env. Variable GBS_SITE to distinguish between sites

Generic Build Support - Developers 68

Guarantee Portability and Relocatability

Copyright © Randy Marques Consultancy

• LOG directory:
‒ GBS_LOG_PATH

• Browser, Viewer, Editor
‒ GBS_BROWSER, GBS_EDITOR, GBS_VIEWER

• Beeps (Alarm/Bell)
‒ GBS_BEEPS

• Make (careful!!)
‒ GBS_MAKE

• Batch, Foreground and Background processing:
‒ GBS_BATCH, GBS_SUBWIN, GBS_SUBMIT

• Background processing:
‒ GBS_BG_NOTIFIER

Generic Build Support - Developers 69

Customizing GBS

Copyright © Randy Marques Consultancy

• Introduction

• Build Automation Basics

• The Directory Structure

• Diversity

• Scoping and Building

• Beginning with GBS

• The GBS commands

• The GBS environment

• GBS Internals

• Final Remarks & Questions

Generic Build Support - Developers 70

Program

Copyright © Randy Marques Consultancy

• General
‒ All *.gbs files (except switch.gbs files):

• Ignore blank lines

• Ignore lines starting with '#'

• Are superseded by *.usr files

‒ Temporarily modify *.gbs files:
• No need to checkout *.gbs file

• Just add <samename>.usr and this file will be taken instead of
<samename>.gbs

• Never, ever check-in a *.usr file!

• Do not forget to eventually remove the *.usr file(s)!
– There is a gbsmaint function for this

‒ switch.gbs files are not superseded by switch.usr files:
• first switch.gbs file is executed, then switch.usr file

Generic Build Support - Developers 71

GBS Files

Copyright © Randy Marques Consultancy

• Creating GBS directories and files

‒ Never create GBS directories and/or GBS files by yourself

‒ GBS will do that for you, ensuring that all directories and
files are created properly and are added to the SCM System,
only if needed.

‒ If you need a new component enter
• swc --new

‒ If you need a new gbs-file, use
• gbsedit

Generic Build Support - Developers 72

GBS Files

Copyright © Randy Marques Consultancy

• System switch.gbs:

‒ Executed when an Switch System (swr) is executed
• When entering a System with parameter 'entry'

• When leaving a System with parameter 'exit'

‒ There is always a switch.gbs file

• Used to setup (and cleanup) the environment for a
specific System

• All EnvVars must be prefixed with GBSEXT_

‒ Note: No '_' between GBS and EXT

• Do not rely on settings in .profile / .kshrc and/or
Registry!!

Generic Build Support - Developers 73

switch.gbs

Copyright © Randy Marques Consultancy

• General:
‒ A line that starts with '#' is ignored
‒ A line that starts with ‘.include glkb-file' performs an include of

the specified glkb-file.
‒ Included glkb-files are searched according to the general include-

path mechanism and must be placed in inc, loc, ext or res
directories.

‒ Empty lines are ignored

• Specific
‒ Absolute file-specifications must not be used!
‒ GBS_BLD_<in_file_type> environment variables for the current

Build are set.
Generic glkb-files suitable for various Builds.
i.e.:
• file1$GBS_BLD_C -> file1.o or file1.obj
• file2$GBS_BLD_ASM -> file2.o or file2.obj

Generic Build Support - Developers 74

GLK/GLB files

Copyright © Randy Marques Consultancy

• Lines contain specifications for the linker. eg.:
‒ object-files, libraries and flags

• The following types of lines are input to the linker:
‒ 'Absolute' file/library reference:

• A line that starts with a '$' or '%' is presented to the linker as-is

‒ Files/Libraries from the current Build directory:
• name

Are prefixed with ../bld/<build>/ before presented to the linker

‒ Files/Libraries from a specific component:
• component:name1

Are prefixed with component-dir/bld/<build>/

‒ Files/Libraries from external directories (specified with -L option)
• +name1 name2

Are presented to the linker as-is (without the '+')

‒ … more in gbshelp

• DO NOT PLACE –L and/or –I options in GLKB files!

Generic Build Support - Developers 75

GLKB files

Copyright © Randy Marques Consultancy

• Output-directory specification:
A line that starts at column 1 specifies a directory
relatively to the export directory where file(s)
specified in the following Input-files specifications
will be copied to.

• Input-files specification
Lines not starting at column 1 specify the files that
have to be copied.
They are taken relatively to the component-directory.

• Environment Variables of the type $GBS_BLD_src-
type can be used to specify Build-specific file-types

• Wildcards are not allowed!

Generic Build Support - Developers 76

export.gbs

Copyright © Randy Marques Consultancy

• Example:
#=======================

[component] export.gbs

#=======================

$GBS_BUILD/inc

inc/country.h

$GBS_BUILD/lib

bld/GBS_BUILD/gpsGBS_BLD_GLB

bld/GBS_BUILD/fooGBS_BLD_C

###EOF###

Generic Build Support - Developers 77

export.gbs

Copyright © Randy Marques Consultancy

• Introduction

• Build Automation Basics

• The Directory Structure

• Diversity

• Scoping & Building

• Beginning with GBS

• The GBS commands

• The GBS environment

• GBS Internals

• Final Remarks & Questions

 Generic Build Support - Developers 78

Program

Copyright © Randy Marques Consultancy

• GBS is built for speed

• GBS is built to help you

‒ Throughout consistency

‒ Reliability

• Do not write your own scripts

• If you have a good idea:

‒ Tell me!

‒ If it fits in the generic concept I will add it to GBS

• Use GBS as intended

‒ Do not try to be ‘smart’
• ‘Clever’ is even worse!

Generic Build Support - Developers 79

Final Remarks & Questions

Copyright © Randy Marques Consultancy

• If you encounter problems:
‒ Probably there is already a solution

‒ Do not try to ‘fix’ it without proper knowledge

• So:
1. Read the Help (gbshelp)

2. Ask your local GBS intermediate (GBS Administrator)

3. Contact me

Read the Help

Read the Help

Did I mention to Read the Help?

 Generic Build Support - Developers 80

Final Remarks & Questions

Copyright © Randy Marques Consultancy

• Introduction

• Build Automation Basics

• The Directory Structure

• Diversity

• Scoping

• Beginning with GBS

• The GBS commands

• The GBS environment

• GBS Internals

Generic Build Support - Developers 81

Final Remarks & Questions

Copyright © Randy Marques Consultancy

Smart people find complex solutions

Intelligent people find simple solutions

Generic Build Support - Developers 82

Final Remarks & Questions

